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Abstract

In this article, we investigate bijections on various classes of set partitions of

classical types that preserve openers and closers. On the one hand we present bijec-

tions for types B and C that interchange crossings and nestings, which generalize a

construction by Kasraoui and Zeng for type A. On the other hand we generalize a

bijection to type B and C that interchanges the cardinality of a maximal crossing

with the cardinality of a maximal nesting, as given by Chen, Deng, Du, Stanley and

Yan for type A.

For type D, we were only able to construct a bijection between non-crossing and

non-nesting set partitions. For all classical types we show that the set of openers and

the set of closers determine a non-crossing or non-nesting set partition essentially

uniquely.
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Introduction

The lattice of non-crossing set partitions was first considered by Germain Kreweras in
[15]. It was later reinterpreted by Paul Edelman, Rodica Simion and Daniel Ullman, as a
well-behaved sub-lattice of the intersection lattice for the hyperplane arrangement of type
A, see e.g. [6, 7, 19]. Natural combinatorial interpretations of non-crossing partitions for
the classical reflection groups were then given by Christos Athanasiadis and Vic Reiner
in [3, 17].

On the other hand, non-nesting partitions were simultaneously introduced for all crys-
tallographic reflection groups by Alex Postnikov as anti-chains in the associated root
poset, see [17, Remark 2].

Within the last years, several bijections between non-crossing and non-nesting parti-
tions have been constructed. In particular, type (i.e., block-size) preserving bijections were
given by Christos Athanasiadis [2] for type A and by Alex Fink and Benjamin Giraldo [8]
for the other classical reflection groups. One of the authors of the present article [21]
constructed another bijection for types A and B which transports other natural statis-
tics. Recently, Ricardo Mamede and Alessandro Conflitti [5, 16] constructed bijections
for types A, B and D which turn out to be subsumed by the bijections we present here.

The material on non-crossing partitions on the one hand and on non-nesting partitions
on the other hand suggests that they are not only counted by the same numbers, namely
the Catalan numbers, but are more deeply connected. These connections were presented
by Drew Armstrong in [1, Chapter 5.1.3]. In this paper we would like to exhibit some
further connections.

In the case of set partitions of type A, also the number of crossings and nestings was
considered: Anisse Kasraoui and Jiang Zeng constructed a bijection which interchanges
crossings and nestings in [13]. Finally, in a rather different direction, William Chen, Eva
Deng, Rosena Du, Richard Stanley and Catherine Yan [4] have shown that the number
of set partitions where a maximal crossing has cardinality k and a maximal nesting has
cardinality ℓ is the same as the number of set partitions where a maximal crossing has
cardinality ℓ and a maximal nesting has cardinality k.
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7 91 2 3 4 5 6 8
(a)

1 2 3 4 5 6 7 8 9
(b)

Figure 1: A non-crossing (a) and a non-nesting (b) set partition of [9].

In this paper, we present bijections on various classes of set partitions of classical
types that preserve openers and closers. In particular, the bijection by Anisse Kasraoui
and Jiang Zeng as well as the bijection by William Chen, Eva Deng, Rosena Du, Richard
Stanley enjoy this property. We give generalizations of these bijections for the other
classical reflection groups, whenever possible. Furthermore we show that the bijection is
in fact (essentially) unique for the class of non-crossing and non-nesting set partitions.

1 Set partitions for classical types

A set partition of [n] := {1, 2, 3, . . . , n} is a collection B of pairwise disjoint, non-empty
subsets of [n], called blocks, whose union is [n]. We visualize B by placing the numbers
1, 2, . . . , n in this order on a line and then joining consecutive elements of each block by
an arc, see Figure 1 for examples.

The openers op(B) are the non-maximal elements of the blocks in B, whereas the
closers cl(B) are its non-minimal elements. For example, the set partitions in Figure 1
both have op(B) = {1, 2, 3, 5, 7} and cl(B) = {4, 5, 6, 7, 9}.

A pair (O, C) ⊆ [n] × [n] is an opener-closer configuration, if |O| = |C| and

|O ∩ [k]| > |C ∩ [k + 1]| for k ∈ {0, 1, . . . , n − 1},

or, equivalently, (O, C) =
(

op(B), cl(B)
)

for some set partition B of n.
We remark that in [13], Anisse Kasraoui and Jiang Zeng distinguish between openers,

closers and transients, which are, in our definition, those numbers which are both openers
and closers.

