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Abstract

Let ¥ = (r;)I"; be a sequence of real numbers of length n with sum s. Let s =0
and s; = r1 + ...+ r; for every ¢ € {1,2,...,n}. Fluctuation theory is the name
given to that part of probability theory which deals with the fluctuations of the
partial sums s;. Define p(7) to be the number of positive sum s; among sq,..., s,
and m(7) to be the smallest index i with s; = JDax s An important problem in

IKXN

fluctuation theory is that of showing that in a random path the number of steps on
the positive half-line has the same distribution as the index where the maximum is
attained for the first time. In this paper, let 7, = (r;,..., 7,71, ...,7;—1) be the i-th
cyclic permutation of . For s > 0, we give the necessary and sufficient conditions
for {m(7;) | 1 < i< n} ={12,...,n} and {p(73) | 1 < i < n} ={1,2,...,n};
for s < 0, we give the necessary and sufficient conditions for {m(7;) | 1 < i <
n} ={0,1,...,n—1} and {p(7) | 1 <i<n} ={0,1,...,n — 1}. We also give an
analogous result for the class of all permutations of 7.
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1 Introduction

Fluctuation theory is the name given to that part of probability theory which deals with
the fluctuations of the partial sums s; = 1 + ... + x; of a sequence of random variables
Z1,...,%T,. An important problem in fluctuation theory is that of showing that in a
random path the number of steps on the positive half-line has the same distribution as
the index where the maximum is attained for the first time. In particular, fix a sequence
of real numbers 7= (r;)i, = (r1,...,r,). Let

80:0,81:7’1,82:7’1+7’2,...,Sn:7’1—|—T2—|—...—|—Tn.

Define p(7) to be the number of positive sums s; among sy,. . .,S,, i.e., p(7) = |[{i | s; > 0},
and m(7) to be the smallest index ¢ with s; = Jnax sy. Let [n] and [n] — 1 denote the sets
n

VX

{1,2,...,n} and {0,1,...,n— 1}, respectively. Let &,, be the set of all the permutations
on the set [n]. We write permutations of &,, in the form ¢ = (o(1)o(2)---0(n)). Let
To = (To(1)s - - -+ To(n)) for any o € &,,. For any i € [n+ 1] — 1, Let N(7;1) ( resp. II(7}1))
be the number of permutations ¢ in &,, such that p(7,) = i (resp. m(7,) = 7). A basic
theorem in fluctuation theory states that N (7% 4) = II(74) for any i € [n+1]—1. This result
first was proved by Andersen [2]. Feller [10] called this result the Equivalence Principle
and gave a simpler proof. This result is mentioned by Spitzer [23]. Baxter [3] obtained
this result by bijection method. In [4], Brandt generalized the Equivalence Principle.
Hobby and Pyke in [12] and Altschul in [1] gave bijection proofs for the generalization of
Brandt.

Given an index i € [n], let 7; = (r;, ..., 70, 71,...,7-1) . We call 7 the i-th cyclic
permutation of 7. Let

P(r) =A{p(r) [ i € [n]} and M(r) = {m(r) | i € [n]}.

Spitzer [23] showed implicitly the following specialization of the Equivalence Principle to
the case of cyclic permutations.

Lemma 1.1 (Spitzer combinatorial lemma, [23]) Let i be a sequence of real numbers of
length n with sum 0 and the partial sums s, ..., s, are all distinct. Then P(T) = M(F) =
[n] — 1.

A set is uniformly partitioned if all partition classes have the same cardinality. Many
uniform partitions of combinatorial structures are consequences of Lemma 1.1. A famous
example is the Chung-Feller theorem. Let 2 be the set of sequences of integers 77 = (r;)2",
such that sy, = 0 and r; € {1, —1} for all i € [2n]. Clearly, |2| = (*'). The Chung-Feller
theorem shows that n + 1 divides (277) by uniformly partitioning the set Z into n + 1
classes.

