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Abstract

Vazirani and the author [Electron. J. Combin., 15 (1) (2008), R130] gave a new
interpretation of what we called ℓ-partitions, also known as (ℓ, 0)-Carter partitions.
The primary interpretation of such a partition λ is that it corresponds to a Specht
module Sλ which remains irreducible over the finite Hecke algebra Hn(q) when q

is specialized to a primitive ℓth root of unity. To accomplish this we relied heavily
on the description of such a partition in terms of its hook lengths, a condition
provided by James and Mathas. In this paper, I use a new description of the crystal
regℓ which helps extend previous results to all (ℓ, 0)-JM partitions (similar to (ℓ, 0)-
Carter partitions, but not necessarily ℓ-regular), by using an analogous condition
for hook lengths which was proven by work of Lyle and Fayers.

1 Introduction

The main goal of this paper is to generalize results of [3] to a larger class of partitions.

One model of the crystal B(Λ0) of ŝlℓ, referred to here as regℓ, has as nodes ℓ-regular
partitions. In [3] we proved results about where on the crystal regℓ a so-called ℓ-partition
could occur. ℓ-partitions are the ℓ-regular partitions for which the Specht modules Sλ

are irreducible for the Hecke algebra Hn(q) when q is specialized to a primitive ℓth root
of unity. An ℓ-regular partition λ indexes a simple module Dλ for Hn(q) when q is a
primitive ℓth root of unity. We noticed that within the crystal regℓ that another type of
partitions, which we call weak ℓ-partitions, satisfied rules similar to the rules given in [3]
for ℓ-partitions. In order to prove this, we built an isomorphic version of the crystal regℓ,
which we denote laddℓ. The description of laddℓ, with the isomorphism to regℓ, can be
found in [2].

1.1 Summary of results from this paper

In Section 2 we give a new way of characterizing (ℓ, 0)-JM partitions by their removable
ℓ-rim hooks. In Section 3 we give a different characterization of (ℓ, 0)-JM partitions.
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Section 4 extends our crystal theorems from [3] to the crystal laddℓ. Section 5 transfers
the crystal theorems on laddℓ to theorems on regℓ via the isomorphism described in [2].

1.2 Background and Previous Results

Let λ be a partition of n (written λ ⊢ n) and ℓ > 3 be an integer. We will use the
convention (x, y) to denote the box which sits in the xth row and the yth column of the
Young diagram of λ. We denote the transpose of λ by λ′. Sometimes the shorthand (ak)
will be used to represent the rectangular partition which has k-parts, all of size a. P will
denote the set of all partitions. An ℓ-regular partition is one in which no part occurs
ℓ or more times. The length of a partition λ will be the number of nonzero parts of λ

and will be denoted len(λ). If (x, y) is a box in the Young diagram of λ, the residue of
(x, y) is y − x mod ℓ.

The hook length of the (a, c) box of λ is defined to be the number of boxes to the
right of or below the box (a, c), including the box (a, c) itself. It will be denoted hλ

(a,c).
An ℓ-rim hook in λ is a connected set of ℓ boxes in the Young diagram of λ, containing

no 2×2 square, such that when it is removed from λ, the remaining diagram is the Young
diagram of some other partition.

Any partition which has no ℓ-rim hooks is called an ℓ-core. Equivalently, λ is an
ℓ-core if for every box (i, j) ∈ λ, ℓ ∤ hλ

(i,j). Any partition λ has an ℓ-core, which is
obtained by removing ℓ-rim hooks from the outer edge while at each step the removal of a
hook is still a (non-skew) partition. The core is uniquely determined from the partition,
independently of choice of successively removing rim hooks. See [8] for more details.

ℓ-rim hooks which are horizontal (whose boxes are contained in one row of a partition)
will be called horizontal ℓ-rim hooks. ℓ-rim hooks which are not will be called non-

horizontal ℓ-rim hooks. An ℓ-rim hook contained entirely in a single column of the
Young diagram of a partition will be called a vertical ℓ-rim hook. ℓ-rim hooks not
contained in a single column will be called non-vertical ℓ-rim hooks. Two connected
sets of boxes will be called adjacent if there exist boxes in each which share an edge.

Example 1.2.1. Let λ = (3, 2, 1) and let ℓ = 3. Then the boxes (1, 2), (1, 3) and (2, 2)
comprise a (non-vertical, non-horizontal) 3-rim hook. After removal of this 3-rim hook,
the remaining partition is (1, 1, 1), which is a vertical 3-rim hook. Hence the 3-core of λ

is the empty partition. These two 3-rim hooks are adjacent.