It is now well established that set partitions of [n] are in natural bijection with inter-
sections of the reflecting hyperplanes xi−xj = 0 in R

n of the Coxeter group of type An−1.
For example, the set partition in Figure 1(a) corresponds to the intersection

{x ∈ R
9 : x1 = x7 = x9, x2 = x5 = x6, x3 = x4}.
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Therefore, set partitions of [n] can be seen as set partitions of type An−1 and set
partitions of other types can be defined by analogy, see [2, 17]. The reflecting hyperplanes
for Bn and Cn are

xi = 0 for 1 6 i 6 n,

xi − xj = 0 for 1 6 i < j 6 n, and

xi + xj = 0 for 1 6 i < j 6 n.

Thus, a set partition of type Bn or Cn is a set partition B of

[±n] := {1, 2, . . . , n,−1,−2, . . . ,−n},

such that

B ∈ B ⇔ −B ∈ B (1)

and such that there exists at most one block B0 ∈ B (called the zero block) for which
B0 = −B0.

The hyperplanes for Dn are those for Bn and Cn other than xi = 0 for 1 6 i 6 n,
whence a set partition B of type Dn is a set partition of type Bn (or Cn) where the zero
block, if present, must not consist of a single pair {i,−i}.

2 Crossings and nestings in set partitions of type A

One of the goals of this article is to refine the following well known correspondences
between non-crossing and non-nesting set partitions. For ordinary set partitions, a crossing

consists of a pair of arcs (i, j) and (i′, j′) such that i < i′ < j < j′,

1 . . . i < i′ < j < j′ . . . n .

On the other hand, a nesting consists of a pair of arcs (i, j) and (i′, j′) such that i < i′ <
j′ < j,

1 . . . i < i′ < j′ < j . . . n .

A set partition of [n] is called non-crossing (resp. non-nesting) if the number of crossings
(resp. the number of nestings) equals 0.

It has been known for a long time that the numbers of non-crossing and non-nesting
set-partitions of [n] coincide. More recently, Anisse Kasraoui and Jiang Zeng have shown
in [13] that much more is true:
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Theorem 2.1. There is an explicit bijection on set partitions of [n], preserving the set of
openers and the set of closers, and interchanging the number of crossings and the number
of nestings.

The construction in [13] also proves the following corollary:

Corollary 2.2. For any opener-closer configuration (O, C) ⊆ [n] × [n], there exists a
unique non-crossing set partition B of [n] and a unique non-nesting set partition B′ of [n]
such that

op(B) = op(B′) = O and cl(B) = cl(B′) = C.

In the following section we will prove a statement for type C completely analogous to
the one of Anisse Kasraoui and Jiang Zeng.

Apart from the number of crossings or nestings, another natural statistic to consider
is the cardinality of a ‘maximal crossing’ and of a ‘maximal nesting’: a maximal crossing of
a set partition is a set of largest cardinality of mutually crossing arcs, whereas a maximal

nesting is a set of largest cardinality of mutually nesting arcs. For example, in Figure 1(a),
the arcs {(1, 7), (2, 5), (3, 4)} form a maximal nesting of cardinality 3. In Figure 1(b) the
arcs {(1, 4), (2, 5), (3, 6)} form a maximal crossing.

The following symmetry property was shown by William Chen, Eva Deng, Rosena Du,
Richard Stanley and Catherine Yan [4]:

Theorem 2.3. There is an explicit bijection on set partitions, preserving the set of openers
and the set of closers, and interchanging the cardinalities of a maximal crossing and a
maximal nesting.

Since a ‘maximal crossing’ of a non-crossing partition and a ‘maximal nesting’ of a
non-nesting partition both have cardinality 1, Corollary 2.2 implies that this bijection
coincides with the bijection by Anisse Kasraoui and Jiang Zeng for non-crossing and non-
nesting partitions. In particular, we obtain the curious fact that in this case, the bijection
maps non-crossing partitions with k nestings and maximal nesting having cardinality ℓ to
non-nesting partitions with k crossings and maximal crossing having cardinality ℓ.

We have to stress however, that in general it is not possible to interchange the number
of crossings and the cardinality of a maximal crossing with the number of nestings and
the cardinality of a maximal nesting simultaneously.

Example 2.4. For n = 8, there is a set partition with one crossing, six nestings and
the cardinalities of a maximal crossing and a maximal nesting equal both one, namely
{{1, 7}, {2, 8}, {3, 4, 5, 6}}. However, there is no set partition with six crossings, one
nesting and cardinalities of a maximal crossing and a maximal nesting equal to one. To
check, the four set partitions with six crossings and one nesting are

{{1, 4, 6}, {2, 5, 8}, {3, 7}},

{{1, 4, 7}, {3, 5, 8}, {2, 6}},

{{1, 4, 8}, {2, 5, 7}, {3, 6}},

{{1, 5, 8}, {2, 4, 7}, {3, 6}}.
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1 2 3 4 5 −5 −4 −3 −2 −1
(a)

1 2 3 4 5 −1 −2 −3 −4 −5
(b)

Figure 2: The nesting (a) and the crossing (b) diagram of a set partition of type C5.