The Chung-Feller theorem was proved by many different methods. Chung and Feller
[7] obtained this result by analytic methods. Narayana [19] showed this theorem by
combinatorial methods. Narayana’s book [20] introduced a refinement of this theorem.
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Mohanty’s book [18] devotes an entire section to exploring this theorem. Callan in [5]
and Jewett and Ross in [14] gave bijection proofs of this theorem. Callan [6] reviewed
and compared combinatorial interpretations of three different expressions for the Catalan
number by cycle method.

One also attempted to generalize the Chung-Feller theorem for finding uniformly par-
titions of other combinatorial structures. Huq [13] developed generalized versions of this
theorem for lattice paths. Eu, Liu and Yeh [9] proved this Theorem by using the Taylor
expansions of generating functions and gave a refinement of this theorem. In [8], Eu, Fu
and Yeh gave a strengthening of this Theorem and a weighted version for Schroder paths.

Suppose f(z) is a generating function for some combinatorial sequences. Let F'(z,y) =
W. Liu, Wang and Yeh [15] call F(x,y) the function of Chung-Feller type for
f(x). If we can give a combinatorial interpretation for the function F(z,y), then we
may uniformly partition the set formed by this combinatorial structure. Ma and Yeh [16]
attempted to find combinatorial interpretation of the function of Chung-Feller type for a
generating function of three classes of different lattice paths.

Particularly, Narayana [19] showed the following property for cyclic permutations.

Lemma 1.2 (Narayana [19]) Let 7= (r;)?_, be a sequence of integers with sum 1. Then

P(i) = ).

In [19], Narayana gave a combinatorial proof of the Chung-Feller theorem by Lemma 1.2
and uniformly partition the set . Lemma 1.2 is derivable as a special case from the
Spitzer combinatorial lemma. In [17], Ma and Yeh gave a generalizations of Lemma 1.2
by considering A-cyclic permutations of a sequence of vectors and uniformly partition sets
of many new combinatorial structures.

Based on the rightmost lowest point of a lattice path, Woan [24] presented another
new uniform partition of the set 2. Let % be the set of sequences of integers 7= (r;)"}
such that s,y =1 and r; € {1,0,—1} for all ¢ € [n+ 1]. In [9], Eu, Liu and Yeh proved
that there is an uniform partition for the set %, which was found by Shapiro [22]. In [17],
Ma and Yeh also proved another interesting property of cyclic permutations as follows.

Lemma 1.3 Let 7= (r;)"; be a sequence of integers with sum 1. Then M(T) = [n].

Raney [21] discovered a fact: If 7= (r;)"_, is any sequence of integers whose sum is 1,
then exactly one of the cyclic permutations has all of its partial sums positive. Graham
and Knuth’s book [11] introduced a simple geometric argument of the results obtained by
Raney. This geometric argument yields P(7) = M (7) = [n| for integer sequences 7 with
sum 1.

Fix a sequence of real numbers 7 = (r;); with sum s. For s = 0, Lemma 1.1 give
a characterization for P(7) = [n] — 1; we note that the conditions in Lemma 1.1 are not
necessary for M(7) = [n] — 1. For example, let 7= (0,1, —1). We have M(7) = {0, 1,2}
and P(r) = {0,1}. For s = 1, Lemmas 1.2 and 1.3 give some sufficient conditions for
P(7) = [n] and M(7) = [n] respectively. Note that M(7) C [n] and P(7) C [n] if s > 0;
M(7) C [n] =1 and P(7) C [n] — 1 if s < 0. Two natural problems arise:
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(1) What are necessary and sufficient conditions for M(7) = [n] and P(7) = [n] if s > 07

(2) What are necessary and sufficient conditions for M(7) = [n] — 1 and P(7) = [n] — 1
if s <07

The aim of this paper is to solve these two problems. Let 7 = (r;)I; be a sequence
of real numbers with sum s and partial sums (s;)",. We state the main results of this
paper as follows.

e Let s > 0. Then
(1) M(7) = [n] if and only if s; —s; > s for all 1 <i < j— 1 with j =m(7).
(2) P(r) = [n] if and only if s; —s; ¢ (0,s) for any 1 < ¢ < j < n, where the
notation (0, s) denote the set of all real numbers x satisfying 0 < x < s.

e Let s <0. Then
(1) M(7) =[n]—1ifand only if s; —s; < sfor all j+1 < i <n—1with j =m(r).
(2) P(r) = [n] — 1 if and only if s; — s; ¢ [s,0] for all 1 < ¢ < j < n, where the
notation [s, 0] denote the set of all real numbers x satisfying s < = < 0.