Example 1.2.2. Let λ = (4, 1, 1, 1) and ℓ = 3. Then λ has two 3-rim hooks (one
horizontal and one vertical). They are not adjacent.
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Definition 1.2.3. An ℓ-partition is an ℓ-regular partition containing no removable non-
horizontal ℓ-rim hooks, such that after removing any number of horizontal ℓ-rim hooks,
the remaining diagram still has no removable non-horizontal ℓ-rim hooks.

We will study combinatorics related to the finite Hecke algebra Hn(q). For a definition
of this algebra, see for instance [3]. In this paper we will always assume that q ∈ F is a
primitive ℓth root of unity in a field F of characteristic zero.

Similar to the symmetric group, a construction of the Specht module Sλ = Sλ[q] exists
for Hn(q) (see [4]). Let ℓ be an integer greater than 1. Let

mℓ(k) =

{
1 ℓ | k

0 ℓ ∤ k.

It is known that over the finite Hecke algebra Hn(q), when q is a primitive ℓth root of
unity, the Specht module Sλ for an ℓ-regular partition λ is irreducible if and only if

(⋆) mℓ(h
λ
(a,c)) = mℓ(h

λ
(b,c)) for all pairs (a, c), (b, c) ∈ λ

(see [9]). In [3], we proved the following.

Theorem 1.2.4. A partition is an ℓ-partition if and only if it is ℓ-regular and satisfies
(⋆).

Work of Lyle [10] and Fayers [5] settled the following conjecture of James and Mathas.

Theorem 1.2.5. Suppose ℓ > 2. Let λ be a partition. Then Sλ is reducible if and only if
there exist boxes (a,b) (a,y) and (x,b) in the Young diagram of λ for which:

• mℓ(h
λ
(a,b)) = 1,

• mℓ(h
λ
(a,y)) = mℓ(h

λ
(x,b)) = 0 .

A partition which has no such boxes is called an (ℓ, 0)-JM partition. Equivalently,
λ is an (ℓ, 0)-JM partition if and only if the Specht module Sλ is irreducible.

1.2.1 Ladders

Let λ be a partition and let ℓ > 2 be a fixed integer. For any box (a, b) in the Young
diagram of λ, the ladder of (a, b) is the set of all positions (c, d) (here c, d > 1 are integers)
which satisfy c−a

d−b
= ℓ − 1.

Remark 1.2.6. The definition implies that two boxes in the same ladder will share the
same residue. An i-ladder will be a ladder which has residue i.

the electronic journal of combinatorics 17 (2010), #R119 3



1.2.2 Regularization

Regularization is a map which takes a partition to a p-regular partition. For a given λ,
move all of the boxes up to the top of their respective ladders. The result is a partition,
and that partition is called the regularization of λ, and is denoted Rλ. The following
theorem contains facts about regularization originally due to James [6] (see also [9]).

Theorem 1.2.7. Let λ be a partition. Then

• Rλ is ℓ-regular

• Rλ = λ if and only if λ is ℓ-regular.

Regularization provides us with an equivalence relation on the set of partitions.
Specifically, we say λ ∼ µ if Rλ = Rµ. The equivalence classes are called regularization

classes, and the class of a partition λ is denoted RC(λ) := {µ ∈ P : Rµ = Rλ}.
All of the irreducible representations of Hn(q) have been constructed when q is a

primitive ℓth root of unity. These modules are indexed by ℓ-regular partitions λ, and are
called Dλ. Dλ is the unique simple quotient of Sλ (see [4] for more details). In particular
Dλ = Sλ if and only if Sλ is irreducible and λ is ℓ-regular. For λ not necessarily ℓ-regular,
Sλ is irreducible if and only if there exists an ℓ-regular partition µ so that Sλ ∼= Dµ. An
ℓ-regular partition µ for which Sλ = Dµ for some λ will be called a weak ℓ-partition.

Theorem 1.2.8. [James [6], [7]] Let λ be any partition. Then the irreducible represen-
tation DRλ occurs as a multiplicity one composition factor of Sλ. In particular, if λ is an
(ℓ, 0)-JM partition, then Sλ = DRλ.

2 Classifying (ℓ, 0)-JM partitions by their Removable

ℓ-Rim Hooks

2.1 Motivation

In this section we give a new description of (ℓ, 0)-JM partitions. This condition is related
to how ℓ-rim hooks are removed from a partition and is a generalization of Theorem 2.1.6
in [3] about ℓ-partitions. The condition we give will be used in several proofs throughout
this paper.