3 Crossings and nestings in set partitions of type C

Type independent definitions for non-crossing and non-nesting set partitions have been
available for a while now, see for example [1, 2, 3, 17]. However, it turns out that the
notions of crossing and nesting is more tricky, and we do not have a type independent
definition. In this section we generalize the results of the previous section to type C.

We want to associate two pictures to each set partition, namely the ‘crossing’ and the
‘nesting diagram’. To this end, we define two orderings on the set [±n]: the nesting order

for type Cn is
1 < 2 < · · · < n < −n < · · · < −2 < −1,

whereas the crossing order is

1 < 2 < · · · < n < −1 < −2 < · · · < −n.

The nesting diagram of a set partition B of type Cn is obtained by placing the numbers
in [±n] in nesting order on a line and then joining consecutive elements of each block of
B by an arc, see Figure 2(a) for an example.

The crossing diagram of a set partition B of type Cn is obtained from the nesting diagram

by reversing the order of the negative numbers. More precisely, we place the numbers in
[±n] in crossing order on a line and then join consecutive elements in the nesting order
of each block of B by an arc, see Figure 2(b) for an example. We stress that the same
elements are joined by arcs in both diagrams. Observe furthermore that the symmetry
property (1) implies that if (i, j) is an arc, then its negative (−j,−i) is also an arc.

A crossing is a pair of arcs that crosses in the crossing diagram, and a nesting is a pair
of arcs that nests in the nesting diagram.

The openers op(B) are the positive non-maximal elements of the blocks in B, the
closers cl(B) the positive non-minimal elements. Thus, openers and closers are the start
and end points of the arcs in the positive part of the nesting (or crossing) diagram. For
example, the set partition displayed in Figure 2 has openers {1, 2, 3, 4, 5} and closers
{2, 4}. For convenience, we call the negatives of the elements in op(B) negative closers

and the negatives of the elements in cl(B) negative openers.
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In type Cn, (O, C) ⊆ [n] × [n] is an opener-closer configuration, if

|O ∩ [k]| > |C ∩ [k + 1]| for k ∈ {0, 1, . . . , n − 1}.

Note that we do not require that |O| = |C|.

Theorem 3.1. There is an explicit bijection on set partitions of type Cn, preserving the
set of openers and the set of closers, and interchanging the number of crossings and the
number of nestings.

Remark. In fact, the proof of this statement will show that we could also define crossing
and nesting slightly differently. Namely, the statement of the theorem remains valid if we
do not count crossings and nestings that involve an arc connecting two negative elements.

Furthermore, we will also see the following analog of Corollary 2.2:

Corollary 3.2. For any opener-closer configuration (O, C) ⊆ [n] × [n], there exists a
unique non-crossing set partition B and a unique non-nesting set partition B′, both of
type Cn, such that

op(B) = op(B′) = O and cl(B) = cl(B′) = C.

Proof. The bijection proceeds in three steps. In the first step we consider only the given
opener-closer configuration, and connect every closer, starting with the smallest, with the
appropriate opener. Let us call an opener active, if it has not yet been connected with a
closer.

Let B be a set partition of type Cn. Every closer j ∈ cl(B) (positive by definition)
corresponds to an arc (i, j) in the given set partition. This arc is nested by precisely those
arcs (i′, j′) with 1 6 i′ < i and either j < j′ 6 n or j′ negative. On the other hand, it is
crossed by those arcs (i′, j′) with i < i′ < j and either j < j′ 6 n or j′ negative.

To construct the image of B, we want to interchange the number of arcs crossing the
arc (i, j) with the number of arcs nesting it. Thus, if there are k active openers smaller
than j, and (i, j) is crossed by c arcs in B, we connect j with the (c + 1)st active opener.
Then, the arc (i, j) will be nested by precisely c arcs. The first step is completed when
all closers in cl(B) have been connected.

Note that we do not have any choice if we want to construct, say, a non-nesting set
partition: by connecting j with any active opener except the first, we will produce a
nesting.

In the second step, we use the symmetry property (1) to connect elements (i′, j′) with
both i′ and j′ negative. More precisely, for every arc (i, j) with j > 1, we add an arc
(−j,−i) to the set partition we are constructing.

Finally, we need to connect the remaining active openers with appropriate negative
closers. Observe that two arcs (i, j) and (i′, j′) where both i and i′ are positive and both
j and j′ are negative cross if and only if they nest. Suppose that the arcs connecting
positive with negative elements in B are {(i1, j1), (i2, j2), . . . , (ik, jk)}. Obviously, the set
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{i1, i2, . . . , ik} and {−j1,−j2, . . . ,−jk} are identical, and the arcs define a matching σ,
such that jm = −iσ(m).

