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Abstract

An r-identifying code on a graph G is a set C ⊂ V (G) such that for every vertex
in V (G), the intersection of the radius-r closed neighborhood with C is nonempty
and unique. On a finite graph, the density of a code is |C|/|V (G)|, which naturally
extends to a definition of density in certain infinite graphs which are locally finite.
We present new lower bounds for densities of codes for some small values of r in
both the square and hexagonal grids.

1 Introduction

Given a connected, undirected graph G = (V, E), we define Br(v)–called the ball of radius
r centered at v to be

Br(v) = {u ∈ V (G) : d(u, v) 6 r}.

We call any nonempty subset C of V (G) a code and its elements codewords. A code
C is called r-identifying if it has the properties:

1. Br(v) ∩ C 6= ∅

2. Br(u) ∩ C 6= Br(v) ∩ C, for all u 6= v

When C is understood, we define Ir(v) = Ir(v, C) = Br(v) ∩ C. We call Ir(v) the
identifying set of v.

Vertex identifying codes were introduced in [6] as a way to help with fault diagnosis
in multiprocessor computer systems. Codes have been studied in many graphs, but of
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particular interest are codes in the infinite triangular, square, and hexagonal lattices as
well as the square lattice with diagonals (king grid). For each of these graphs, there is
a characterization so that the vertex set is Z × Z. Let Qm denote the set of vertices
(x, y) ∈ Z×Z with |x| 6 m and |y| 6 m. We may then define the density of a code C by

D(C) = lim sup
m→∞

|C ∩ Qm|

|Qm|
.

Our first two theorems, Theorem 1 and Theorem 2, rely on a key lemma, Lemma 6,
which gives a lower bound for the density of an r-identifying code assuming that we are
able to show that no codeword appears in “too many” identifying sets of size 2. Theorem 1
follows immediately from Lemma 6 and Lemma 7 while Theorem 2 follows immediately
from Lemma 6 and Lemma 8.

Theorem 1 The minimum density of a 2-identifying code of the hex grid is at least 1/5.

Theorem 2 The minimum density of a 2-identifying code of the square grid is at least
3/19 ≈ 0.1579.

Theorem 2 can be improved via Lemma 9, which has a more detailed and technical
proof than the prior lemmas. The idea the lemma is that even though it is possible for
a codeword to be in 8 identifying sets of size 2, this forces other potentially undesirable
things to happen in the code. We use the discharging method to show that on average a
codeword can be involved in no more than 7 identifying sets of size 2. Lemma 9 leads to
the improvement given in Theorem 2.

Theorem 3 The minimum density of a 2-identifying code of the square grid is at least
6/37 ≈ 0.1622.

The paper is organized as follows: Section 2 focuses on some key definitions that we
use throughout the paper, provides the proof of Lemma 6 and provides some other basic
facts. Section 3 states and proves Lemma 7 from which Theorem 1 immediately follows.
It is possible to also use this technique to show that the density of a 3-identifying code is
at least 3/25, but the proof is long and the improvement is minor so we will exclude it
here. (The proof of this fact will appear in the second author’s dissertation [7]). Section 4
gives the proofs of Lemma 8 and 9. Finally, in Section 5, we give some concluding remarks
and a summary of known results.

2 Definitions and General Lemmas

Let GS denote the square grid. Then GS has vertex set V (GS) = Z × Z and

E(GS) = {{u, v} : u − v ∈ {(0,±1), (±1, 0)}},

where subtraction is performed coordinatewise.
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Let GH represent the hex grid. We will use the so-called “brick wall” representation,
whence V (GH) = Z × Z and

E(GH) = {{u = (i, j), v} : u − v ∈ {(0, (−1)i+j+1), (±1, 0)}}.

Consider an r-identifying code C for a graph G = (V, E). Let c, c′ ∈ C be distinct. If
Ir(v) = {c, c′} for some v ∈ V (G) we say that

1. c′ forms a pair (with c) and

2. v witnesses a pair (that contains c).

For c ∈ C, we define the set of witnesses of pairs that contain c. Namely,

P (c) = {v : Ir(v) = {c, c′}, for some c′( 6= c)}.