2.2 Removing ℓ-Rim Hooks and (ℓ, 0)-JM partitions

Definition 2.2.1. Let λ be a partition. Let ℓ > 2. Then λ is a generalized ℓ-partition

if:

1. λ has only horizontal and vertical ℓ-rim hooks;

2. for any vertical (resp. horizontal) ℓ-rim hook R of λ and any horizontal (resp.
vertical) ℓ-rim hook S of λ \ R, R and S are not adjacent;
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3. after removing any set of horizontal and vertical ℓ-rim hooks from the Young diagram
of λ, the remaining partition satisfies (1) and (2).

Example 2.2.2. Let λ = (3, 1, 1, 1). λ has a vertical 3-rim hook R containing the boxes
(2, 1), (3, 1), (4, 1). Removing R leaves a horizontal 3-rim hook S containing the boxes
(1, 1), (1, 2), (1, 3). S is adjacent to R, so λ is not a generalized 3-partition.

S S S

R

R

R

Remark 2.2.3. We will sometimes abuse notation and say that R and S in Example
2.2.2 are adjacent vertical and horizontal ℓ-rim hooks. The meaning here is not that they
are both ℓ-rim hooks of λ (S is not an ℓ-rim hook of λ), but rather that they are an example
of a violation of condition 2 from Definition 2.2.1.

We will need a few lemmas before we come to our main theorem of this section, which
states that the notions of (ℓ, 0)-JM partitions and generalized ℓ-partitions are equivalent.
The next lemma simplifies the condition for being an (ℓ, 0)-JM partition and is used in
the proof of Theorem 2.2.6.

Lemma 2.2.4. Suppose λ is not an (ℓ, 0)-JM partition. Then there exist boxes (c, d),
(c, w) and (z, d) with c < z, d < w, and ℓ | hλ

(c,d), ℓ ∤ hλ
(c,w), h

λ
(z,d).

Proof. By assumption there exist boxes (a, b), (a, y) and (x, b) where ℓ | hλ
(a,b) and ℓ ∤

hλ
(a,y), h

λ
(x,b). If a < x and b < y then we are done. The other cases follow below:

Case 1: x < a and y < b. Assume no triple exists satisfying the statement of the
lemma. Then either all boxes to the right of the (a, b) box will have hook lengths divisible
by ℓ, or all boxes below will. Without loss of generality, suppose that all boxes below
the (a, b) box have hook lengths divisible by ℓ. Let c < a be the largest integer so that
ℓ ∤ h(c,b). Let z = c + 1. Then one of the boxes (c, b + 1), (c, b + 2), . . . (c, b + ℓ − 1) has a
hook length divisible by ℓ. This is because the box (h, b) at the bottom of column b has a
hook length divisible by ℓ, so the hook lengths hλ

(c,b) = hλ
(c,b+1) +1 = · · · = hλ

(c,b+ℓ−1)+ℓ−1.

Suppose it is (c, d). Then ℓ ∤ hλ
(z,d) since h(z,b) = h(z,d) + d − b and d − b < ℓ.

If d 6= b + ℓ− 1 or hλ
(h,b) > ℓ then letting w = d + 1 gives (c, w) to the right of (c, d) so

that ℓ ∤ hλ
(c,w) (in fact hλ

(c,w) = hλ
(c,d) − 1).

If d = b+ ℓ−1 and hλ
(h,b) = ℓ then there is a box in position (c, d+1) with hook length

hλ
(c,d+1) = hλ

(c,d) − 2 since there must be a box in the position (h − 1, d + 1), due to the

fact that ℓ | hλ
(h−1,b) and hλ

(h−1,b) > ℓ if h − 1 6= c and hλ
(h−1,d) > ℓ if h − 1 = c. Letting

w = d + 1 again yields ℓ ∤ hλ
(c,w). Note that this requires that ℓ > 2. In fact if ℓ = 2 we

cannot even be sure that there is a box in position (c, d + 1).
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Case 2: x < a and y > b. If there was a box (n, b) (n > a) with a hook length not
divisible by ℓ then we would be done. So we can assume that all hook lengths in column
b below row a are divisible by ℓ. Let c < a be the largest integer so that ℓ ∤ hλ

(c,b). Let

z = c + 1. Similar to Case 1 above, we find a d so that ℓ | hλ
(c,d). Then ℓ ∤ hλ

(z,d) and by

the same argument as in Case 1, if we let w = d + 1 then ℓ ∤ hλ
(c,w).

Case 3: x > a and y < b. Then apply Case 2 to λ′.

Lemma 2.2.5. Suppose λ is not an (ℓ, 0)-JM partition. Then a partition obtained from
λ by adding a horizontal or vertical ℓ-rim hook is also not an (ℓ, 0)-JM partition.

