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Abstract

By K
(k)
n we denote the complete k-uniform hypergraph of order n, 1 6 k 6 n−1,

i.e. the hypergraph with the set Vn = {1, 2, ..., n} of vertices and the set
(
Vn

k

)
of

edges. If there exists a permutation σ of the set Vn such that {E, σ(E), ..., σq−1(E)}
is a partition of the set

(
Vn

k

)
then we call it cyclic q-partition of K

(k)
n and σ is said

to be a (q, k)-complementing.
In the paper, for arbitrary integers k, q and n, we give a necessary and sufficient
condition for a permutation to be (q, k)-complementing permutation of K

(k)
n .

By K̃n we denote the hypergraph with the set of vertices Vn and the set of edges
2Vn − {∅, Vn}. If there is a permutation σ of Vn and a set E ⊂ 2Vn − {∅, Vn} such
that {E, σ(E), ..., σp−1(E)} is a p-partition of 2Vn − {∅, Vn} then we call it a cyclic
p-partition of Kn and we say that σ is p-complementing. We prove that K̃n has
a cyclic p-partition if and only if p is prime and n is a power of p (and n > p).
Moreover, any p-complementing permutation is cyclic.

1 Preliminaries and results

Throughout the paper we will write Vn = {1, . . . , n}. For a set X we denote by
(

X
k

)
the

set of all k-subsets of X. A hypergraph H = (V ; E) is said to be k-uniform if E ⊂
(

V
k

)
(the cardinality of any edge is equal to k). We shall always assume that the set of vertices
V of a hypergraph of order n is equal to Vn. The complete k-uniform hypergraph of order
n is denoted by K

(k)
n , hence K

(k)
n = (Vn;

(
Vn

k

)
). Let σ be a permutation of the set Vn, let

q be a positive integer, and let E ⊂
(

Vn

k

)
. If {E, σ(E), σ2(E), . . . , σq−1(E)} is a partition

of
(

Vn

k

)
we call it a cyclic q-partition and σ is said to be (q, k)-complementing. It is
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very easy to prove that then σq(E) = E. Write Ei = σi(E) for i = 0, ..., q − 1. It follows
easily that σt(Ei) = Ei+t (mod q), for every integer t.

If there is a cyclic 2-partition {E, σ(E)} of K
(k)
n , we say that the hypergraph

H = (Vn; E) is self-complementary and every (2, k)-complementing permutation of

K
(k)
n is called self-complementing. In [16] we have given the characterization of self-

complementing permutations which, as it turns out, is exactly Theorem 2 of this paper for
p = 2, α = 1. Self-complementary k-uniform hypergraphs generalize the self-complemen-
tary graphs defined in [13] and [14]. The vertex transitive self-complementary k-uniform
hypergraphs are the subject of the paper [11] by Potǒcnik and Šajna. Gosselin gave
an algorithm to construct some special self-complementary k-uniform hypergraphs in [3].
In [6] and [10] Knor, Potǒcnik and Šajna study the existence of regular self-complementary
k-uniform hypergraphs.

The main result of this paper is a necessary and sufficient condition for a permutation
σ of Vn to be (q, k)-complementing, where q is a positive integer (Theorem 3). In Theorem
5 we characterize integers n, k, α and primes p such that there exists a cyclic pα-partition
of K

(k)
n .

Section 2 contains the proofs of Theorems 1, 2 and 3 given below. Section 3 is de-
voted to cyclic partitions of complete hypergraph K̃n = (Vn; 2Vn − {∅, Vn}) (we call K̃n

the general complete hypergraph of order n, to stress the distinction between complete
uniform and complete hypergraphs).

Theorem 1 Let n and k be integers, 0 < k < n, let p1 and p2 be two relatively prime
integers. A permutation σ on the set Vn is (p1p2, k)-complementing if and only if σ is
a (pj, k)-complementing for j = 1, 2.

For integers n and d, d > 0, by r(n, d) we denote the reminder when n is divided
by d. So we have n ≡ r(n, d) (mod d).

For a positive integer k by Cp(k) we denote the maximum integer c such that k = pca,
where a ∈ N (N stands for the sets of naturals, i.e. nonnegative integers). In other words,
if k =

∑
i>0 kip

i, where 0 6 ki < p for every i ∈ {0, 1, . . .} (ki are digits with respect to
basis p), then Cp(k) = min{i : ki 6= 0}. If A is a finite set, we write Cp(A) instead of
Cp(|A|), for short.