The properties of cyclic permutations of the sequence 7 in the main results will be proved
in Section 2. Lemmas 1.1, 1.2 and 1.3 are corollaries of the main results.

Recall that N(7;4) ( resp. II(74)) denotes the number of permutations ¢ in &,, such
that p(7,) = i (resp. m(7,) = 7). Using the main results, we derive the necessary and
sufficient conditions of N(7;i) = II(7;4) = (n — 1)! for all i € [n] (resp. ¢ € [n] — 1) when
s >0 (resp. s <0).

We also consider more general cases. Fix a real number 6. Define p(;0) to be the

number of sum s; among s1, ..., s, such that s; > 6 -i. Let P(7;0) = {p(;;0) | i € [n]}.
Define m(7 ) to be the smallest index ¢ with s; — 0 -7 = max (s —0-k). Let M(7;60) =

{m(7;;0) | i € [n]}. Suppose s > nf. We give the necessary and sufficient conditions for
M(7;6) = [n] and P(7;60) = [n]. Suppose s < nfl. We give the necessary and sufficient
conditions for M(7;6) = [n] — 1 and P(7;60) = [n] — 1.

We organize this paper as follows. In Section 2, we study properties of cyclic permu-
tations of 7. In Section 3, we consider more general cases.

2 Properties of cyclic permutations of a sequence

In this section, we study properties of cyclic permutations of a sequence 7" with sum s. For
s > 0, we give the necessary and sufficient conditions for M(7) = [n] and P(7) = [n]. For
s < 0, we give the necessary and sufficient conditions for M(7) = [n]—1 and P(¥) = [n]—1.

Lemma 2.1 Let ¥ = (r;)!, be a sequence of real numbers with sum s > 0. Let j = m(7).
Foranyi = j+1,...,n, let7; be the i-th cyclic permutation of 7. Then m(7;) = n+j+1—i.

Proof. It is easy to see r;+. . .4+r,+r1+.. .41, < 1i+.. . +r,+ri+...r; forany k € [j]—1
and r;+. . .+rp+ri+. o <At 4.y forany k€ {g,j+1, ..., i—1}. Assume
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that there is an index k € {i,i+1,...,n—1} such that r;+. . .41y = ri+. . 4r,+ri+.. 41
Thusrk+1—|—...+rn—|—r1+...—|—7’j<O.j— m(r) implies 71 +...+71; > ri1+... 471, So
0> (rpsa+...4rp)+rm+...+r; =2+ .41+ (g1 +. .. +1,) = s > 0, a contradiction.
We have r;+...+r, <ri+...+r,+r+...+r;forany k € {i,i+1,...,n—1}. Hence
m(r;) =n+j+1—i. i

Theorem 2.2 Let 77 = (r;)!, be a sequence of real numbers with sum s > 0 and partial
sums (8;)i—y. Let j = m(7). Then M(7) = [n] if and only if s;—s; > s for all1 <i < j—1.