Thus, if the remaining active openers are {o1, o2, . . . , ok}, the image of B shall contain
the arcs {(o1,−oσ(1)), (o2,−oσ(2)), . . . , (ok,−oσ(k))}. This completes the description of the
bijection.

Again, note that we do not have any choice if we want to construct a non-nesting or
non-crossing set partition: there is only one non-crossing – and therefore only one non-
nesting – matching of the appropriate size that satisfies the symmetry property (1).

In Section 6 we will show the following analog to Theorem 2.3, where the definition of
maximal crossing is as in type A:

Theorem 3.3. There is an explicit bijection on set partitions of type Cn, preserving the
set of openers and the set of closers, and interchanging the cardinalities of a maximal
crossing and a maximal nesting.

Remark. It is tempting to consider a different notion of crossing and nesting, as suggested
by Drew Armstrong in [1]. He defined a bump as an equivalence class of arcs, where the
arc (i, j) is identified with (−j,−i). From an algebraic point of view this is a very natural
idea, since both correspond to the same hyperplane x|i| = ±x|j|.

As an example, the partition {(1, 4,−2), (3, 5)} would then be 3-crossing, since with
this definition (1, 4) crosses (3, 5) but also (2,−4) = (4,−2). We were quite disappointed
to discover that with this definition, all theorems in the present section would cease to
hold.

4 Crossings and nestings in set partitions of type B

The definition of non-crossing set partitions of type Bn coincides with the definition in
type Cn, and the crossing diagram is also the same. However, the combinatorial model for
non-nesting set partitions changes slightly: we define the nesting order for type Bn as

1 < 2 < · · · < n < 0 < −n < · · · < −2 < −1.

The nesting diagram of a set partition B is then obtained by placing the numbers in [±n]∪0
in nesting order on a line and joining consecutive elements of each block of B by an arc,
where the zero block is augmented by the number 0, if present. See Figure 3(a) for an
example. The definition of openers op(B) and closers cl(B) is the same as in type C, the
number 0 is neither an opener nor a closer.

These changes are actually dictated by the general, type independent definitions for
non-crossing and non-nesting set partitions. Moreover, it turns out that we need to ignore
certain crossings and nestings that appear in the diagrams: a crossing is a pair of arcs
that crosses in the crossing diagram, except if both arcs connect a positive and a negative
element and at least one of them connects a positive element with an element smaller in
absolute value. Pictorially,
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1 2 3 4 5 0 −5 −4 −3 −2 −1
(a)

1 2 3 4 5 −1 −2 −3 −4 −5
(b)

Figure 3: The nesting (a) and the crossing (b) diagram of a set partition of type B5.

1 . . . i < i′ . . . n −1 . . . −j < −j′ . . . −n

is not a crossing, if j < i or j′ < i′.
Similarly, a nesting is a pair of arcs that nests in the nesting diagram, except if both

arcs connect a positive element or 0 with a negative element or 0, and at least one of them
connects a positive element with an element smaller in absolute value.

Example 4.1. The set partition in Figure 3(b) has three crossings: (3,−3) crosses (2, 4),
(4,−5), and (−4,−2). It does not cross (5,−4) by definition.

The set partition in Figure 3(a) has three nestings: (2,−5) nests (3, 4) and (4, 0), and
(5,−2) nests (−4,−3). However, (5,−2) does not nest (0,−4) by definition.

With this definition, we have a theorem that is only slightly weaker than in type C:

Theorem 4.2. There is an explicit bijection on set partitions of type Bn, preserving the
set of openers and the set of closers, and mapping the number of nestings to the number
of crossings.

Again, we obtain an analog of Corollary 2.2:

Corollary 4.3. For any opener-closer configuration (O, C) ⊆ [n] × [n], there exists a
unique non-crossing set partition B and a unique non-nesting set partition B′, both of
type Bn, such that

op(B) = op(B′) = O and cl(B) = cl(B′) = C.

Proof. The first two steps of the bijection described in the proof of 3.1 can be reused
unmodified for the present situation. However, it is no longer the case that the notions
of nesting and crossing coincide for arcs (i, j) and (i′, j′) with i, i′ > 0 and j, j′ 6 0.
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We remark that there is still exactly one non-nesting way to connect the remaining
active openers {o1, o2, . . . , ok} with their negative counterparts, and the number 0 if k is
odd, such that the zero block contains 0 and the symmetry property (1) is satisfied. For

example, the situation for k = 3 is as follows: 1 2 3 0 −3 −2 −1
It remains to describe more generally a bijection that maps a type Bn set partition B

with opener-closer configuration (O, C) = ([k], ∅) with ℓ nestings to a type Bn set partition
with ℓ crossings, and the same opener-closer configuration. In fact, we will really map B
to a type Cn set partition, such that there are exactly ℓ nestings occurring in the set of
arcs (o, c) with o < |c|. This is sufficient, since for type Cn set partitions, two arcs (i, j)
and (i′, j′) where both i and i′ are positive and both j and j′ are negative cross if and
only if they nest.