Theorem 2 Let n, p, k and α be positive integers, such that k < n and p is prime.
A permutation σ of the set Vn with orbits O1, . . . , Om is (pα, k)-complementing if and only
if there is a non negative integer l such that the following two conditions hold:

(i) r(n, pl+α) < r(k, pl+1), and

(ii)
∑

i:Cp(Oi)<l+α |Oi| = r(n, pl+α).

A condition slightly different from the above has been given (and proved by different
method, independently) in [4].
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Observe that for any permutation σ of Vn with orbits O1, ..., Om we have∑
i:Cp(Oi)<l+α |Oi| ≡ r(n, pl+α) (mod pl+α), since

∑m
i=1 |Oi| = n and∑

i:Cp(Oi)>l+α |Oi| ≡ 0 (mod pl+α). Hence the condition (ii) of Theorem 2 could be written

equivalently:
∑

i:Cp(Oi)<l+α |Oi| 6 r(n, pl+α).

Theorem 3 Let q = pα1
1 pα2

2 · . . . · pαu
u , where p1, . . . , pu are mutually different primes

and α1, . . . , αu positive integers. A permutation σ of the set Vn with orbits O1, . . . , Om is
(q, k)-complementing if and only if for every j ∈ {1, . . . , u} there is a positive integer lj
such that the following two conditions hold:

(i) r(n, p
lj+αj

j ) < r(k, p
lj+1
j ), and

(ii)
∑

i:Cpj (Oi)<lj+αj
|Oi| = r(n, p

lj+αj

j ).

For the special case of graphs (i.e. 2-uniform hypergraphs) Theorem 2 has been proved
in [1].

One may apply Theorem 2 to check that every permutation of V89 consisting of two
orbits: one of cardinality 64 and the second of cardinality 25 is (2, 40)-complementing.
Every permutation of V89 consisting of orbits O1 and O2 such that |O1| = 81 and |O2| = 8
is (9, 40)-complementing. But it is easily seen (applying either Theorem 2 or Theorem 3)

that there is no (18, 40)-complementing permutation of K
(40)
89 .

It has been proved in [15] that for given n and k there is a self-complementary
k-uniform hypergraph of order n if and only if

(
n
k

)
is even (the corresponding result

for graphs was proved first in [13] and [14], independently). The natural question arises:

is it true, that if
(

n
k

)
is divisible by q then there is a cyclic q-partition of K

(k)
n ?

The problem of divisibility of
(

n
k

)
was considered in the literature many times, inde-

pendently. The theorem we give below has been proved in 1852 by Kummer [8], it was
rediscovered by Lucas [9] in 1878, then by Glaisher [2] in 1899 and finally, for p = 2
and α = 1 only, by Kimball et al. [5] (for an elegant proof of Kummer’s result and its
connections with Last Fermat Theorem see [12]).

Theorem 4 (Kummer) Let p be a prime and let (ni) and (ki) denote the sequences of
digits of n and k in base p, so that n =

∑
i>0 nip

i and k =
∑

i>0 kip
i (0 6 ni, ki 6 p − 1

for every i). Cp(
(

n
k

)
) is equal to the number of indices i such that either ki > ni, or there

exists an index j < i with kj > nj and kj+1 = nj+1, ..., ki = ni.

Let p be a prime integer, 0 < k < n, k =
∑

i>0 kip
i, n =

∑
i>0 nip

i, where ki and
ni are digits with respect to the basis p. Note that, by Theorem 2, if there is a cyclic
pα-partition of K

(k)
n then there are integers l and m, 0 6 m 6 l, such that nm < km, and

nl+α−1 = nl+α−2 = ... = nl+1 = 0 (if α > 1), and ni = ki for m < i 6 l (if m < l).
Conversely, if for indices l and m we have nl+α−1 = nl+α−2 = ... = nl+1 = 0 (for α > 1),
nl = kl, nl−1 = kl−1, ..., nm+1 = km+1 (if m < l), and nm < km, then any permutation of Vn
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which has two orbits O1 and O2 such that |O1| =
∑

i>l+α nip
i and |O2| =

∑l+α−1
i=0 nip

i =∑l
i=0 nip

i is, by Theorem 2, (pα, k)-complementing. We are thus led to the following
corollary of Theorem 2.