We also define p(c) = |P (c)|. In other words, P (c) is the set of all vertices that witness
a pair containing c and p(c) is the number of vertices that witness a pair containing c.
Furthermore, we call c a k-pair codeword if p(c) = k.

We start by noting two facts about pairs which are true for any code on any graph.

Fact 4 Let c be a codeword and S be a subset of P (c). If v 6∈ S and B2(v) ⊂
⋃

s∈S B2(s),
then v 6∈ P (c).

Proof. Suppose v witnesses a pair containing c. Hence, I2(v) = {c, c′} for some c′ 6= c.
Then c′ ∈ B2(v) and so c′ ∈ B2(s) for some s ∈ S. But then {c, c′} ⊂ I2(s). But since
I2(s) 6= I2(v), |I2(s)| > 2, contradicting the fact that s witnesses a pair. Hence v does not
witness such a pair. �

Fact 5 Let c be a codeword and S be any set with |S| = k. If v ∈ S and

B2(v) ⊂
⋃

s∈S

s6=v

B2(s)

then at most k − 1 vertices in S witness pairs containing c.

Proof. The result follows immediately from Fact 4. If each vertex in S−{v} witnesses a
pair, then v cannot witness a pair. Hence, either v does not witness a pair or some vertex
in S does not witness a pair. �

Lemma 6 is a general statement about vertex-identifying codes and has a similar
proof to Theorem 2 in [6]. In fact, Cohen, Honkala, Lobstein and Zémor [3] use a nearly
identical technique to prove lower bounds for 1-identifying codes in the king grid. Their
computations can be used to prove a slightly stronger statement that implies Lemma 6.
We will discuss the connection more in Section 5.
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Lemma 6 Let C be an r-identifying code for the square or hex grid. Let p(c) 6 k for
any codeword. Let D(C) represent the density of C, then if br = |Br(v)| is the size of a
ball of radius r centered at any vertex v,

D(C) >
6

2br + 4 + k
.

Proof. We first introduce an auxiliary graph Γ. The vertices of Γ are the vertices in
C and c is adjacent to c′ if and only if c forms a pair with c′. Then we clearly have
degΓ(c) = p(c). Let Γ[C ∩ Qm] denote the induced subgraph of Γ on C ∩ Qm. It is clear
that if degΓ(c) 6 k then degΓ[C∩Qm] 6 k.

The total number of edges in Γ[C ∩ Qm] by the handshaking lemma is

1

2

∑

c∈Γ[C∩Qm]

degΓ[C∩Qm] 6 (k/2)|C ∩ Qm|.

But by our observation above, we note that the total number of pairs in C ∩Qm is equal
to the number of edges in Γ[C ∩ Qm]. Denote this quantity by Pm. Then

Pm 6 (k/2)|C ∩ Qm|.

Next we turn our attention to the grid in question. The arguments work for either
the square or hex grid. Note that if C is an r-identifying code on the grid, C ∩ Qm may
not be a valid r-identifying code for Qm. Hence, it is important to proceed carefully. Fix
m > r. By definition, Qm−r is a subgraph of Qm. Further, for each vertex v ∈ V (Qm−r),
Br(v) ⊂ V (Qm). Hence C∩Qm must be able to distinguish between each vertex in Qm−r.

Let n = |Qm| and K = |C ∩ Qm|. Let v1, v2, v3, . . . , vn be the vertices of Qm and let
c1, c2, . . . , cK be our codewords. We consider the n×K binary matrix {aij} where aij = 1
if cj ∈ Ir(vi) and aij = 0 otherwise. We count the number of non-zero elements in two
ways.

On the one hand, each column can contain at most br ones since each codeword occurs
in Br(vi) for at most br vertices. Thus, the total number of ones is at most br · K.

Counting ones in the other direction, we will only count the number of ones in rows
corresponding to vertices in Qm−r. There can be at most K of these rows that contain a
single one and at most Pm of these rows which contain 2 ones. Then there are |Qm−k| −
K − Pm left corresponding to vertices in Qm−k and so there must be at least 3 ones in
each of these rows. Thus the total number of ones counted this way is at least K +2Pm +
3(|Qm−r| − K − Pm) = −2K + 3|Qm−r| − Pm. Thus

brK > −2K + 3|Qm−r| − Pm. (1)

But since Pm 6 (k/2)K, this gives

brK > −2K + 3|Qm−r| − (k/2)K.
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Rearranging the inequality and replacing K with |C ∩ Qm| gives

|C ∩ Qm|

|Qm−r|
>

6

2br + 4 + k
.