Proof. Let us suppose that we are adding a horizontal ℓ-rim hook R to a row r in λ to
produce a partition µ. By Lemma 2.2.4, we can assume that there are boxes (c, d), (c, w)
and (z, d) as stated in the lemma. The only complication arises when R is directly below
one or more of these boxes. When this is the case, the fact that R is completely horizontal
implies that adjacent boxes also below R will have hook lengths which differ by exactly
one. This allows us to find new boxes (c, d), (c, w) and (z, d) which satisfy Lemma 2.2.4.
Therefore µ is also not an (ℓ, 0)-JM partition.

Theorem 2.2.6. A partition is an (ℓ, 0)-JM partition if and only if it is a generalized
ℓ-partition.

Proof. Suppose that λ is not a generalized ℓ-partition. Then remove non-adjacent
horizontal and vertical ℓ-rim hooks until you obtain a partition µ which has either a
non-vertical non-horizontal ℓ-rim hook, or adjacent horizontal and vertical ℓ-rim hooks.
If there is a non-horizontal, non-vertical ℓ-rim hook in µ, let’s say the ℓ-rim hook has
southwest most box (a, b) and northeast most box (c, d). Then ℓ | h

µ

(c,b) but ℓ ∤ h
µ

(a,b), h
µ

(c,d)

since h
µ

(a,b), h
µ

(c,d) < ℓ. Therefore, µ is not an (ℓ, 0)-JM partition. By Lemma 2.2.5, λ is not

an (ℓ, 0)-JM partition. Similarly, if µ has adjacent vertical and horizontal ℓ-rim hooks,
then let (a, b) be the southwest most box in the vertical ℓ-rim hook and let (c, d) be the
position of the northeast most box in the horizontal ℓ-rim hook (we may assume that
the horizontal rim hook is to the north east of the vertical one, otherwise the pair would
also form a non-vertical, non-horizontal ℓ-rim hook). Again, ℓ | h

µ

(c,b) but ℓ ∤ h
µ

(a,b), h
µ

(c,d).

Therefore µ cannot be an (ℓ, 0)-JM partition, so λ is not an (ℓ, 0)-JM partition.
Conversely, let n be the smallest integer such that there exists a partition λ ⊢ n which

is not an (ℓ, 0)-JM partition but is a generalized ℓ-partition. Then by Lemma 2.2.4 there
are boxes (a, b), (a, y) and (x, b) with a < x and b < y, which satisfy ℓ | hλ

(a,b), and

ℓ ∤ hλ
(a,y), h

λ
(x,b) . Form a new partition µ by taking all of the boxes (m, n) in λ such that

m > a and n > b. Since λ was a generalized ℓ-partition, µ must be also. If µ 6= λ then
we have found a partition µ ⊢ m for m < n, which is a contradiction. So we may assume
that a, b = 1.

From the definition of ℓ-cores, we know that there must exist a removable ℓ-rim hook
from λ, since ℓ | hλ

(1,1). Since λ is a generalized ℓ-partition, the ℓ-rim hook must be either
horizontal or vertical. Without loss of generality, suppose we have a horizontal ℓ-rim hook
which can be removed from λ. Let the resulting partition be denoted ν.
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If hν
(1,1) = hλ

(1,1) − 1, then the horizontal ℓ-rim hook was removed from the last row

of λ, which was of length exactly ℓ. If this is the case then hλ
(1,ℓ) ≡ 1 mod ℓ, hλ

(1,1) ≡ 0

mod ℓ and hλ
(x,ℓ) ≡ hλ

(x,1) + 1 mod ℓ. Hence ℓ | hν
(1,ℓ) (since hν

(1,ℓ) = hλ
(1,ℓ) − 1), ℓ ∤ hν

(1,1),

ℓ ∤ hν
(x,ℓ). Therefore ν is not an (ℓ, 0)-JM partition, but it is a generalized ℓ-partition. The

existence of such a partition is a contradiction. So we know that removing a horizontal
ℓ-rim hook from λ cannot change the value of hλ

(1,1) by 1. This is also true for vertical
ℓ-rim hooks.

Now we may assume that removing horizontal or vertical ℓ-rim hooks from λ will not
change that ℓ divides the hook length in the (1, 1) position (because removing each ℓ-rim
hook will change the hook length hλ

(1,1) by either 0 or ℓ). Therefore we can keep removing

ℓ-rim hooks until we have have removed box (1,1) entirely, in which case the remaining
partition had a horizontal ℓ-rim hook adjacent to a vertical ℓ-rim hook (since both (x, b)
and (a, y) must have been removed, the ℓ-rim hooks could not have been exclusively
horizontal or vertical). This contradicts µ being a generalized ℓ-partition.