Theorem 5 Let n, k, p and α be positive integers such that k < n and p is prime. Suppose
that k =

∑
i>0 kip

i, n =
∑

i>0 nip
i, where ki and ni are digits with respect to the basis p.

The complete k-uniform hypergraph K
(k)
n has a cyclic pα-partition if and only if there exist

nonnegative integers l and m, m 6 l, such that nm < km, ni = ki for m < i 6 l, and
nl+1 = nl+2 = ... = nl+α−1 = 0 (if α > 1).

It is clear that for α > 1 it may happen that n, k and a prime p satisfy the assumption
of Theorem 4, but violate the condition (i) of Theorem 2. Hence, in general, it is not true

that if pα divides
(

n
k

)
then there is a cyclic pα-partition of K

(k)
n . However, it is very easy

to observe that Theorem 4 and Theorem 5 imply the following.

Corollary 6 Let n, k and p be positive integers such that k < n and p is prime.
The complete k-uniform hypergraph K

(k)
n has a cyclic p-partition if and only if p|

(
n
k

)
.

The problem whether for positive n, k and q there is a cyclic q-partition of K
(k)
n is in

general open (unless q is a power of a prime).

2 Proofs

2.1 Lemmas

Lemma 1 Let k, n, q be positive integers, k < n. A permutation σ of the set Vn is
(q, k)-complementing if and only if σs(e) 6= e for any subset e ⊂ Vn of cardinality k and
s 6≡ 0 (mod q).

Proof. If σ is (q, k)-complementing, then there is a partition E0 ∪ ...∪Eq−1 of
(

Vn

k

)
such

that Ei = σ(Ei−1) for i = 0, ..., q − 1 (considered mod q). Since the sets E0, ..., Eq−1 are
mutually disjoint, for every e ∈

(
Vn

k

)
if σs(e) = e then s ≡ 0 (mod q).

Let us now sppose that σ is a permutation of Vn such that σs(e) 6= e for s 6≡ 0

(mod q). We may apply the following simple algorithm of coloring the edges of K
(k)
n with

q colors. Suppose that an edge e ∈
(

Vn

k

)
is not yet colored. We color e with arbitrary

color i0 ∈ {0, 1, ..., q − 1} and for every l we color σl(e) with the color i0 + l (mod q).
When all the edges are colored, denote by Ei the set of edges colored with the color i. It is
clear that E0∪...∪Eq−1 is a partition of

(
Vn

k

)
and that σ(Ei−1) = Ei for i = 0, 1, ..., q−1.

Note that by the algorithm given in the proof of Lemma 1 we may obtain all cyclic
p-partitions of K

(k)
n generated by σ.
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The proof of Theorem 1 follows immediately by Lemma 1 and the fact that for
relatively prime integers p1 and p2 we have l ≡ 0 (mod p1p2) if and only if l ≡ 0 (mod p1)
and l ≡ p2 (mod p2).

Lemma 2 Let n, k, p and α be positive integers such that k < n and p is prime. The cyclic
permutation σ = (1, 2, . . . , n) is (pα, k)-complementig if and only if Cp(n) > Cp(k) + α.

Proof. Assume first that Cp(n)−Cp(k) > α. We shall prove that then the permutation
σ = (1, 2, ..., n) is (pα, k)-complementing.
Observe that for any postive integer s every orbit of the permutation σs has the same
cardinality.
By Lemma 1 it is sufficient to prove that for any edge e ∈

(
Vn

k

)
if σs(e) = e then s ≡ 0

(mod pα). So let us suppose that σs(e) = e, write τ = σs and denote by β the cardinality
of any orbit of τ . Note that τβ = idVn (where idVn is the identity of the set Vn).
For every vertex v ∈ e we have clearly τ(v) ∈ e, hence every orbit of τ containing a vertex
of e is contained in e. Therefore β|k. So there is an integer γ such that k = βγ. We have
τ k = (τβ)γ = idVn , hence σsk = idVn and therefore sk ≡ 0( mod n). This means that
there is an integer δ such that sk = δn, so spCp(k)k′ = δpCp(n)n′ where p6 | k′ and p6 | n′.
Since Cp(n) − Cp(k) > α the equality sk′ = δpαpCp(n)−Cp(k)−αn′ implies s ≡ 0 (mod pα).
Let now suppose Cp(n) < Cp(k) + α. Using once more Lemma 1, we shall prove that the
cyclic permutation σ = (1, 2, ..., n) is not (pα, k)-complementing. We shall consider two
cases, in each indicating an edge e ∈

(
Vn

k

)
and s 6≡ 0 (mod pα) such that σs(e) = e.