Then

D(C) = lim sup
m→∞

|C ∩ Qm|

|Qm|

= lim sup
m→∞

|C ∩ Qm|

|Qm−r|
· lim sup

m→∞

|Qm−r|

|Qm|

>
6

2br + 4 + k
· lim sup

m→∞

(2(m − r) + 1)2

(2m + 1)2

=
6

2br + 4 + k
.

�

3 Lower Bound for the Hexagonal Grid

Lemma 7 establishes an upper bound of 6 for the degree of the graph Γ formed by an
r-identifying code in the hex grid, which allows us to prove Theorem 1.

Lemma 7 Let C be a 2-identifying code for the hex grid. For each c ∈ C, p(c) 6 6.

Proof. Let C be an r-identifying code and c ∈ C be an arbitrary codeword. Let u1, u2,
and u3 be the neighbors of c and let {ui1, ui2} = B1(ui) − {ui, c}.
Case 1: |I2(c)| > 2

There exists some c′ ∈ C ∩ B2(c) with c′ 6= c. Without loss of generality, assume that
c′ ∈ {u1, u11, u12}. Since I2(c), I2(u1), I2(u11), I2(u12) ⊇ {c, c′} at most one of c, u1, u11, u12

witnesses a pair containing c.
Now, p(c) 6 6 unless each of u2, u3, u21, u22, u31, u32 witnesses a pair.
If u2 and u3 each witness a pair, then we have ui 6∈ C for i = 1, 2, 3; otherwise

I2(u2) = {c, ui} = I2(u3) and so u2 and u3 are not distinguishable by our code. Thus,
there must be some c′′ ∈ C ∩ (B2(u2)−{c, u1, u2, u3}). This forces c′′ ∈ B2(u21)∪B2(u22)
and so either {c, c′′} ⊆ I2(u21) or {c, c′′} ⊆ I2(u22). Hence, one of these cannot witness a
pair and still be distinguishable from u2. This ends case 1.
Case 2: I2(c) = {c}

First note that c itself does not witness a pair.
If u1 witnesses a pair, then there is some c′′ ∈ C ∩ (B2(u1) −B2(c)) ⊆ C ∩ (B2(u11) ∪

B2(u12)) and so either {c, c′′} ⊆ I2(u11) or {c, c′′} ⊆ I2(u12) and so one of these cannot
witness a pair and still be distinguishable from u1. Hence at most two of {u1, u11, u12}
can witness a pair.
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Likewise at most at most two of {u2, u21, u22} and {u3, u31, u32} can witness a pair.
Thus p(c) 6 6. This ends both case 2 and the proof of the lemma. �

Proof of Theorem 1. Using Lemmas 6 and 7, if C is a 2-identifying code in the
hexagonal grid, then

D(C) >
6

2b2 + 4 + 6
=

6

30
=

1

5
.

�

4 Lower Bounds for the Square Grid

Lemma 8 establishes an upper bound of 8 for the degree of the graph Γ formed by an
r-identifying code in the square grid, which allows us to prove Theorem 2. Then we prove
Lemma 9, which bounds the average degree of Γ by 7, allowing for the improvement in
Theorem 3.

It is worth noting that the proof of Lemma 8 could be shortened significantly, but the
proof is needed in order to prove Lemma 9, which gives the result in Theorem 3.

Lemma 8 Let C be a 2-identifying code for the square grid. For each c ∈ C, p(c) 6 8.

Proof. Let c ∈ C, a 2-identifying code in the square grid. Without loss of generality, we
will assume that c = (0, 0).

c
S1

S2

S3

S4

Figure 1: The sets S1, S2, S3 and S4.

Case 1: c witnesses a pair.
This case implies immediately that |I2(c)| = 2. The other codeword in I2(c), namely

c′, is in one of the following 4 sets, the union of which is B2(c) − {c}. See Figure 1.