Proof. For any ¢ € [n], let 7; be the i-th cyclic permutation of 7. It is easy to see
m(7;) # 0 since s > 0. Lemma 2.1 tells us m(7;) =n+j+1—iforany i € {j+1,...,n}.
Suppose s; —s; > s for all 1 < ¢ < j— 1. Consider the sequence 7 = (7, ..., 7y,
T,...,7i—1) with ¢ € [j]. It is easy to see r; + ... + 1, < 1; + ...+ 1r; for any k €
{i,i+1,....,7j—1}andr+...+r, <ri+...+r;forany k€ {j,j+1,...,n}. Assume
that there is an index k € [t — 1] such that r; + ... +7r; <r+ ... +r, +r1 4+ ...+ 7%
Thus s; — s, = k41 + ... + 1 < s, a contradiction. Hence m(7;) = j +1 —i.
Conversely, suppose M(7) = [n]. Let A = {i | s, —s; < s, 1 < i < j— 1}
Assume A # () and let ¢ = min A. Clearly i + 1 < j. We consider the sequence 7, =
(Tit1s- vy Ty T1,...,1;). Since i € A, we have 11+ . .41, < 8 = ripq+. . Arp+ri+. . 41
It is easy to see ritq + ...+ 71 < 7iy1 + ...+ 1, for anyk e{i+1,i+2,...,j—1} and
Tis1+...+1 <ripp+...+rjforany k € {j,j+1,...,n}. Forevery k € [i — 1], we have
Si—Spk=Tp1+...+r;=ssincek ¢ A. Sorip1+...+r; >+ g Fri oy
Hence m(7i41) = n = m(rj11). So M(7) # [n], a contradiction. i

Lemma 2.3 Let 7= (r;)!, be a sequence of real numbers with sum s < 0. Let j = m(7).
Suppose j = 1. For any i € [j], let 7; be the i-th cyclic permutation of ¥. Then m(r;) =
J+1—u.

Proof. It is easy tosee r; + ...+ 1, <r;+...+r; forany k€ {i,i+1,...,7 — 1} and
rit... .+ <ri+...+r;forany k€ {j,j+1,...,n}. For any k € [i — 1], we have
Tht1+ ...+ 7; >0 2> ssince j = m(r). This implies 0 > rj 1 +... + 7, + 71 +...7; and
ri+...+r;>r;+...+r,+1r+...7 Note that r;+...+r; > 0 since j = m(r). Hence
m(r;) =j+1—1. i

Theorem 2.4 Let 7= (r;), be a sequence of real numbers with sum s < 0 and partial
sums (s;)ig. Suppose m(r) = j. Then M(7) = [n] — 1 if and only if s; — s; < s for all
j+1<e<n—1.

Proof. For any ¢ € [n], let 7; be the i-th cyclic permutation of 7. It is easy to see
m(7;) # n since s < 0.

Suppose s; —s; < sforall j+1<i<n—1. Givenanindexi e {j+1,7+2,...,n},
we consider the sequence 7; = (74, ..., 7, 71,...,7;-1). It is easy to see r; + ...+ 71, +r1 +
ot <ri+. 4+t +rjforany ke jl—land i+ 4+ 41 <
rit...+rp+ri+...+rjforany k€ {j,j+1,...,i—1}. Forany k € {4,i+1,...,n—1},
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since sp —s; = Tj41 + ... + 1 < s, we have rpyy + ...+ 1+ + ...+ 1; > 0 and
T I o AR s I L T e o P

For ¢ > j + 2, note that r;, + ...+ 7, + 71 + ...+ 1; > 0 since j = m(r). Clearly,
rjg1+...+rm+ri+...+r;=s Hence m(r;) =n+j+1—ifori=j+2,...,nand
m(7j4+1) = 0. When j > 1, Lemma 2.3 tells us m(7;) = j + 1 — i for any ¢ € [j]. Thus we
have M(7) = [n] — 1.