Let n′ and k′ be such that n = pCp(n)n′ and k = pCp(k)k′. Note that n′ and k′ are integers
and k′, n′ 6≡ 0 (mod p).

Case 1: Cp(n) < Cp(k). Since k = pCp(n)(pCp(k)−Cp(n)k′) < pCp(n)n′ = n we have
pCp(k)−Cp(n)k′ < n′ and thus we may define

e =

pCp(n)−1⋃
j=0

{jn′ + 1, ..., jn′ + pCp(k)−Cp(n)k′}

It is very easy to check that |e| = k and σn′(e) = e, but n′ 6≡ 0 (mod pα) since
n′ 6≡ 0 (mod p).

Case 2: Cp(n) > Cp(k). Since k < n we have k′ < pCp(n)−Cp(k)n′ and we may define

e =

pCp(k)−1⋃
j=0

{jpCp(n)−Cp(k) + 1, ..., jpCp(n)−Cp(k)n′ + k′}

Again, |e| = k and we have σpCp(n)−Cp(k)n′(e) = e while pCp(n)−Cp(k)n′ 6≡ 0 (mod pα)
(since n′ 6≡ 0 (mod p) and Cp(n) − Cp(k) < α).
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Lemma 3 Let n, k, p, α be positive integers such that k < n, α > 1 and p is prime.
A permutation σ be of the set Vn with orbits O1, O2, . . . , Om is (pα, k)-complementing if
and only if for every decomposition of k in the form

k = h1 + . . . + hm

such that 0 6 hj 6 |Oj| for j = 1, . . . ,m, there is an index j0, 1 6 j0 6 m, such that
hj0 > 0 and Cp(Oj0) > Cp(hj0) + α.

Proof.

1. Let us suppose that σ is a permutation of Vn with orbits O1, ..., Om and k is
an integer 1 6 k < n, such that for any decomposition k = h1 + ... + hm of k
such that 0 6 hj 6 |Oj| for j = 1, 2, ...,m there is an index j0 with hj0 > 0 and
Cp(Oj0) > Cp(hj0) + α. We shall apply Lemmas 1 and 2 to prove that then σ is
(pα, k)-complementing.
Let e ∈

(
Vn

k

)
and suppose that σs(e) = e for a positive integer s. Denote by

ej the set ej = Oj ∩ e and by hj the cardinality of ej for j = 1, 2, ...,m. Let j0 be
such that hj0 > 0 and Cp(Oj0) > Cp(hj0) + α.
By Lemma 2, σj0 is a (pα, hj0)-complementing permutation of the complete
hj0-uniform hypergraph of order |Oj0|. Hence, by Lemma 1, we have s ≡ 0 (mod

pα) and, again by Lemma 2, σ is a (pα, k)-complementing of K
(k)
n .

2. Let now suppose that σ is a (pα, k)-complementing permutation of K
(k)
n . Let

O1, ..., Om be the orbits of σ and suppose that k = h1 + ...+hm, where 0 6 hj 6 |Oj|
for j = 1, ...,m. Denote by σ1, ..., σm the cycles of σ corresponding to O1, ..., Om,
respectively. We shall prove that there is j0 ∈ {1, 2, ...,m} such that hj0 > 0 and
Cp(Oj0) > Cp(hj0) + α.
Suppose, contrary to our claim, that we have Cp(Oj) < Cp(hj) + α for all
j ∈ {1, 2, ...,m} such that hj > 0. By Lemma 2, for every j ∈ {1, 2, ...,m} the
cyclic permutation σj is not (pα, kj)-complementing permutation of the complete
kj-uniform hypergraph of order |Oj0|. Hence, by Lemma 1, for every j ∈ {1, 2, ...,m}
such that hj > 0 there is a set ej ∈

(
Oj

hj

)
and sj 6≡ 0 (mod pα), such that σ

sj

j (ej) = ej.

Let e = e1 ∪ ... ∪ em. We have |e| = k. Denote by l =lcm(s1, ..., sm) (the least com-
mon multiple of s1, ..., sm). It is clear that σl(e) = e and l 6≡ 0 (mod pα). Hence, by
Lemma 1, σ is not (pα, k)-comlementing, a contradiction.