S1 := { (1, 0), (1, 1), (1,−1), (2, 0)}
S2 := { (0, 1), (1, 1), (−1, 1), (0, 2)}
S3 := { (−1, 0), (−1, 1), (−1,−1), (−2, 0)}
S4 := { (0,−1), (1,−1), (−1,−1), (0,−2)}
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c

Figure 2: The ball of radius 2 around c. A configuration of 9 vertices witnessing pairs is
not possible if |I2(c)| = 2.
• At most 7 of the vertices in gray triangles may witness a pair.
• At most one of the vertices in white triangles may witness a pair.

If, however, c′ ∈ Si, then no s ∈ Si can witness a pair because {c, c′} ⊆ I2(s) and s
could not be distinguished from c. Without loss of generality, assume that c′ ∈ S3. Thus,
all vertices witnessing pairs in I2(c) are in the set

R := {(x, y) : (x, y) ∈ B2(c), x > 0} .

But because
B2 ((1, 0)) ⊆

⋃

s∈S1∪{c}

B2(s),

Fact 4 gives that not all members of S1 ∪ {c} can witness a pair. See Figure 2.
Therefore, p(c) 6 8 and, without loss of generality, c′ ∈ S3 and at least one element

of S1 does not witness a pair. This ends Case 1.
Case 2: c does not witness a pair.
This case implies immediately that either |I2(c)| > 3 or I2(c) = {c}.
First suppose |I2(c)| > 3. There must be two distinct codewords c′, c′′ ∈ S1∪S2∪S3∪S4.

If c′, c′′ are in the same set Si for some i, then {c, c′, c′′} ⊂ I2(s) for any s ∈ Si and so
no vertex in Si witnesses a pair. Thus, the only vertices which can witness a pair are
in B2(c) − (Si ∪ {c}). There are only 7 of these, so p(c) 6 7. (See the gray vertices in
Figure 2).

If c′ ∈ Si and c′′ ∈ Sj for some i 6= j, then only one vertex in each of Si and Sj can
witness a pair. There are at most 5 other vertices not in Si ∪ Sj − {c} and so p(c) 6 7.

Thus, if |I2(c)| > 3, then p(c) 6 7.
Second, suppose I2(c) = {c}. We will define a right angle of witnesses to be sub-

sets of 3 vertices of I2(c) that all witness pairs and are one of the following 8 sets:
{(1, 0), (2, 0), (1,±1)}, {(0, 1), (0, 2), (±1, 1)}, {(−1, 0), (−2, 0), (−1,±1)}, and
{(0,−1), (0,−2), (±1,−1)}. If a right angle is present then, without loss of generality,
let it be {(0, 1), (0, 2), (1, 1)}. See Figure 3. In order for these all to be witnesses, then
I2((0, 1)) must have one codeword not in B2((0, 2))∪B2((1, 1)), which can only be (−2, 1).
Since {(0, 0), (−2, 1)} ⊆ B2((−1, 1)), B2((−1, 0)), B2((−2, 0)), none of those three vertices
can witness a pair.

the electronic journal of combinatorics 17 (2010), #R122 7



c

Figure 3: A right angle of witnesses.
• Black circles indicate codewords.
• White circles indicate non-codewords.
• Gray triangles indicate vertices that witness a pair.
• White triangles indicate vertices that do not witness a pair.
No vertices in B2(c) − {c} can be codewords, neither can those which are distance no
more than 2 from two vertices in this right angle of witnesses.

In addition, I2((1, 1)) must contain a codeword not in B2((0, 1)) ∪ B2((0, 2)), which
can only be (3, 1). See Figure 4. Since {(0, 0), (3, 1)} ⊆ B2((2, 0)), the vertex (2, 0) cannot
witness a pair.

Finally, it is not possible for all of (−1,−1), (0,−1), (1,−1), (0,−2) to be witnesses
because the only member of B2((0,−1)) that is not in the union of the second neighbor-
hoods of the others is the vertex (0, 1), which cannot be a codeword in this case. Hence,
at most 7 members of B2(c) can witness a pair if B2(c) has a right angle of witnesses.