Conversely, suppose M(r) = [n] —1. Let A={i|s;—s; > s, j+1<i<n}. Note
that n ¢ A if j > 1; otherwise n € A. So, assume A\ {n} # 0 and let i = max A \ {n}.
Clearly 7 +1 < ¢ < n— 1. We consider the sequence 741 = (Fig1, .-y Tny Ty -, 75). 1t
is easy tosee rjy1 + ...+ 1rp+ri+ .+ < Tigi+ ...+ +ri+ ...+ for any
keljl-landrign+...4rp+r+...+1m <rip+...+7m,+7rm + ...+, for any
ke{jj+1,...,i}. Forany k € {i+1,i+2,...,n—1}, we have sy —s; = rjp1+... 47 < s
since k ¢ Aand riq + ...+ <71+ ...+ 71 +11+ ...+ 1. Since i € A, we have
Tig1+ ...+ +r1+...+1r; <0. Hence m(rj41) = 0 = m(rj41) and M(7) # [n] — 1, a
contradiction. i

For any sequence of real numbers 7 = (r;)"_; with partial sums (s;)";, we define a
linear order < on the set [n] by the following rules:

for any i,j € [n], ¢ <7 j if either (1) s; < s; or (2) s; = s; and @ > j.

The sequence formed by writing elements in the set [n] in the increasing order with
respect to <z is denoted by 7(7) = (w1, 72, ..., m,). Note that w(7) also can be viewed as
a bijection from the set [n] to itself.

Lemma 2.5 Let 7 = (r;)", be a sequence of real numbers with sum s > 0. Let 7(T)
be the linear order on the set [n] with respect to <z. Given an index j € [n|, let Tj41 =
(Tj41s- 3Ty 71, ..., 75). Then

(1) for any j <7 we haverjia+ ...+ 1+ 4.+ >0 i<j;rja+...+1>0
if 1> 7.
(2) Suppose m(k) = j for some k € [n|. We have p(Tj41) = n —k+ 1.

Proof. (1) j < implies either (I) s; < s; or (II) s; = s; and j > i. Hence, we consider
two cases as follows.

Case 1. s; < s;. Fori > j, it is easy to see 741 + ... + 1, > 0. For ¢ < j, we have
Tig1+...+1r; <0 Hence rjyi +...4+rp+ri+ ...y =5—141 —...—1; >5>0.

Case II. s; = s; and j > 4. Wehave i1 +...4+r; =0and rjp+.. . +rp+ri+.. .41 =
s> 0.

(2) Note that 7j41 + ...+ 71, +71...+7; =5 > 0. Hence p(7j41) = n—k+ 1. i

Lemma 2.6 Let 7 = (r;)!, be a sequence of real numbers with sum s > 0 and partial
sums (s;)?_y. Let w(7") be the linear order on the set [n] with respect to <. Let j € [n]| and
Tj+1 be the (j+1)-th cyclic permutation of 7. Suppose s; —s; ¢ (0,5s) for all1 <1< j—1
and w(k) = j for some k € [n]. Then p(Tj41) =n —k+ 1.
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Proof. For any ¢ < 7, we discuss the following two case.
Case 1. s; < s;. For ¢ > j, it is easy to see rj;1 + ...+ 17, < 0. For ¢ < j,
we have s; —s; = 741+ ... +71; = ssince s; —s; > 0 and s; —s; ¢ (0,5). Hence

Tj+1+---+rn+rl+---ri:S_Ti—i—l_---_Tjgo-
Case 2. s; = s; and ¢ > j. Clearly, we have rj;; +...4+1; = 0.
By Lemma 2.5, we have p(7j41) =n+ 1 — k since (k) = j. i

Theorem 2.7 Let 7= (r;), be a sequence of real numbers with sum s > 0 and partial
sums (s;)i—,. Then P(r) = [n] if and only if s; — s; ¢ (0,s) for any 1 <i < j < n.

Proof. Let 7(7) be the linear order on the set [n] with respect to <. Suppose s; — s; ¢
(0,5) for any 1 < i < j < n. Lemma 2.6 implies p(7rpxy+1) =n+ 1 —k for all k € [n].
Hence P(7) = [n].