Example 2.2.7. Let λ = (10, 8, 3, 22, 15). Then λ is a generalized 3-partition and a (3, 0)-
JM partition. λ is drawn below with each hook length hλ

(a,b) written in the box (a, b) and
the possible removable ℓ-rim hooks outlined. Also, hook lengths which are divisible by ℓ

are underlined.

19 13 10 8 7 6 5 4 2 1

16 10 7 5 4 3 2 1

10 4 1

8 2

7 1

5

4

3

2

1

Lemma 2.2.8. An (ℓ, 0)-JM partition λ cannot have a removable and two addable
partitions of the same residue.

Proof. Label the removable box n1. Label the addable boxes n2 and n3 (without loss of
generality, n2 is in a row above n3). There are three cases to consider.

The first case is that n1 is above n2 and n3. Then the hook length in the row of n1

and column of n3 is divisible by ℓ, but the hook length in the row of n2 and column of n3

is not. Also, the hook length for box n1 is 1, which is not divisible by ℓ.
The second case is that n1 is in a row between the row of n2 and n3. In this case, ℓ

divides the hook length in the row of n1 and column of n3. Also ℓ does not divide the
hook length in the row of n2 and column of n3, and the hook length for the box n1 is 1.
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The last case is that n1 is below n2 and n3. In this case, ℓ divides the hook length in
the column of n1 and row of n2, but ℓ does not divide the hook length in the column of
n3 and row of n2. Also the hook length for the box n1 is 1.

3 Decomposition of (ℓ, 0)-JM Partitions

3.1 Motivation

In [3] we gave a decomposition of ℓ-partitions. In this section we give a similar
decomposition for all (ℓ, 0)-JM partitions. This decomposition is important for the proofs
of the theorems in later sections.

3.2 Decomposing (ℓ, 0)-JM partitions

Let µ be an ℓ-core with µ1 − µ2 < ℓ − 1 and µ′

1 − µ′

2 < ℓ − 1. Let r, s > 0. Let ρ and σ

be partitions with len(ρ) 6 r + 1 and len(σ) 6 s + 1. If µ = ∅ then we require at least
one of ρr+1, σs+1 to be zero. Following the construction of [3], we construct a partition
corresponding to (µ, r, s, ρ, σ) as follows. Starting with µ, attach r rows above µ, with
each row ℓ − 1 boxes longer than the previous. Then attach s columns to the left of µ,
with each column ℓ − 1 boxes longer than the previous. This partition will be denoted
(µ, r, s, ∅, ∅). Formally, if µ = (µ1, µ2, . . . , µm) then (µ, r, s, ∅, ∅) represents the partition
(which is an ℓ-core):

(s + µ1 + r(ℓ − 1), s + µ1 + (r − 1)(ℓ − 1), . . . , s + µ1 + ℓ − 1, s + µ1,

s + µ2, . . . , s + µm, sℓ−1, (s − 1)ℓ−1, . . . , 1ℓ−1)

where sℓ−1 stands for ℓ−1 copies of s. Now to the first r +1 rows attach ρi horizontal
ℓ-rim hooks to row i. Similarly, to the first s + 1 columns, attach σj vertical ℓ-rim hooks
to column j. The resulting partition λ corresponding to (µ, r, s, ρ, σ) will be

λ = (s + µ1 + r(ℓ − 1) + ρ1ℓ, s + µ1 + (r − 1)(ℓ − 1) + ρ2ℓ, . . . ,

s + µ1 + (ℓ − 1) + ρrℓ, s + µ1 + ρr+1ℓ, s + µ2, s + µ3, . . . ,

s + µm, (s + 1)σs+1ℓ, sℓ−1+(σs−σs+1)ℓ, (s − 1)ℓ−1+(σs−1−σs)ℓ, . . . , 1ℓ−1+(σ1−σ2)ℓ).

We denote this decomposition as λ ≈ (µ, r, s, ρ, σ).

Example 3.2.1. Let ℓ = 3 and (µ, r, s, ρ, σ) = ((1), 3, 2, (2, 1, 1, 1), (2, 1, 0)). Then
((1), 3, 2, ∅, ∅) is drawn below, with µ framed.
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s = 2

r = 3

((1), 3, 2, (2, 1, 1, 1), (2, 1, 0)) is drawn below, now with ((1), 3, 2, ∅, ∅) framed.

Theorem 3.2.2. If λ ≈ (µ, r, s, ρ, σ) (with at least one of ρr+1, σs+1 = 0 if µ = ∅), then
λ is an (ℓ, 0)-JM partition. Conversely, all (ℓ, 0)-JM partitions are of this form.