Consequently, if c does not witness a pair and p(c) > 8, then I2(c) = {c} and B2(c)
fails to have a right angle of witnesses. We can enumerate the remaining possibilities
according to how many of the vertices {(1, 1), (−1, 1), (−1,−1), (1,−1)} are witnesses. If
1, 2 or 3 of them are witnesses and there is no right angle of witnesses, it is easy to see
that there are at most 7 witnesses in B2(c) and so p(c) 6 7.

The first remaining case is if 0 of them are witnesses, implying each of the eight vertices
(±1, 0), (±2, 0), (0,±1) and (0,±2) are witnesses. The second remaining case is if 4 of
them are witnesses. This implies that at most one of {(1, 0), (2, 0)} are witnesses and
similarly for {(0, 1), (0, 2)}, {(−1, 0), (−2, 0)} and {(0,−1), (0,−2)}.

This ends both Case 2 and the proof of the lemma. So, p(c) 6 8 with equality only if
one of two cases in the previous paragraph holds. �

Proof of Theorem 2. Using Lemmas 6 and 8, if C is a 2-identifying code in the square
grid, then

D(C) >
6

2b2 + 4 + 8
=

6

38
=

3

19
.

�
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c

Figure 4: A right angle of witnesses, continuing from Figure 3. Let c = (0, 0). Vertices
(−2, 1) and (3, 1) must be codewords and so none of {(−1, 1), (−1, 0), (−2, 0), (2, 0)} can
witness pairs.

Lemma 9 Let C be an r-identifying code for the square grid. Then
∑

c∈C∩Qm
p(c) 6

7|C ∩ Qm|.

Proof. Define
R(c) = {c′ : I2(v) = {c, c′} for some v ∈ V (GS)}.

Suppose that p(c) = 8 for some c ∈ C. We claim that one of the two following properties
holds.

(P1) There exist distinct c1, c2, c3 ∈ R(c) such that p(c1) 6 4 and p(ci) 6 6 for i = 2, 3.

(P2) There exist distinct c1, c2, c3, c4, c5, c6 ∈ R(c) such that p(ci) 6 6 for all i.

We will prove this by characterizing all possible 8-pair vertices, but first we wish to
define 3 different types of codewords. The definition of each type extends by taking
translations and rotations. So, we may assume in defining the types that c = (0, 0).

We say that c is a type 1 codeword if (0, 1), (0,−1) ∈ C. See Figure 5.
We say that c is a type 2 codeword if (−1, 2), (2,−1) ∈ C. See Figure 6.
We say that c is a type 3 codeword if (−2, 1), (2, 1) ∈ C. See Figure 7.
Claim 10 shows that adjacent codewords do not need to be considered because they

are in few pairs.

Claim 10 If c is adjacent to another codeword, then p(c) 6 6.

Proof. Without loss of generality, assume that c = (0, 0) and that (0, 1) is a codeword.
Then

(−1, 0), (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (−1, 0), (−1, 1)

are all at most distance 2 from both codewords and so at most 1 of them can witness a pair.
Thus, the other 7 do not witness pairs containing c. Since |B2(c)| = 13, p(c) 6 13−7 = 6.
This proves Claim 10. �

Claims 11, 12 and 13 show that types 1, 2 and 3 codewords, respectively, are not in
many pairs.
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Claim 11 If c is a type 1 codeword, then p(c) 6 4.

c

Figure 5: Vertex c is a type 1 codeword. At most 2 of the 11 vertices marked by triangles
can witness a pair.

Proof. Without loss of generality, let c = (0, 0). We consider all vertices which are
distance 2 from c and either (0, 1) or (0,−1). There are 11 such vertices and at most 2 of
them can witness pairs, so p(c) 6 4. See Figure 5. This proves Claim 11. �

Claim 12 If c is a type 2 codeword, then p(c) 6 6.

c

(-1,2)

(2,-1)

Figure 6: Vertex c = (0, 0) is a type 2 codeword. At most 2 of the 8 vertices marked by
white triangles can witness pairs. At most 4 of the 5 vertices marked by gray triangles
can witness pairs.