Conversely, suppose P(7) = [n]. Lemma 2.5 tells us p(7zg+1) = n — k + 1 for all
keln]. Let Ay = {i |0 < sz —5; <5, 1< i< m(k)} for any k € [n]. Assume
that Ay # () for some k € [n]. Let k = min{k | Ay # 0}. By Lemma 2.6, we have
p(Feiy+1) = n —k+ 1 for any k < k. Suppose (k) = j. We consider the sequence
Tjs1 = (Fj41s-- -y TnsT1,...,75). Let i € Ag. Since s; —s; > 0, we have s; > s;. Thus
t<pjandrjg+ ...+t 4 =85—71i1 —...—1; >0since s; —s; < s. By
Lemma 2.5, we get p(7y 1) = n —k+2. Hence n — k+1 ¢ P(7), a contradiction. N

Lemma 2.8 Let 7 = (r;)", be a sequence of real numbers with sum s < 0 and partial
sums (s;)1_,. Let w() be the linear order on the set [n] with respect to <. Given an
index j € [n], let 741 = (rjz1,- .- Tn,71,...,75). Then

(1) for anyi <z j, we have rjp1+...+rp+ri+... 41 <0 ifi<jrrja+...+1r <0
ifi>j.
(2) Suppose m(k) = j for some k € [n]. We have p(rj11) < n—k.

Proof. (1) i <7 j implies either (I) s; < s; or (II) s; = s; and ¢ > j. Hence, we consider
two cases as follows.
Case I. s; < s;. For i > j, it is easy to see rj41 + ... +1r; < 0. For ¢ < j, we have

Tig1+...+r; >0. Hence rjpq +...+r,+1m+ ...y =5 —1ip1 — ... —1; <0.
Case II. s; = sj and ¢ > j. We have rj;; +...+1r; = 0.
(2) Note that 7j11+...+r,+7r1+...+7; =s < 0. Hence p(7j41) < n —k. i

Lemma 2.9 Let ¥ = (r;)!, be a sequence of real numbers with sum s < 0 and partial
sums (8;)_y. Let w(r) be the linear order on the set [n] with respect to <z. Let j € [n] and
Tj41 be the (j + 1)-th cyclic permutation of 7. Suppose s; —s; ¢ [s,0] forall1 <i< j—1
and w(k) = j for some k € [n]. Then p(rj41) =n — k.

Proof. Clearly, rj11 4+ ...+ 71, + 1+ ...+ 17, =5 < 0. For any j <77, we claim s; > s;.
Otherwise s; = s;, then 7 < j and s; — s; = 0, a contradiction.

For ¢ > j, it is easy to see rj1; + ... +1r; > 0. For ¢ < j, we have s; — s; < s since
si—s; <0and s; —s; ¢ [s,0]. Sorjpr+...+rp+r+...rp=8—7141 —...—1; > 0.
By Lemma 2.5, we have p(7j+1) =n — k. i
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Theorem 2.10 Let ¥ = (r;)", be a sequence of real numbers with sum s < 0 and partial
sums (8;)i—,. Then P(r) = [n] — 1 if and only if s; — s; ¢ [s,0] for all1 <i < j < n.

Proof. Let 7(7) be the linear order on the set [n] with respect to <. Suppose s; — s; ¢
5,0] for all 1 <i < j < n. Lemma 2.9 implies p(7rx)+1) = n — k for all £ € [n]. Hence
P(r) = [n] — 1.

Conversely, suppose P(7) = [n]. Lemma 2.8 tells us p(7rp)+1) < n — k for all k € [n].
Let Ay ={i|s < Sz — 5 <0, 1 <i<7(k)— 1} for any k € [n]. Assume that Aj # 0
for some k € [n]. Let k = max{k | Ay # 0}. By Lemma 2.9, we have p(Frx);1) = n—k for

any k > k. Suppose 7(k) = j. We consider the sequence 711 = (Tji1, .., Tny 1,3 T5).
Let i € Aj. Since s;—s; < 0, we have s; < s;. Thus j <piand rj+.. 4r,+ri+.. 41 =
§—7iy1—...—1; < 0since s; —s; > s. By Lemma 2.8, we get p(7;11) < n—k—1. Hence
n —k ¢ P(7), a contradiction. i

Now, we consider integer sequences. Taking s = 1 in Theorems 2.2 and 2.7, we

immediately obtain the following results.