2.2 Proof of Theorem 2

Proof of sufficiency. Let us suppose that a permutation σ of Vn verifies the conditions
(i) and (ii) of the theorem, but it is not (pα, k)-complementing. By Lemma 3, there is
a decomposition k = h1 + . . . + hm of k such that 0 6 hi 6 |Oi| and Cp(Oi) < Cp(hi) + α
for every i = 1, . . . ,m for which hi > 0.
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Note that if, for an integer l and for an index i ∈ {1, . . . ,m}, we have hi > 0 and
Cp(hi) 6 l, then Cp(Oi) < Cp(hi) + α 6 l + α. Hence

r(k, pl+1)
(mod pl+1)

≡
∑

i:Cp(hi)6l

hi 6
∑

i:Cp(Oi)<l+α

|Oi| = r(n, pl+α) < r(k, pl+1),

a contradiction.
Proof of necessity. Let us suppose now that the conditions of the theorem do not hold.
Then, for any l such that kl 6= 0 we have either

1. r(n, pl+α) > r(k, pl+1), or

2. r(n, pl+α) < r(k, pl+1) and
∑

i:Cp(Oi)<l+α |Oi| > r(n, pl+α)

We shall prove that σ is not a (pα, k)-complementing permutation of K
(k)
n .

We begin by proving three claims.

Claim 1 For every l such that kl 6= 0 we have∑
i:Cp(Oi)<l+α

|Oi| > r(k, pl+1)

Proof of Claim 1.
Case 1: r(n, pl+α) > r(k, pl+1).
By the definition of r(n, pl+α) we know that there is an integer b such that
n = bpl+α + r(n, pl+α). Hence

∑
i:Cp(Oi)>l+α |Oi| 6 bpl+α, and therefore∑

i:Cp(Oi)<l+α

|Oi| > r(n, pl+α) > r(k, pl+1)

Case 2: r(n, pl+α) < r(k, pl+1) and
∑

i:Cp(Oi)<l+α |Oi| > r(n, pl+α).

Since
∑

i:Cp(Oi)>l+α |Oi| ≡ 0 (mod pl+α), we have

n =
∑

i:Cp(Oi)>l+α

|Oi| +
∑

Cp(Oi)<l+α

|Oi|
(mod pl+α)

≡

(mod pl+α)
≡

∑
Cp(Oi)<l+α

|Oi| > r(n, pl+α) ≡ n (mod pl+α)

Hence there is a positive integer d such that∑
Cp(Oi)<l+α

|Oi| = dpl+α + r(n, pl+α) > pl+1 > r(k, pl+1)

This completes the proof of the claim.

To see that the next claim is true it is sufficient to represent x ∈ N in basis p.
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Claim 2 For any nonnegative integers l, l′, x and a, such that l′ 6 l, x < apl, Cp(x) > l′

and 1 6 a < p we have x + pl′ 6 apl.

Claim 3 Let u1, ..., uq be positive integers such that Cp(ui) 6 l+α−1 and
∑q

i=1 ui > apl,
(0 6 a < p). Then there exist v1, ..., vq such that

(1) For every i ∈ {1, ..., q} vi 6 ui,

(2) For every i ∈ {1, ..., q} either Cp(ui) 6 Cp(vi) + α− 1 or vi = 0,

(3)
∑q

i=1 vi = apl.

Proof of Claim 3.
Without loss of generality we may suppose that

Cp(u1) > Cp(u2) > ... > Cp(uq)

For every i = 1, ..., q denote by li = min{Cp(ui), l}.
The conditions (1)-(3) are satisfied by the following sequence (vi)

q
i=1.

v1 = c1p
l1 where c1 = max{c ∈ N : cpl1 6 u1 and cpl1 6 apl}

v2 = c2p
l2 where c2 = max{c ∈ N : cpl2 6 u2 and v1 + cpl2 6 apl}

. . .

vi = cip
li where ci = max{c ∈ N : cpli 6 ui and v1 + . . . + vi−1 + cpli 6 apl}

. . .

In fact,

1. vi 6 ui by the definition of ci.