Proof. First, note that (µ, r, s, ∅, ∅) is an ℓ-core. This can be seen as no ℓ-rim hooks can
be removed from µ, since µ is an ℓ-core, so any ℓ-rim hooks which can be removed from
(µ, r, s, ∅, ∅) must contain at least one box in either the first r rows or s columns. But it
is clear that no ℓ-rim hook can go through one of these rows or columns.

If λ ≈ (µ, r, s, ρ, σ) then it is clear by construction that λ satisfies the criterion for
a generalized ℓ-partition (see Definition 2.2.1). By Theorem 2.2.6, λ is an (ℓ, 0)-JM
partition.
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Conversely, if λ is an (ℓ, 0)-JM partition then by Theorem 2.2.6 its only removable
ℓ-rim hooks are horizontal or vertical. Let ρi be the number of removable horizontal ℓ-rim
hooks in row i which are removed in going to the ℓ-core of λ, and let σj be the number
of removable vertical ℓ-rim hooks in column j (since λ has no adjacent ℓ-rim hooks, these
numbers are well defined). Once all ℓ-rim hooks are removed, let r (resp. s) be the
number of rows (resp. columns) whose successive differences are ℓ − 1. It is then clear
that len(ρ) 6 r + 1, since if it wasn’t then the two rows r + 1 and r + 2 would combine
to form a non-vertical, non-horizontal ℓ-rim hook. Similarly, len(σ) 6 s + 1. Removing
these topmost r rows and leftmost s columns leaves an ℓ-core µ. Then λ ≈ (µ, r, s, ρ, σ).
If µ = ∅ and ρr+1, σs+1 > 0 then λ would have (after removal of horizontal and vertical
ℓ-rim hooks) a horizontal ℓ-rim hook adjacent to a vertical ℓ-rim hook.

Further in the text, we will make use of Theorem 3.2.2. Many times we will show
that a partition λ is an (ℓ, 0)-JM partition by giving an explicit decomposition of λ into
(µ, r, s, ρ, σ).

Remark 3.2.3. This decomposition can be used to count the number of (ℓ, 0)-JM
partitions in a given block. For more details, see the author’s Ph.D. thesis [1].

4 Extending Theorems to the Crystal laddℓ

In [11], Misra and Miwa built a model (denoted here as regℓ) of the basic representation

B(Λ0) of ŝlℓ using ℓ-regular partitions as nodes of the graph. Their crystal operators ẽi

(resp. f̃i) are maps which remove (resp. add) a box to a partition.
In [2], I built a crystal model (denoted here as laddℓ) of B(Λ0) which had a certain

type of partitions as nodes of the graph. The crystal operators of my model, named êi and
f̂i, removed and added boxes in a similar manner. I showed that my model was the basic
crystal B(Λ0) by showing that the map R described above actually gave one direction of
the crystal isomorhism (taking a partition in my model and making it ℓ-regular).

To be more specific, to a partition λ, and a residue i ∈ {0, . . . , ℓ − 1}, we put a − in
every box of λ which is removable and has residue i. We also put a + in every position
adjacent to λ which is addable and has residue i. We make a word out of these −’s and
+’s. In the Misra Miwa model, the word is read from the bottom of the partition to
the top. In the ladder crystal model, the word is read from leftmost ladder to rightmost
ladder, reading each ladder from top to bottom. The reduced word is then obtained by
successive cancelation of adjacent pairs − +. We can now define ẽiλ (resp. êiλ) as the
partition obtained by removing from λ the box corresponding to the leftmost − in the
reduced word of the Misra Miwa ordering (resp. ladder ordering). Similarly, f̃iλ (resp.

f̂iλ) is the partition obtained by adding a box to λ corresponding to the rightmost + in
the reduced word of the Misra Miwa ordering (resp. ladder ordering). To see these rules
in more detail, with examples, see [2].

Through the rest of this paper,
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ε = εi(λ) = max{n : ẽi
n
λ 6= 0},

ϕ = ϕi(λ) = max{n : f̃i

n
λ 6= 0},

ε̂ = ε̂i(λ) = max{n : êi
n
λ 6= 0},

ϕ̂ = ϕ̂i(λ) = max{n : f̂i

n
λ 6= 0}.

4.1 Previous results on the crystal regℓ

In [3] we proved the following theorem about ℓ-partitions in the crystal regℓ.

Theorem 4.1.1. Suppose that λ is an ℓ-partition and 0 6 i < ℓ. Then

1. f̃
ϕ
i λ is an ℓ-partition,

2. ẽε
iλ is an ℓ-partition.

3. f̃k
i λ is not an ℓ-partition for 0 < k < ϕ − 1,

4. ẽk
i λ is not an ℓ-partition for 1 < k < ε.