If B does not contain a zero block, the image under the bijection is B itself. Otherwise,
suppose that B consists of arcs

(o1, c1 = 0), (o2, c2), . . . , (om, cm),

with oi 6 |ci| for i > 1, together with their negatives. We assume furthermore that
|c2| > |c3| > · · · > |cm|, i.e., the closers appear in nesting order.

Now let j be minimal such that oj > |cj+1|, or, if no such j exists, set j := m. We
then set

(õi, c̃i) :=











(oi, ci+1) for i < j

(oi,−oi) for i = j

(oi, ci) for i > j.

We need to show that the number of nestings among

(õ1, c̃1), (õ2, c̃2), . . . , (õm, c̃m)

is the same as in the original set of arcs. It is sufficient to show c̃j−1 < c̃j < c̃j+1, i.e.,
cj < −oj < cj+1, since all other order relations remain unchanged. The relation oj < −cj

was required for all arcs, and oj > −cj+1 follows from the definition of j.

Together with Theorem 3.3, the bijection employed in the previous proof also shows
the following theorem:

Theorem 4.4. There is an explicit bijection on set partitions of type Bn, preserving the
set of openers and the set of closers, and interchanging the cardinalities of a maximal
crossing and a maximal nesting.

5 Non-crossing and non-nesting set partitions in type

D

In type D we do not have any good notion of crossing or nesting, we can only speak
properly about non-crossing and non-nesting set partitions.

the electronic journal of combinatorics 17 (2010), #R120 10



1 2 3 4 5 −1 −2 −3 −4 −5

1 2 3 4 5 −1 −2 −3 −4 −5

Figure 4: Two non-crossing set partition of type D5. Both are obtained from each other
by interchanging 5 and −5.

A combinatorial model for non-crossing set partition of type Dn was given by Christos
Athanasiadis and Vic Reiner in [3]. For our purposes it is better to use a different descrip-
tion of the same model: let B be a set partition of type Dn and let {(i1,−j1), . . . , (ik,−jk)}
for positive iℓ, jℓ < n be the ordered set of arcs in B starting in {1, . . . , n− 1} and ending
in its negative. B is called non-crossing if

(i) (i,−i) is an arc in B implies i = n,

and if it is non-crossing in the sense of type Cn with the following exceptions:

(ii) arcs in B containing n must cross all arcs (iℓ,−jℓ) for ℓ > k/2,

(iii) arcs in B containing −n must cross all arcs (iℓ,−jℓ) for ℓ 6 k/2,

(iv) two arcs in B containing n and −n may cross.

Here, (i) is equivalent to say that if B contains a zero block B0 then n ∈ B0 and observe
that (i) together with the non-crossing property of {(i1,−j1), . . . , (ik,−jk)} imply that
k/2 ∈ N, see Figure 4 for an example.

Note that all conditions hold for a set partition B if and only if they hold for the set
partition obtained from B by interchanging n and −n.

A set partition of type Dn is called non-nesting if it is non-nesting in the sense of [2].
This translates to our notation as follows: let B be a set partition of type Dn. Then B is
called non-nesting if

(i) (i,−i) is an arc in B implies i = n,

and if it is non-nesting in the sense of type Cn with the following exceptions:

(ii) arcs (i,−n) and (j, n) for positive i < j < n in B are allowed to nest, as do

(iii) arcs (i,−j) and (n,−n) for positive k < i, j < n in B where (k, n) is another arc in
B (which exists by the definition of set partitions in type Dn).
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1 2 3 4 5 −5 −4 −3 −2 −1

1 2 3 4 5 −5 −4 −3 −2 −1

Figure 5: Two non-nesting set partition of type D5. Both are obtained from each other
by interchanging 5 and −5.

Again, (i) means that if B0 ∈ B is a zero block then n ∈ B0. (ii) and (iii) come from the
fact that the positive roots ei + en and ej − en for i 6 j are comparable in the root poset
of type Cn but are not comparable in the root poset of type Dn. As for non-crossing set
partitions in type Dn, all conditions hold if and only if they hold for the set partition
obtained by interchanging n and −n. See Figure 5 for an example. The definition of
openers op(B), closers cl(B) and opener-closer configuration is as in type C.

Proposition 5.1. Let (O, C) ⊆ [n] be an opener-closer configuration. Then there exists
a non-crossing set partition B of type Dn with op(B) = O and cl(B) = C if and only if

|O| − |C| is even or n ∈ O, C. (2)

Moreover, there exist exactly two non-crossing set partitions of type Dn having this opener-
closer configuration if both conditions hold, otherwise, it is unique.

