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Abstract

In PG(2, q2) with q > 2, we determine the possible intersections of a nonclassical
Buekenhout–Metz unital U and a conic passing through the point at infinity of U .

1 Introduction

The study of the intersection patterns of two relevant geometric objects provides in some
cases interesting combinatorial characterizations. An open and rather difficult problem is
the classification of all possible intersections between an oval Ω and a unital U in a finite
projective plane. When Ω is a conic and U is a Hermitian or classical unital of PG(2, q2),
a complete classification of their intersections is given in [1].

In the present paper we make some advances in this direction by considering a suitable
family of nonclassical Buekenhout–Metz unitals in PG(2, q2), with q any prime power.
We will use the following representation of a Buekenhout–Metz unital in PG(2, q2) due
to Baker and Ebert for q odd and to Ebert for q even. Let (z, x, y) denote homogeneous
coordinates for points of PG(2, q2). The line ℓ∞ : z = 0 will be taken as the line at infinity,
whereas P∞ will denote the point (0, 0, 1). For q = 2h, let C0 be the additive subgroup of
GF(q) defined by C0 = {x ∈ GF(q) : tr (x) = 0}, where

tr :

{

GF(q) → GF(2)

x 7→ x + x2 + . . . + x2h−1

∗Research supported by the Italian Ministry MIUR, Strutture geometriche, combinatoria e loro ap-
plicazioni.
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is the trace map from GF(q) onto GF(2).

Proposition 1.1. (Baker and Ebert[3], Ebert [4, 5]). Let a, b ∈ GF(q2). The point set

Ua,b = {(1, t, at2 + btq+1 + r)|t ∈ GF(q2), r ∈ GF(q)} ∪ {P∞}

is a Buekenhout–Metz unital in PG(2, q2) if and only if either q is odd and 4aq+1+(bq−b)2

is a nonsquare in GF(q), or q is even, b /∈ GF(q) and aq+1/(bq + b)2 ∈ C0.

The expression 4aq+1 + (bq − b)2, for q odd, or aq+1/(bq + b)2 with b /∈ GF(q), for q
even, is the discriminant of the unital Ua,b.

Proposition 1.2. (Baker and Ebert[3], Ebert [4, 5]). Every Buekenhout–Metz unital can

be expressed as Ua,b, for some a, b ∈ GF(q2) which satisfy the discriminant condition of

Proposition 1.1. Furthermore, a Buekenhout–Metz unital Ua,b is classical if and only if

a = 0.

Here, using as in [1] the theory of algebraic plane curves, we investigate the intersection
patterns of a conic Ω and a nonclassical Buekenhout–Metz unital Ua,b in PG(2, q2) sharing
the point at infinity P∞. Our main result is the following theorem.

Theorem 1. In PG(2, q2), q > 2, let Ua,b be a nonclassical Buekenhout–Metz unital and

Ω a conic through the point at infinity P∞ of Ua,b. Then the possible intersections between

Ua,b and Ω are the following:

(1) Ua,b and Ω have only P∞ in common;

(2) Ω ∩ Ua,b = Ω, q odd;

(3) Ua,b and Ω have two points in common;

(4) Ua,b ∩ Ω is a Baer subconic of Ω;

(5) Ua,b ∩Ω is a k-arc with k ∈ {q, q + 1, q + 2} and meets every Baer subconic of Ω in at

most four points;

(6) Ua,b ∩Ω is the union of two Baer subconics sharing two points or, for q odd, also one

point;

(7) Ua,b ∩Ω is a k-arc with q−6
√

q +2 6 k 6 q +6
√

q +2 and meets every Baer subconic

of Ω in at most eight points.

Our notation and terminology are standard. For generalities on unitals in projective
planes the reader is referred to [2, 6]; see [7] where background on conics is also found. A
recent treatment on algebraic plane curves is [8].
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2 Proof of Theorem 1

We begin by investigating the case in which Ω is a parabola whose equation is

y = mx2 + nx + ℓ,

where m ∈ GF(q2)∗, n, ℓ ∈ GF(q2). By Proposition 1.1, a point P (x, y) ∈ Ω lies on Ua,b

if and only if
(m − a)x2 − bxq+1 + nx + ℓ ∈ GF(q). (1)

Fix a basis {1, ǫ} of GF(q2) viewed as a vector space over GF(q), and write the elements
in GF(q2) as linear combinations with respect to this basis; that is z = z0 + ǫz1, where
z ∈ GF(q2) and z0, z1 ∈ GF(q). In particular a = a0 + ǫa1 and since Ua,b is a nonclassical
Buekenhout–Metz unital, from Proposition 1.2 it follows that (a0, a1) 6= (0, 0).