2. Since l > Cp(ui) − α + 1 we have Cp(vi) > li = min{Cp(ui), l} > Cp(ui) − α + 1,
whenever vi 6= 0, thus (2).

3. Suppose that the sequence (vi)i=1,...,q violates the condition (3) of the claim. Then∑q
i=1 vi < apl and by consequence there is j ∈ {1, ..., q} such that vj < uj. By

Claim 2 we have vj + plj = (cj + 1)plj 6 uj and v1 + ... + (cj + 1)plj 6 apl, contrary
to the choise of cj.

The claim is proved.

We shall indicate now such a decomposition of k in the form k = h1 + ... + hm that

(1) h1, ..., hm are non negative integers,

(2) hi 6 |Oi| for every i = 1, ...,m.
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(3) Cp(Oi) 6 Cp(hi) + α− 1 or hi = 0 for every i = 1, ...,m.

By Lemma 3, this means that σ is not (pα, k)-complementing.
Let k = kltp

lt +klt−1p
lt−1 +...+kl0p

l0 , where 0 < klj < p for j = 0, ..., t and l0 < l1 < ... < lt,
By Claim 1 we have

∑
i:Cp(Oi)6l0+α−1 |Oi| > kl0p

l0 . Now apply Claim 3 to construct

h
(0)
1 , ..., h

(0)
m such that

(10) h
(0)
i 6 |Oi| for i = 1, ...,m,

(20) h
(0)
i = 0 if Cp(Oi) > l0 + α, i = 1, ...,m,

(30) Cp(Oi) 6 Cp(h
(0)
i ) + α− 1 for i such that h

(0)
i > 0 and Cp(Oi) < l0 + α, i = 1, ...,m,

(40)
∑m

i=1 h
(0)
i = kl0p

l0 .

If t = 0 set hi = h
(0)
i for i = 1, ...,m and the proof is finished. So we assume that t > 1.

Suppose we have constructed the sequences of non negative integers (h
(j)
i )i=1,...,m for

j = 0, ..., s− 1, 1 6 s 6 t, such that

(1s−1) h
(0)
i + h

(1)
i + ... + h

(s−1)
i 6 |Oi| for i = 1, ...,m,

(2s−1) h
(0)
i + h

(1)
i + ... + h

(s−1)
i = 0 if Cp(Oi) > ls−1 + α, i = 1, ...,m,

(3s−1) Cp(Oi) 6 Cp(h
(j)
i ) + α− 1 if h

(j)
i > 0, Cp(Oi) < lj + α, j = 0, ..., s− 1

(4s−1)
∑m

i=1 h
(j)
i = kljp

lj for j = 0, ..., s− 1.

We shall apply Claims 1 and 3 to construct the sequence h
(s)
1 , ..., h

(s)
m such that

(1s) h
(0)
i + h

(1)
i + ... + h

(s)
i 6 |Oi| for i = 1, ...,m,

(2s) h
(0)
i + h

(1)
i + ... + h

(s)
i = 0 if Cp(Oi) > ls + α, i = 1, ...,m,

(3s) Cp(Oi) 6 Cp(h
(s)
i ) + α− 1 whenever Cp(Oi) < ls + α and h

(s)
i > 0, i = 1, ...,m,

(4s)
∑m

i=1 h
(s)
i = klsp

ls .

By Claim 1, we have
∑

i:Cp(Oi)6ls+α−1 |Oi| > r(k, pls+1) = klsp
ls +kls−1p

ls−1 + ...+klsp
ls .

Write λi = min{Cp(h
(j)
i ) : h

(j)
i > 0, j = 1, ..., s− 1}, for i = 1, ...,m.

We have h
(0)
i + h

(1)
i + ... + h

(s−1)
i = pλia, where a is an integer, hence

Cp(Oi) 6 λi + α− 1 6 Cp(h
(0)
i + h

(1)
i + ... + h

(s−1)
i ) + α− 1.

Set ui = |Oi| −
∑s−1

j=0 h
(j)
i for i = 1, ...,m. We have

∑m
i=1 ui > klsp

ls so, by Claim 3,

there exist non negative integers h
(s)
1 , ..., h

(s)
m with desired properties (1s)-(4s).

the electronic journal of combinatorics 17 (2010), #R118 9



For every i = 1, ...,m write hi =
∑t

j=0 h
(j)
i . It is clear that hi 6 |Oi| for i = 1, ...,m

and
∑m

i=1 hi = k.
Repeating the argument applied above we prove easily the inequalities

Cp(Oi) 6 Cp(hi) + α− 1

whenever hi 6= 0, i = 1, ...,m. This proves that the sequence (hi)
m
i=1 gives the desired

decomposition of k.