Proof. Suppose that |O| − |C| is odd. Then the conditions to be non-crossing imply that
we must have a zero block and therefore, n must be an opener. On the other hand, the
definition of set partitions of type Dn implies that n must be a closer. Thus, condition
(2) is necessary. For the proof of the proposition we distinguish three cases:

Case 1: |O| = |C|. Then by the definition of opener-closer configurations, n /∈ O and
the unique construction is the same as in the first step of the proof of Theorem 3.1.

Case 2: |O| − |C| is odd. Then by (2), n is both opener and closer. For C \ {n} the
construction is the same as in Case 1. Now, there is an odd number of positive openers
smaller than n left. Connect the closer in n to the unique opener in the middle as well
as the opener in −n to its negative. Connect n and −n. Finally connect the remaining
openers with there negative counterparts as closers such that they are non-crossing.

Case 3: |O| − |C| > 0 is even. For C \ {n} the construction is again as in type Cn.
Now, there is an even number of positive openers left. If n is a closer but not an opener,
then there is an odd number of positive openers smaller than n left. Connect the closer
in n to the unique opener in the middle as well as the opener in −n to its negative. If n
is a closer and also an opener then there is an even number of positive openers smaller
than n left. Connect the closer in n to one of the two openers in the middle and the
opener in n to the negative of the other and also connect −n to their negatives. This
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gives the two possibilities in this case and observe that both are obtained from each other
by interchanging n and −n. Finally connect the remaining openers with there negative
counterparts as closers such that they are non-crossing.

As in types A, B and C, the analogue proposition holds also for non-nesting set par-
titions of type Dn:

Proposition 5.2. Let (O, C) ⊆ [n] be an opener-closer configuration. Then there exists
a non-nesting set partition B of type Dn with op(B) = O and cl(B) = C if and only if

|O| − |C| is even or n ∈ O, C. (3)

Furthermore, there exist exactly two non-nesting set partitions of type Dn having this
opener-closer configuration if both conditions hold, otherwise, it is unique.

Proof. The proof that condition (3) is necessary is analogous to the proof in the non-
crossing case.

Recall that a set partition of type Dn is non-nesting if it is non-nesting in the sense
of type Cn except for arcs of the forms

(i) arcs (i,−n) and (j, n) for positive i < j < n,

(ii) arcs (i,−j) and (n,−n) for positive k < i, j < n where (k, n) is another arc (which
exists if (n,−n) is an arc),

and observe that in both cases, n is both an opener and a closer. Therefore, the con-
struction is exactly the same as in type Cn otherwise. We now prove the remaining two
cases:

Case 1: |O|− |C| is odd. The unique possibility is to connect n and −n and all others
in the same way as in type Cn. All nesting arcs in this case are of the form (ii).

Case 2: |O|− |C| is even. In this case, we have two possibilities: the first is to connect
closers and openers as in type Cn without creating any nestings. The second is to connect
the closers in C \ {n} as above to the associated openers, then we connect −n to the first
active opener and n to the associated negative closer. The remaining positive openers
and their associated negative closers are finally connected such that they are non-nesting.
All nesting arcs in this case are of the form (i). Observe also that possibilities 1 and 2 are
obtained from each other by interchanging n and −n.

6 k-crossing and k-nesting set partitions of type C

In this section we prove Theorem 3.3, which states that the cardinalities of a maximal
crossing and a maximal nesting of type C set partitions are equidistributed.

The rough idea of our bijection is as follows: we first show how to render a type Cn set
partition in the language of 0-1-fillings of a certain polyomino, as depicted in Figure 6(a).
We will do this in such a way that maximal nestings correspond to north-east chains of
ones of maximal length.
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Interpreting this filling as a growth diagram in the sense of Sergey Fomin and Tom
Roby [9, 10, 11, 18] enables us to define a transformation on the filling that maps –
technicalities aside – the length of the longest north-east chain to the length of the longest
south-east chain. This filling can then again be interpreted as a Cn set partition, where
south-east chains of maximal length correspond to maximal crossings. Many variants of
the transformation involved are described in Christian Krattenthaler’s article [14], we will
employ yet another (slight) variation.

Let us now give a detailed description of the objects involved: a polyomino is a finite
subset of Z

2, where we regard an element of Z
2 as a cell. A column of a polyomino is the

set of cells along a vertical line, a row is the set of cells along a horizontal line. A trapezoid

polyomino of size n is the polyomino consisting of n columns of height 2n−1, 2n−2, . . . , n,
arranged in this order. (We warn the reader that in other contexts, the name ‘trapezoid
polyomino’ is used for more general polyominoes.)