For q odd, as in [2], choose a primitive element β of GF(q2) and let ǫ = β(q+1)/2. Then
ǫq = −ǫ, and ǫ2 = ω is a primitive element of GF(q). With this choice of ǫ, condition (1)
is equivalent to

g(x0, x1) = (m1 − a1 − b1)x
2
0 + 2(m0 − a0)x0x1+

+ω(m1 − a1 + b1)x
2
1 + n1x0 + n0x1 + ℓ1 = 0.

(2)

For q even, take an element ν of GF(q) such that the polynomial f(x) = x2 + x + ν is
irreducible over GF(q). If ǫ ∈ GF(q2) is a root of f(x), then ǫ2 = ǫ + ν and ǫq = ǫ + 1.
With this choice of ǫ, condition (1) is equivalent to

g(x0, x1) = (m1 + a1 + b1)x
2
0 + b1x0x1+

+[m0 + (ν + 1)m1 + a0 + (ν + 1)a1 + νb1]x
2
1+

+n1x0 + (n0 + n1)x1 + ℓ1 = 0.
(3)

Let Γ be the plane algebraic curve with equation g(x0, x1) = 0. Γ is defined over GF(q)
but it is regarded as a curve over the algebraic closure of GF(q). The number N of points
in AG(2, q) which lie on Γ is the number of points in AG(2, q2) on Ua,b ∩ Ω.

If m0 = a0, m1 = a1, b1 = n0 = n1 = 0 and ℓ1 6= 0, then Ω and Ua,b have just P∞ in
common.

If m0 = a0, m1 = a1 and b1 = n0 = n1 = ℓ1 = 0, then Ω is entirely contained in Ua,b

and q is necessarily odd.
If m0 = a0, m1 = a1, b1 = 0 and (n0, n1) 6= (0, 0), then Γ is a line. In this case Γ

gives rise to a Baer subconic of Ω which contains P∞, that is a set of q + 1 points of Ω
which lie in a Baer subplane of PG(2, q2). Actually, with the above setup, lines as well as
particular ellipses of AG(2, q) give rise to a Baer subconic of Ω; see [1][p. 3]. It follows
that Ua,b and Ω share a Baer subconic of Ω.

In the case in which Γ is an absolutely irreducible conic, then Γ can be either an ellipse,
or a parabola, or a hyperbola in AG(2, q). If Γ is an ellipse, Ua,b ∩ Ω is a (q + 2)-arc; if Γ
is a parabola, Ua,b ∩ Ω is a (q + 1)-arc and if Γ is a hyperbola, Ua,b ∩ Ω is a q-arc. Since
two irreducible conics share at most four points, Ua,b ∩Ω meets every subconic of Ω in at
most four points.

Now, we consider the cases where Γ is an absolutely reducible conic, that is:
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(i) Γ splits into two distinct nonparallel affine lines each defined over GF(q), and Ua,b∩Ω
is the union of two Baer subconics of Ω sharing two points;

(ii) Γ splits into two distinct parallel affine lines defined over GF(q), and Ua,b ∩Ω is the
union of two Baer subconics of Ω sharing one point;

(iii) Γ is an affine line, counted twice, defined over GF(q), and Ua,b∩Ω is a Baer subconic
of Ω;

(iv) Γ splits into two distinct nonparallel affine lines defined over GF(q2), conjugate to
each other, and Ua,b ∩ Ω consists of two points;

(v) Γ splits into two distinct parallel affine lines defined over GF(q2), conjugate to each
other, and Ua,b ∩ Ω consists of one point.

For q odd each of the previous five configurations (i)–(v) occurs and we provide examples
for each of these cases:

(i) : n0 = n1 = ℓ1 = 0, m1 = a1 + b1 and m0 6= a0;

(ii) : m1 = a1 + b1, b1 6= 0, m0 = a0, n0 = n1 = 0, ℓ1 = −2ωb1;

(iii) n0 = n1 = ℓ1 = 0, m1 = a1 + b1, b1 6= 0, m0 = a0;

(iv) : b1 = 0, (a0, a1) 6= (−1,−1), m1 = 1 + a1, m0 = 1 + a0, n0 = n1 = ℓ1 = 0;

(v) : m1 = a1 + b1, b1 6= 0, m0 = a0, n0 = n1 = 0, ℓ1 = −2ω2b1.

Let q be even. If two linear components of Γ were parallel then b1 should be zero, a
contradiction. Therefore just the cases (i) and (iv) can occur and we provide examples
for these two cases:

(i) n0 = n1 = ℓ1 = 0, m1 = a1 + b1;

(iv) n0 = n1 = ℓ1 = 0, m1 = 1 + a1 + b1, m0 = ν, a0 = νb2
1.