2.3 Proof of Theorem 3

The proof of Theorem 3 follows by Theorem 2 and the following lemma.

Lemma 4 Let k, n, p1, ..., pu, α1, ..., αu be positive integers such that k < n and p1, ..., pu

are primes. Write q = pα1
1 · ... · pαu

u .
A permutation σ of Vn is (q, k)-complementing if and only if σ is (pαi

i , k)-complementing
for i = 1, ..., u.

Proof. By Lemma 1, a permutation σ : Vn → Vn is (q, k)-complementing if and only
if for every e ∈

(
Vn

k

)
σs(e) = e implies s ≡ 0 (mod q). But s ≡ 0 (mod q) if and only if

s ≡ 0 (mod pαi
i ) for every i ∈ {1, ..., u}. The lemma follows.

3 Cyclic partitions of general complete hypergraphs

By K̃n we denote the complete hypergraph on the set of vertices Vn, i.e. the hypergraph
with the set of edges consisting of all non trivial subsets of Vn (K̃n = (Vn; 2Vn −{∅, Vn})).

To stress the distinction between K̃n and K
(k)
n we shall call K̃n the general complete

hypergraph. Let σ be a permutation of Vn. If there is a p-partition {E, σ(E), ..., σp−1(E)}
of 2Vn−{∅, Vn} then we call it cyclic p-partition of K̃n and permutation σ is then called
p-complementing. In [18] Zwonek proved that a cyclic 2-partition of the complete gen-
eral hypergraph K̃n exists if and only if n is a power of 2 and every 2-complementing
permutation is cyclic (i.e. has exactly one orbit). Note that every partition of K̃n (and

of K
(k)
n as well) into two isomorphic parts is necessarily cyclic 2-partition.

Theorem 7 The general complete hypergraph K̃n has a cyclic p-partition if and only if
p is prime and n is a power of p (p < n). Moreover, every p-complementing permutation
is cyclic.

Proof. Note first that the general complete hypergraph K̃n has a cyclic p-partition if and
only if every k-uniform complete hypergraph K

(k)
n has a cyclic p-partition for 1 6 k 6 n−1.

Let us suppose first that K̃n has a cyclic p-partition and σ is its p-complementing permu-
tation.
The permutation σ is cyclic. In fact, suppose that (ai1 , ..., aik) is a cycle of σ, where
1 6 k 6 n− 1. Then σ({ai1 , ..., aik}) = {ai1 , ..., aik}, which is impossible.
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Suppose now that p1 is a prime divisor of p. Let us denote k = p
p1

and e = {p1, 2p1, ..., kp1}.

We have σp1(e) = e hence, by Lemma 1, p1 ≡ 0 (mod p). Since p1 is a divisor of p we
obtain p = p1.
It remains to prove that n is a power of p. Write β = max{γ ∈ N : pγ 6 n}. Suppose that

pβ < n. We shall apply Theorem 2 to prove that there is no cyclic p-partition of K
(pβ)
n .

Since pβ+1 > n we have r(n, pβ+1) = n > r(pβ, pβ+1) = pβ contradicting the condition (i)
in Theorem 2 (for α = 1 and k = pβ).

Let us suppose now that p is prime, n = pβ where β is a positive integer. We shall prove
that for any integer k, 0 < k < n, the permutation σ = (1, 2, ..., n) is (p, k)-complementing.
Let us write k = klp

l + kl−1p
l−1 + ... + ko, where 0 6 ki < p and kl 6= 0. We shall again

apply Theorem 2, for α = 1. In fact, note that since r(k, pl+1) = k > r(pβ, pl+1) = 0 and
Cp(n) = β > l+1 there is no orbit Oi of σ with Cp(Oi) < l+1. Hence the both conditions
of Theorem 2 are verified and the proof is complete.

Acknowledgement. The authors would like to thank the anonymous referee for the
thorough reading of the manuscript and helpful comments.
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J. Reine Angew. Math., 44 (1852) 93-146.

[9] E. Lucas, Sur les congruences des nombres eulériens et des coefficients differentiels,
Bull. Soc. Math. France 6 (1878) 49-54.
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