In this paper, we generalize the above Theorem 4.1.1 to weak ℓ-partitions. We first
give the statement of our new theorem.

Theorem 4.1.2. Suppose that λ is a weak ℓ-partition and 0 6 i < ℓ. Then

1. f̃
ϕ
i λ is a weak ℓ-partition,

2. ẽε
iλ is a weak ℓ-partition.

3. f̃k
i λ is not a weak ℓ-partition for 0 < k < ϕ − 1,

4. ẽk
i λ is not a weak ℓ-partition for 1 < k < ε.

4.2 Crystal theoretic results for laddℓ and (ℓ, 0)-JM partitions

For a proof of these new theorems, we will start by proving analogous statements in the
ladder crystal laddℓ. To do this, we will first need some lemmas.

Lemma 4.2.1. All ℓ-cores are nodes of laddℓ. In particular, If λ is an ℓ-core, then ϕ̂ = ϕ

and f̂
ϕ̂
i λ = f̃

ϕ
i λ.

Proof. ℓ-cores are unique in their regularization class, so since R is an isomorphism from
laddℓ to regℓ, all ℓ-cores are nodes of laddℓ. The second statement is just a consequence
of the crystals being isomorphic.

The following lemma is a well known recharacterization of ℓ-cores.
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Lemma 4.2.2. A box x has a hook length divisible by ℓ if and only if there exists a residue
i so that the last box in the row of x has residue i and the last box in the column of x has
residue i + 1. In particular, any partition which has such a box x is not an ℓ-core.

Lemma 4.2.3. If λ is an (ℓ, 0)-JM partition then there is no ladder in the Young diagram
of λ which has a − above a +.

Proof. Let the coordinates of the − be (a, b), and let the coordinates of the + be (c, d).
If b − d = m, then the box (a, d) has hλ

(a,d) = mℓ. Also hλ
(a,b) = 1. If we can find a box

x in column d such that ℓ ∤ hλ
x, then λ is not an (ℓ, 0)-JM partition, contradicting the

hypothesis. Suppose all the boxes below (a, d) had hook lengths which were multiples of ℓ.
Since hλ

(a,d) = mℓ, there are mℓ−m total boxes below (a, d) in λ. Since the hook lengths of
each box decreases down any column, at most m−1 of these boxes can have hook lengths
divisible by ℓ (corresponding to hook lengths (m − 1)ℓ, (m − 2)ℓ, . . . , ℓ). Therefore, the
remaining mℓ − m − (m − 1) = m(ℓ − 2) − 1 must all have hook lengths not divisible by
ℓ. Since ℓ > 2, m(ℓ − 2)− 1 > m− 1 > 0, so some box in column d must not be divisible
by ℓ.

The following lemma will be used in this section for proving our crystal theorem
generalizations for (ℓ, 0)-JM partitions.

Lemma 4.2.4. Let λ be an (ℓ, 0)-JM partition. Then the ladder i-signature of λ is the
same as the reduced ladder i-signature of λ. In other words, there is no −+ cancelation
in the ladder i-signature of λ.

Proof. Suppose there is a −+ cancelation in the ladder i-signature of an (ℓ, 0)-JM partition
λ. By Lemma 4.2.3, it must be that a removable i-box occurs on a ladder to the left of a
ladder which contains an addable i-box. Suppose the removable i-box is in position (a, b)
and the addable i-box is in position (c, d). We will suppose that a > c (the case a < c is
similar). Then ℓ | hλ

(c,b). Also hλ
(a,b) = 1 since (a, b) is a removable box. Let us suppose

that ℓ | hλ
(c,k) for all boxes (c, k) in λ to the right of (c, b). The fact that (a, b) is in a

ladder to the left of (c, d) is equivalent to the fact that d−b
a−c

> 1, or d − b > a − c. By

definition hλ
(c,b) = d− b+a− c+1. The number of positions (c, k) in λ for k > b can be at

most
h(c,b)

ℓ
= d−b+a−c+1

ℓ
<

2(d−b)+1
ℓ

< d− b since ℓ > 2. In order for (c, d) to be an addable
position, we need to have exactly d − b boxes (c, k) for k > b in λ. This contradicition
implies that λ is not an (ℓ, 0)-JM partition.

4.3 Generalizations of the crystal theorems to laddℓ

We will now prove an analogue of Theorem 4.1.1 for (ℓ, 0)-JM partitions in the ladder
crystal laddℓ.

Theorem 4.3.1. Suppose that λ is an (ℓ, 0)-JM partition and 0 6 i < ℓ. Then

the electronic journal of combinatorics 17 (2010), #R119 12



1. f̂
bϕ
i λ is an (ℓ, 0)-JM partition,

2. êbε
iλ is an (ℓ, 0)-JM partition.