Corollary 2.11 Let 7 = (r;)"_, be a sequence of integers with sum 1. Then M(F) =
P(r) = [n].

Taking s = 0 in Theorems 2.4 and 2.10, we have the following corollary.

Corollary 2.12 Let 7= (r;)"; be a sequence of integers with sum 0 and the partial sums
are all distinct. Then M(7) = P(r) = [n] — 1.

Given a sequence 7 = (r1,...,ry), recall that 7, = (r41),...,Tem)) for any o € &,,.
For any i € [n+ 1] — 1, N(7;4) ( resp. II(;4)) denotes the number of permutations o in
S,, such that p(r,) =i (resp. m(r,) = 17).

Corollary 2.13 Let 7= (r;), be a sequence of real numbers with sum s.

(1) Suppose s > 0. Then II(7;i) = N(7;i) = (n — 1)! for all ¢ € [n|, if and only if
Yok ¢ (0,8) for all® # 1 C [n).
kel

(2) Suppose s < 0. Then II(7;i) = N(r5i) = (n — 1)! for all i € [n] — 1 if and only if
S 1 & [s,0] for all O # I C [n].

kel

Proof. (1) Let o and 7 be two permutations in &,,. We say ¢ and 7 are cyclicly equivalent,
denoted by o ~ 7, if there is an index ¢ € [n] such that 7 = (c(7),...,0(n),0(1),...,0(i—
1)). Hence, given a permutation o € S,,, we define a set EQ(0) as EQ(c) = {17 € &, |
T ~ o}. We say the set EQ(0) is an equivalence class of the set &,,. Clearly |EQ(o)| =n
for any 0 € G,,.

Supposed  ri ¢ (0,s) for all § # I C [n]. For any 1 < i < n, by Theorems 2.2(
kel
resp. Theorem 2.7), every equivalence class contains exactly one permutation o such that

m(7,) =i (vesp. p(F,) = i). Hence, II(7i) = N(7i) = 2 = (n — 1)L.
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Fix a permutation o € &,,. Let 5o = 0,51 = r51),52 = 75(1) + To(2)- -+ 5n = To(1) +
To2) + ... + To@m). Let j to be the largest index ¢ with 5; = min 5,. Consider the

<k<n
permutation 7 = (o(j + 1),...,0(n),o(1),...,0(j)). Then 7 € EQ(c) and p(7;) = n.
Thus there is at least one element 7 € EQ(c) such that p(7;) = n and N(7;n) > (n—1)L.

Let j' to be the smallest index ¢ with §; = 0121?2( Sx. Consider the permutation 7 =
n

(o(5'+1),...,0(n),0(1),...,0(j"). Then 7" € EQ(c) and m(r/) = n. Thus there is at
least one element 7 € EQ(o) such that m(r) =n and II(7;n) > (n — 1)L

Suppose II(7;i) = N(7; i) = (n — 1)! for any ¢ € [n]. Particularly, II(7;n) = N(7;n) =
(n — 1), Assume that there exists a proper subset I of [n] such that 0 < > ry < s. Let

kel

A={kel|r <0}, a=|Al and j = |I|. Suppose I = {i1,...,%4,%+1-..,1;}, where
ir, € Aforevery k € [1,a]. Let J =[n]\I, B={k € J|ry <0} and b= |B|. Suppose J =
{441, -, Uj4by Ujsbr1s - - -, in ), Where ;4 € B for every k € [1,b]. Let o be a permutation

J
in &,, such that o(k) =i, for any k € [n]. Note that 0 < > 7o) = >_ 7 < 5. Thus we
k=1 kel
have m(7,) = n. Consider another permutation 7 = (¢(j + 1),...,0(n),o(1),...,0(j)).