Proof. Without loss of generality, let c = (0, 0). We consider all vertices which are
distance at most 2 from c and distance at most 2 from either (−1, 2) or (2,−1). There
are 8 such vertices and at most 2 of them can witness pairs. The remaining 5 vertices
are c and the vertices in the set S = {(−2, 0), (−1,−1), (0,−2), (1, 1)}. But then B2(c) ⊂⋃

s∈S B2(s) and, by Fact 4 at most 4 of those remaining 5 vertices can witness pairs. Thus,
p(c) 6 6. See Figure 6. This proves Claim 12. �

Claim 13 If c is a type 3 codeword, then p(c) 6 6.
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c

(-2,1) (2,1)

Figure 7: Vertex c = (0, 0) is a type 3 codeword.
• T0 vertices are black.
• T1 vertices are white.
• T2 vertices are marked by diagonal lines.
• T3 vertices are gray.

Proof. Without loss of generality, let c = (0, 0). We partition B2(c) − {c} into 4 sets:

T0 := { (0, 1), (0, 2)}
T1 := { (−2, 0), (−1, 0), (−1, 1)}
T2 := { (2, 0), (1, 0), (1, 1)}
T3 := { (−1,−1), (0,−1), (1,−1), (0,−2)}

At most 1 vertex in T0 witnesses a pair since |I2(0, 1)| > 3.
At most 1 vertex in T1 can witness a pair since every vertex in T1 is at most distance

2 from (−2, 1). Likewise, at most 1 vertex in T2 can witness a pair.
If all vertices in T3 witness pairs, then I2((0,−1)) = {(0, 0), (0, 1)} since (0, 1) is the

only vertex in B2((0,−1)) which is not in B2(s) for any other s ∈ T3. But then c is
adjacent to another codeword, and by Claim 10, p(c) 6 6. So we may assume that at
most 3 vertices in T3 form pairs with c.

Now, if c does not itself witness a pair, these partitions give p(c) 6 6. If c does witness
a pair, then there must be another codeword c′ ∈ Si for some i. But then we see that
no other vertex in Si can witness a pair, since every vertex in Si is at most distance two
from c′. Thus, p(c) 6 6. See Figure 7. This proves Claim 13. �

We are now ready to characterize the 8-pair codewords.

Claim 14 If c ∈ C witnesses a pair and p(c) = 8, then c satisfies property (P1).

Proof. Without loss of generality, let c = (0, 0). Recall Case 1 of the proof of Lemma 8.
That is, p(c) 6 8 and, without loss of generality, equality implies that there is a c′ ∈ C∩S3

and at least one of S1 = {(1,−1), (1, 0), (1, 1), (2, 0)} does not witness a pair.
If p(c) 6 7, the proof is finished, so let us assume that p(c) = 8 and hence exactly one

of the vertices in S1 does not witness a pair. We will show that it is (2, 0). So, suppose
that (1, y) does not witness a pair. Recall that R = {(x, y) : (x, y) ∈ B2(c), x > 0}.
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c

Figure 8: Codeword c = (0, 0) witnesses a pair and is an 8-pair codeword. The gray
triangles are vertices that form pairs with c. Vertex (−2, 0) is a type 1 codeword.

If y ∈ {−1, 1}, then

B2 ((1, 0)) ⊆
⋃

s∈R−{(1,y),(1,0)}

B2(s)

and, by Fact 4, neither (1, y) nor (1, 0) witnesses a pair and p(c) 6 7.
If y = 0, then

B2 ((1, 1)) ⊆
⋃

s∈R−{(1,0),(1,1)}

B2(s)

and, by Fact 4, neither (1, 0) nor (1, 1) witnesses a pair and p(c) 6 7. It follows that each
vertex in R′ = R − {(2, 0)} must witness a pair containing c.

Each vertex which is distance 2 or less from 2 vertices in R′ cannot be a codeword.
Thus, (−2, 0) is the only vertex in B2(c) other than c which has not been marked as a non-
codeword and so (−2, 0) ∈ C. Since (0, 0) ∈ C, the vertex (−2, 1) is the only possibility
for a second codeword for (0, 1) and (−2,−1) is the only possibility for a second codeword
for (0,−1). See Figure 8.