3. f̂k
i λ is not an (ℓ, 0)-JM partition for 0 < k < ϕ̂ − 1,

4. êk
i λ is not an (ℓ, 0)-JM partition for 1 < k < ε̂.

Proof. We will prove (1); (2) follows similarly. Suppose that λ ≈ (µ, r, s, ρ, σ) has an
addable m-box in the first row, and an addable n-box in the first column for two residues
m, n. If m 6= i 6= n then f̂

bϕ
i will only add boxes to the core µ in the Young diagram of

λ, and not in the first row or column of µ. But f̂
bϕ
i−r+sµ will again be a core, by Lemma

4.2.1. Hence f̂
bϕ
i λ ≈ (f̂ϕ

i−r+sµ, r, s, ρ, σ).
Next we assume m = i 6= n. The partition ν ≈ (µ, r, 0, ρ, ∅) is an ℓ-partition. From

Lemma 4.2.4, we have no cancelation of −+ in λ, so that f̂
bϕi−s(ν)
i−s ν = f̃

ϕi−s(ν)
i−s ν. By

Theorem 4.1.1, f̂
bϕi−s(ν)
i−s ν is an ℓ-partition. Say f̂

bϕi−s(ν)
i−s ν ≈ (µ′, r′, 0, ρ′, ∅). Then f̂

bϕ
i λ ≈

(µ′, r′, s, ρ′, σ). A similar argument works when m 6= i = n by using that the transpose of
(µ, 0, s, ∅, σ) is an ℓ-partition.

We now suppose that m = i = n. In this case, λ has an addable i-box in the first
r + 1 rows and s + 1 columns. It may also have addable i-boxes within the core µ. λ has

no removable i-boxes. Thus we get f̂
bϕ
i λ ≈ (f̂

bϕi−r+s(µ)
i−r+s µ, r, s, ρ, σ) is an (ℓ, 0)-JM partition.

(3) follows from 2.2.8. (4) is similar.

4.4 All (ℓ, 0)-JM partitions are nodes of laddℓ

Theorem 4.4.1. If λ is an (ℓ, 0)-JM partition then λ is a node of laddℓ.

Proof. The proof is by induction on the size of a partition. If the partition has size zero
then it is the empty partition which is an (ℓ, 0)-JM partition and is a node of the crystal
laddℓ.

Suppose λ ⊢ n > 0 is an (ℓ, 0)-JM partition. Let i be a residue such that λ has at least
one ladder-normal box of residue i. We can find such a box since no −+ cancellation exists
by Lemma 4.2.4. Define µ to be êbε

iλ. Then µ ⊢ (n−ε̂) is an (ℓ, 0)-JM partition by Theorem

4.3.1, of smaller size than λ. By induction µ is a node of laddℓ. But f̂ bε
i µ = f̂ bε

i êbε
iλ = λ, so

λ is a node of laddℓ.

5 Generalizing Crystal Theorems

We can now prove our generalization of Theorem 4.1.1.

Proof of Theorem 4.1.2. Let λ be a weak ℓ-partition. Then Dλ = Sν for some (ℓ, 0)-
JM partition ν with Rν = λ (by Theorem 1.2.8). From Theorem 4.4.1 we know that
ν ∈ laddℓ. The fact that the crystals are isomorphic implies that ϕ̂i(ν) = ϕ. By Theorem
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4.3.1, f̂
ϕ
i ν is another (ℓ, 0)-JM partition. Since regularization provides the isomorphism

(see [2]), we know that Rf̂
ϕ
i ν = f̃

ϕ
i λ. Theorem 1.2.8 then implies that Df̃

ϕ
i λ = S

bf
ϕ
i ν ,

since S
bf
ϕ
i

ν is irreducible by Theorem 1.2.5. Hence f̃
ϕ
i λ is a weak ℓ-partition. The proof

of (2) is similar.
To prove (4), we must show that there does not exist an (ℓ, 0)-JM partition µ in the

regularization class of f̃k
i λ. There exists an (ℓ, 0)-JM partition ν in laddℓ so that Dλ = Sν .

By Theorem 4.3.1, f̂k
i ν is not an (ℓ, 0)-JM partition. But by Theorem 4.4.1 we know all

(ℓ, 0)-JM partitions occur in laddℓ. Also, only one element of RC(f̃k
i λ) occurs in laddℓ

and we know this is f̂k
i ν. Therefore no such µ can exist, so f̃k

i λ is not a weak ℓ-partition.
(4) follows similarly.

Remark. One can also prove Theorem 4.1.2 via representation theory. For more details
see the author’s Ph.D. thesis [1].
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