It is easy to see 0 ~ 7 and m(r;) = n. Hence II(7;n) > (n — 1)!, a contradiction. Let
o' = (o(n),o(n —1),...,0(1)) and 7 = (7(n),7(n — 1),...,7(1)). Then ¢’ ~ 7’ and
p(7y) = p(7r) = n. Hence N(7;n) > (n —1)!, a contradiction.
(2) Suppose > 71y ¢ [s,0] for all ) # I C [n]. Similar to the proof of Corollary 2.13
kel

(1), we can obtain the results as desired.

Fix a permutation o € &,,. Let 50 = 0,51 = r51),52 = T5(1) + To(2)s- -+, 5n = To(1) +
To@2) + ... + Tom). Let j to be the largest index ¢ with s5; = rggg Si. Consider the

permutation 7 = (o(j + 1),...,0(n),o(1),...,0(j)). Clearly, 7 € EQ(o) and m(r,) =
p(7-) = 0. So there is at least one element 7 € EQ(0) such that m(7) = p(r;) = 0. Thus
N(,0) = (n — 1)l and II(750) > (n — 1)L
Suppose II(7i) = N(7i) = (n — 1)! for any ¢ € [n] — 1. Particularly, II(7;0) =
N(7;0) = (n—1)!. Assume that there exists a proper subset I of [n] such that s < ) 7 <
kel
0. Let A={kel|r, <0}, a=|A|l and j = |I|. Suppose I = {i1,... %, %+1---,0;},
where i, € A for every k € [l,a]. Let J = [n]\I, B ={k € J | r, < 0} and
= |B|. Suppose J = {ij11,...,%4b,j4bt1,---,0n}, Where i, € B for every k €
[1,0]. Let o be a permutation in &,, such that o(k) = i, for any k£ € [n]. Note that

j
Y Toty = > 7k < 0. Thus we have m(7,) = 0. Consider another permutation 7 =
k=1 kel

(c(j+1),...,0(n),0(1),...,0(j)). Then Z Try =S — > 1 < 0since Y rp > 5. So
)

kel kel
m(7;) = 0. Note that o ~ 7. Hence II(7; 0) (n — 1)!, a contradiction. It is easy to see
p(7y) = p(7r) = 0. Hence N(7;0) > (n — 1)!, a contradiction. i
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3 More general cases

In this section, we consider more general cases and study furthermore generalizations for
properties of cyclic permutations of a sequence 7= (r;) ;.

Theorem 3.1 Let 0 be a real number and ¥ = (r;)!_, a sequence of real numbers with
sum s > nb and partial sums (s;)i,. Then

(1) M(70) = [n] if and only if s; —s; = s— (n—j+14)0 for all1 <i < j—1, where
J=m(r;0);

(2) P(7;0) = [n] if and only if s; —s; ¢ (j —i)0,s — (n+1i—7)0) forall1 <i<j<n,
where the notation ((j —1)0,s — (n+ i — j)0) denote the set of all real numbers x
satisfying (j —i)0 <x <s—(n+1—j)0.

Proof. (1) Consider the sequence ¥ = (r;—#6,...,r,—6). It is easy to see that (I) > o; =

=1
nd > 0

s—nf > 0; (II) j = m(7;0) if and only if j = m(v); (III) (s; —jO) — (s, —i0) > s —
forall 1 <¢ < j — 1. By Theorem 2.2, we obtain the results as desired.
(2) Similar to the proof of Theorem 3.1(1), we can obtain the results in Theorem

3.1(2). i

Similarly, considering s < n#, we can obtain the following results.

Theorem 3.2 Let 0 be a real number and ¥ = (r;)I_, a sequence of real numbers with
sum s < n# and partial sums (s;)’_,. Then

(1) M(7,0) = [n] — 1 if and only if s; —s; < s—(n+j—1i)f forallj+1<i<n—1,
where j = m(T;0);

(2) P(r;0) = [n]—1 if and only if s;—s; ¢ [s—(n+i—7)0, (j—1)0] foranyl < i< j < n,
where the notation [s — (n + 1 — 7)0, (5 — i)0] denote the set of all real numbers x
satisfying s — (n+1i—7)0 <z < (j —1)0.
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