Then (−2, 0) is a type 1 codeword and so it is in at most 4 pairs. Codewords (−2, 1)
and (−2,−1) are both adjacent to another codeword, so they are in at most 6 pairs.
Hence, c satisfies Property (P1). This proves Claim 14. �

Claim 15 If c ∈ C does not witness a pair and p(c) = 8, then c satisfies either property
(P1) or property (P2).

Proof. Without loss of generality, let c = (0, 0). Recall Case 2 of the proof of Lemma 8.
That is, p(c) 6 8 and, without loss of generality, equality implies I2(c) = {c}. Further-
more, one of the following two cases occurs:
(1) The eight witnesses are the vertices (±1, 0), (±2, 0), (0,±1) and (0,±2).
(2) The witnesses include {(1, 1), (−1, 1), (−1,−1), (1,−1)} as well as exactly one of each
of the following pairs: {(1, 0), (2, 0)}, {(0, 1), (0, 2)}, {(−1, 0), (−2, 0)} and
{(0,−1), (0,−2)}.
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If case (1) occurs, then the eight witnesses are the vertices (±1, 0), (±2, 0), (0,±1)
and (0,±2). In this case, simply observe that B2((1, 0)) is a subset of the other seven
witnesses. This contradicts Fact 5 and so this case cannot occur.

c1c2

c3 c4

c s1

s2

s3

s4

Figure 9: Codeword c = (0, 0) fails to witness a pair and is an 8-pair codeword. Exactly
one of the gray vertices in each oval is a codeword.

So, we may assume that case (2) occurs. The vertex (2, 1) cannot be a codeword
because {(0, 0), (2, 1)} ⊆ B2((1, 1)), B2((1, 0)), B2((2, 0)) and so at most one of these three
vertices witness pairs, a contradiction to case (2). By symmetry, none of the following
vertices are codewords:

(2, 1), (1, 2), (−1, 2), (−2, 1), (−2,−1), (−1,−2), (1,−2), (2,−1).

In order to distinguish (1, 0) from (0, 0), the only vertex available to be a codeword is
s1 := (3, 0) and symmetrically, s2 := (0, 3), s3 := (−3, 0) and s4 := (0,−3) are codewords.
This implies that each of (1, 0), (0, 1), (−1, 0) and (0,−1) witness pairs.

Then, for the other 4 pairs, there are exactly 3 choices for codewords which are not in
the ball of radius 2 for any of our other pairs. See Figure 9.

Vertex Other Codeword
(1, 1) c1 ∈ {(3, 1), (2, 2), (1, 3)}

(−1, 1) c2 ∈ {(−1, 3), (−2, 2), (−3, 1)}
(−1,−1) c3 ∈ {(−3,−1), (−2,−2), (−1,−3)}
(1,−1) c4 ∈ {(1,−3), (2,−2), (3,−1)}

For each ci, either ci is adjacent to another codeword or ci is a type 2 codeword.
Claims 10 and 12 imply that, in either case, p(ci) 6 6. It remains to show that one of the
following holds: (1) There exist i 6= j such that p(si) 6 6 and p(sj) 6 6, hence c satisfies
(P2). (2) There exists an i such that p(si) 6 4, hence c satisfies (P1).

First, suppose that there are ci, cj , i 6= j such that ci is adjacent to sk and cj is
adjacent to sℓ. If k = ℓ, then sk is a type 1 codeword and so p(sk) 6 4. If k 6= ℓ, then
both sk and sℓ are adjacent to another codeword and so p(sk) 6 6 and p(sℓ) 6 6. Either
(P1) or (P2) is satisfied, respectively.
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If there is at most one ci such that ci is adjacent to sk for some k, then we have three
codewords of the form (±2,±2). Without loss of generality, assume that (2, 2), (2,−2),
and (−2, 2) are codewords. In this case, (3, 0) and (0, 3) are type 3 codewords and hence
p((3, 0)) 6 6 and p((0, 3)) 6 6. So again, (P2) is satisfied.