A partial 0-1 filling of a polyomino is an assignment of 0’s and 1’s to its cells such that
there is at most one 1 in each row and in each column. A north-east chain of length k is
a sequence of k cells with entry 1 in a filling of a nesting polyomino, such that every cell
is strictly to the right and strictly above the preceding cell in the sequence. Similarly, a
south-east chain of length k is a sequence of k cells with entry 1 in a filling of a crossing
polyomino, such that every cell is strictly to the right and strictly below the preceding cell
in the sequence. Furthermore, we require that the smallest rectangle containing all cells
of the sequence is completely contained in the polyomino. We remark that this condition
is trivially satisfied for north-east chains.

The nesting polyomino for type Cn set partitions is the trapezoid polyomino of size n,
with columns labelled 1, 2, . . . , n and rows from top to bottom 2, 3, . . . , n,−n, . . . ,−2,−1,
as in Figure 6(a). Now, every box of the polyomino corresponds to an arc that may be
present in a nesting diagram: an arc (i, j) corresponds to the cell in column i, row j.

We encode a type Cn set partition by placing ones into those boxes that correspond
to arcs, and zeroes into the other boxes, as in Figure 6(a). For convenience, zeros are
not shown and ones are indicated by crosses. (We ignore the integer partitions labelling
the top-right corners for the moment.) A partial 0-1-filling of the nesting polyomino
corresponds to a type Cn set-partition if and only if

1. the restriction of the filling to the rows −1,−2, . . . ,−n is symmetric with respect
to the north-east diagonal as indicated in Figure 6(a), and

2. there is at most one non-zero entry on this diagonal.

The crossing polyomino for type Cn set partitions is a polyomino of the same shape as
the nesting polyomino. We label the columns 1, 2, . . . n as before. However, we now label
the rows from top to bottom 2, 3, . . . , n,−1,−2, . . . ,−n, as in Figure 6(b). We find that a
partial 0-1-filling of the crossing polyomino corresponds to a type Cn set-partition under
the same conditions as before, with the difference that the symmetry axis (indicated in
the figure by a dotted line) now runs south-east instead of north-east.
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(a) {(1,−5,−4,−2), (3,−3)}(b) {(1, 4,−1,−4), (2,−5)}

Figure 6: The nesting polyomino (a) of a type C5 set partition and the crossing polyomino
(b) of its image, see proof of Theorem 3.3.

Lemma 6.1. A longest north-east chain in a partial 0-1-filling of the nesting polyomino
corresponds to a maximal nesting in the associated type Cn set partition. Similarly, a
longest south-east chain in a partial 0-1-filling of the crossing polyomino corresponds to a
maximal crossing in the associated type Cn set-partition.

Proof. The statement for the nesting polyomino is trivial: two arcs nest precisely when
one of the corresponding crosses in the nesting polyomino is north-east of the other.
For the crossing polyomino we have to show that for any maximal crossing involving arcs
connecting two negative elements, there is another maximal crossing that does not involve
such arcs.

We first note that a maximal crossing cannot contain an arc connecting two positive
elements and an arc connecting two negative elements simultaneously, since these would
not cross.

Thus, if a maximal crossing (o1, c1), (o2, c2), . . . , (ok, ck) involves an arc connecting
two negative elements, all of c1, c2, . . . , ck must be negative. By symmetry, the set of
arcs (−c1,−o1), (−c2,−o2), . . . , (−ck,−ok) is also a maximal crossing containing no arc
connecting two negative elements.

In the following we want to associate certain sequences of integer partitions to fillings
of the nesting and the crossing polyomino that correspond to type Cn set-partitions.
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A growth diagram is a labelling of the corners of the cells of a partial 0-1 filling of a
polyomino with integer partitions according to the following rule: for any ℓ, the sum of
the first ℓ parts of each of these integer partitions is just the maximal cardinality of a
union of ℓ north-east chains in the rectangular region of the polyomino to the left and
below the corner. In particular, the first part of every partition gives the length of the
longest north-east chain in this region.

The following proposition is a summary of the properties of growth diagram we need:

Proposition 6.2. Partial 0-1 fillings of a trapezoid polyomino of size n are in bijection
with sequences of integer partitions (λ0 = ∅, λ1, . . . , λ3n−1 = ∅), such that for 1 6 k 6 n−1

• λ2k−1 = λ2k, or λ2k−1 is obtained from λ2k by adding one to some part, and

• λ2k+1 = λ2k, or λ2k+1 is obtained from λ2k by adding one to some part,

and, for 2n 6 k 6 3n − 1, λk−1 = λk or λk−1 is obtained from λk by adding one to some
part.