This proves Claim 15. �

Finally, we can finish the proof of Lemma 9 by way of the discharging method. (For
a more extensive application of the discharging method on vertex identifying codes, see
Cranston and Yu [4].) Let Γ denote an auxiliary graph with vertex set C ∩ Qm for some
m. There is an edge between two vertices c and c′ if and only if I2(v) = {c, c′} for some
v ∈ V (GS). For each vertex v in our auxiliary graph Γ, we assign it an initial charge
of d(v) − 7. Note that

∑
c∈C∩Qm

p(c) − 7 =
∑

v∈Γ degΓ(v) − 7. We apply the following
discharging rules if degΓ(v) = 8.

1. If v is adjacent to one vertex of degree at most 4 and two of degree at most 6
(condition (P1)), then discharge 2/3 to a vertex of degree at most 4 and 1/6 to two
vertices of degree at most 6.

2. If v is adjacent to 6 vertices of degree at most 6 (condition (P2)), then discharge
1/6 to 6 neighbors of degree at most 6.

We have proven that one of the above cases is possible. Let e(v) be the charge of each
vertex after discharging takes place. We show that e(v) 6 0 for each vertex in Γ.

If degΓ(v) = 8, then our initial charge was 1. In either of the two cases, we are
discharging a total of 1 unit to its neighbors. Since no degree 8 vertex receives a charge
from any other vertex, we have e(v) = 0.

If d(v) = 7 then its initial charge is 0 and it neither gives nor receives a charge and so
e(v) = 0.

If 5 6 degΓ(v) 6 6, then its initial charge was at most −1. Since this vertex has at
most 6 neighbors and can receive a charge of at most 1/6 from each of them, this gives
e(v) 6 0.

If degΓ(v) 6 4, then its initial charge was at most −3. Since this vertex has at
most 3 neighbors and can receive a charge of at most 2/3 from each of them, this gives
e(v) 6 −1/3 < 0.

Since no vertex can have degree more than 8, this covers all of the cases. Then we
have ∑

c∈C∩Qm

(p(c) − 7) =
∑

v∈Γ

(degΓ(v) − 7) =
∑

v∈Γ

e(v) 6 0.

Therefore, it follows that
∑

c∈C∩Qm
p(c) 6

∑
c∈C∩Qm

7 = 7|C ∩ Qm|. �

Proof of Theorem 3. Consider Qm and let C be an r-identifying code for GS and
C ∩ Qm = {c1, c2, . . . , cK}. Recall inequality (1) from Theorem 6. In this case, b2 = 13
and Lemma 9 shows that

Pm 6
1

2

∑

c∈C∩Qm

p(c) 6
7

2
|C ∩ Qm|.
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Substituting the above inequality into inequality (1) and rearranging gives

|C ∩ Qm|

|Qm−r|
>

6

37
.

Taking the limit as m → ∞ gives the desired D(C) > 6/37, completing the proof. �

5 Conclusions

The technique used for Lemma 6 is similar to the one in Cohen, Honkala, Lobstein and
Zémor [3]. Define

ℓ = min
c∈C

|{v ∈ Br(c) : |Ir(v)| > 3}|.

An anonymous referee points out that the computations in [3] can lead one to conclude
that

D(C) >
6

3br + 3 − ℓ
. (2)

From our definitions
k = max

c∈C
|{v ∈ Br(c) : |Ir(v)| = 2}|.

Since k + ℓ > br − 1, one can use (2) to derive the result in Lemma 6.
As the referee also points out, k + ℓ 6 br, so the denominator could potentially be

improved by an additive factor of 1 if it were possible to show that k + ℓ = br.
Below is a table noting our improvements.

Hex Grid
r previous lower bounds new lower bounds upper bounds

2 2/11 ≈ 0.1818 [6] 1/5 = 0.2 4/19 ≈ 0.2105 [2]

3 2/17 ≈ 0.1176 [1] 3/25 = 0.12 [7] 1/6 ≈ 0.1667 [2]

Square Grid

2 3/20 = 0.15 [1] 6/37 ≈ 0.1622 5/29 ≈ 0.1724 [5]

This technique works quite well for small values of r, but we note that br = |Br(v)|
grows quadratically in r, so the denominator in Lemma 6 would grow quadratically. But
the known the lower bounds for r-identifying codes is proportional to 1/r in all of the
well-studied grids (square, hexagonal, triangular and king). Therefore, the technique is
less effective as r grows.
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