This sequence of partitions can be found by reading off the labels of the growth diagram
along the upper-right border from top to bottom.

The inverse map can be described by so-called ‘local rules’: the integer partitions la-
belling all but the bottom-left corner of a cell determine the remaining integer partition
and the content – 0 or 1 – of the cell.

Moreover, for every partition labelling a corner in the growth diagram, and for any ℓ,
the sum of the first ℓ parts of the conjugate (also referred to as: transposed) partition is
just the maximal cardinality of a union of ℓ south-east chains in the rectangular region
of the polyomino to the left and below the corner. In particular, the first part of every
conjugated partition gives the length of the longest south-east chain in this region.

Proof. A detailed exposition, although without proofs can be found in Section 2 of Chris-
tian Krattenthaler’s article [14]. Proofs can be found (apart from Sergey Fomin’s and
Curtis Greene’s original papers [11, 12] on the subject) in Section 7.13 and Section A1.1
of [20].

To be able to deal with the symmetries in the nesting and the crossing polyominoes,
we need another two well-known facts. One of them involves an involution on sequences
of integer partitions called evacuation, defined for example in A1.2.8 of [20]. It is not
necessary to define it here, for our purposes it is indeed enough to know that evacuation
is an involution.

Proposition 6.3. A partial 0-1 filling of a square polyomino is symmetric with respect to
its north-east diagonal if and only if the sequence of integer partitions labelling its right
border (read from bottom to top) is the same as the sequence of integer partitions labelling
its upper border (read from left to right).

Moreover, the number of entries on the diagonal equal to 1 is given by the number
of odd parts of the partition conjugate to the one labelling the top-right corner of the
polyomino.
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A partial 0-1 filling of a square polyomino is symmetric with respect to its south-east
diagonal if and only if the sequence of integer partitions labelling its right border (read
from bottom to top) is obtained by evacuating the sequence of integer partitions labelling
its upper border (read from left to right).

Moreover, the number of entries on the diagonal equal to 1 is given by the number of
odd parts of the partition labelling the top-right corner of the polyomino.

Proof. The first statement is Corollary 7.13.6 in [20]. The interpretation of the number
of 1’s on the diagonal is Exercise 7.28a in the same reference.

The effect on the partitions of reflecting the filling on a vertical axis is also described in
this reference, as Corollary A1.2.11. Clearly, a filling of a square polyomino is symmetric
with respect to its south-east diagonal, if and only if the reflected filling is symmetric with
respect to the north-east diagonal.

It is now easy to construct the desired bijection demonstrating Theorem 3.3:

Proof of Theorem 3.3. We first show that partial 0-1 fillings of nesting polyominoes cor-
responding to type Cn set partitions are in bijection with sequences of integer partitions
(λ0 = ∅, λ1, . . . , λ2n−1) such that for 1 6 k 6 n − 1

• λ2k−1 = λ2k, or λ2k−1 is obtained from λ2k by adding one to some part, and

• λ2k+1 = λ2k, or λ2k+1 is obtained from λ2k by adding one to some part,

and where the partition conjugate to λ2n−1 has at most one odd part. These sequences
are given by the labels of the growth diagram along the upper-right border, up to and
including the top-right corner of column n, row −n.

We now indicate how to recover the filling given only this sequence of partitions: using
the ‘local rules’ mentioned in Proposition 6.2, we can recover the entries in rows 2 to n
of the 0-1-filling, as well as a sequence of integer partitions labelling the top-right corners
of row −n. Since the filling of the square polyomino below row −n should be symmetric,
and there should be at most one entry 1 on the diagonal, Proposition 6.3 applies.

Very similarly, we can show that partial 0-1 fillings of crossing polyominoes corre-
sponding to type Cn set partitions are in bijection with sequences of integer partitions as
above, except that now the partition λ2n−1 itself has at most one odd part.

Thus, to map a type Cn set partition with a maximal nesting having cardinality k to
a set partition with maximal crossing having the same cardinality, we proceed as follows:
first we compute the sequence of integer partitions (λ0 = ∅, λ1, . . . , λ2n−1) as above, and
then the filling of the crossing polyomino corresponding to ((λ0)

t = ∅, (λ1)
t, . . . , (λ2n−1)

t),
where (λi)

t denotes the partition conjugate to λi.

We have to remark that the bijection presented above is not an involution. Further-
more, it does not exchange the crossing and the nesting numbers. As a small example,
consider the C4 partition {1, 4}, {2,−3}, which is non-nesting, has four crossings, and the
cardinality of a maximal crossing is two. Its crossing polyomino is mapped to the nesting
polyomino of the C4 partition {1,−3}, {2, 4}, which has two nestings, two crossings. Of
course, by construction of the bijection, the cardinality of a maximal nesting is two, also.
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