Now, suppose that Ω is a hyperbola. Since the stabilizer of Ua,b in PGL(3, q2) acts on the
points of ℓ∞ \P∞ as a transitive permutation group, we may assume that Ω has equation

y =
mx + n

x + ℓ
,

with ℓ, m, n ∈ GF(q2) and ℓm − n 6= 0. A point P (x, y) ∈ Ω lies on Ua,b if and only if

mx + n

x + ℓ
− ax2 − bxq+1 ∈ GF(q). (4)
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Condition (4) can be written as

f(x0, x1) = [(a1 + b1)x
2
0 + 2a0x0x1 + ω(a1 − b1)x

2
1](x

2
0 − ωx2

1+
+2ℓ0x0 − 2ωℓ1x1 + ℓ2

0 − ωℓ2
1) − m1x

2
0 + m1ωx2

1+
+(ℓ1m0 − n1 − ℓ0m1)x0 + (n0 + ωℓ1m1 − ℓ0m0)x1

+ℓ1n0 − ℓ0n1 = 0,

(5)

for q odd and

f(x0, x1) = [(a1 + b1)x
2
0 + b1x0x1 + ((a0 + a1) + ν(a1 + b1))x

2
1](x

2
0 + x0x1+

+νx2
1 + ℓ1x0 + ℓ0x1 + ℓ2

0 + ℓ0ℓ1 + νℓ2
1) + m1x

2
0 + m1x0x1 + νm1x

2
1+

+(ℓ0m1 + ℓ1m0 + n1)x0 + (ℓ0m0 + ℓ0m1 + νℓ1m1 + n0)x1+
+ℓ1n0 + ℓ0n1 = 0,

(6)

for q even.
Let Φ denote the plane algebraic curve with equation f(x0, x1) = 0. Φ is defined over

GF(q) but it is regarded as a curve over the algebraic closure of GF(q). Since Ua,b is a
Buekenhout–Metz unital the coefficients of the degree-four terms in (5), as well as in (6),
do not vanish identically and so Φ is a plane quartic curve.

Lemma 2. Φ is an absolutely irreducible curve of PG(2, q).

Proof. By way of contradiction, we suppose that Φ is a reducible curve. We are going to
determine the points of Φ at infinity. Let

φ(x) = (a1 + b1)x
2 + 2a0x + ω(a1 − b1)

for q odd, and
φ(x) = (a1 + b1)x

2 + b1x + (a0 + a1) + ν(a1 + b1)

for q even. The polynomial φ(x) is irreducible over GF(q). In fact, when q is odd, we
have that

4a2
0 − 4ω(a2

1 − b2
1) = 4aq+1 + (bq − b)2

that is, the discriminant of φ(x) = 0 is a nonsquare in GF(q). For q even, using the
additive property of the trace function we get

tr
(

νa2

1
+a2

1
+a0a1+a0b1+b1a1+νb2

1

b2
1

)

= tr
(

a2

0
+a0a1+νa2

1

b2
1

)

+

+tr
(

a2

0
+a2

1
+a0b1+b1a1

b2
1

)

+ tr (ν).

Since

tr

(

a2
0 + a0a1 + νa2

1

b2
1

)

= tr

(

aq+1

(bq + b)2

)

= 0,

and

tr

(

a2
0 + a2

1 + a0b1 + b1a1

b2
1

)

= tr

(

a0 + a1

b1

+

(

a0 + a1

b1

)2
)

= 0,
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it follows that

tr

(

νa2
1 + a2

1 + a0a1 + a0b1 + b1a1 + νb2
1

b2
1

)

= 1,

and φ(x) = 0 has no solutions in GF(q).
Now, let i ∈ GF(q2) denote a root of φ(x); then i and iq are both roots of φ(x) and

thus the points of Φ at infinity are

Q+(0, ǫ, 1), Q−(0,−ǫ, 1), P+(0, i, 1), P−(0, iq, 1),

for q odd and
Q+(0, ǫ, 1), Q−(0, 1 + ǫ, 1), P+(0, i, 1), P−(0, iq, 1).

for q even.
In both cases, since a 6= 0, the points at infinity of Φ are all distinct; therefore each of

these points is simple, and hence they must lie just on one component of Φ.
Let C be a component of Φ through Q+. Since Φ is defined over GF(q) also the image

Cq of C under the Frobenius collineation (x, y) → (xq, yq) is a component of the same
degree of Φ through Q−. If C were an irreducible cubic then Cq = C, that is, C would be
defined over GF(q). In this case Φ would split into the cubic C and a line ℓ which is also
defined over GF(q). Both points Q+ and Q− lie on C, but neither P+ nor P− belongs to
C; otherwise the cubic C would contain four points at infinity, which is impossible. Then
ℓ turns out to be an affine line through P+ and P−, a contradiction. Now we investigate
the following cases:

(a) Φ splits into two distinct irreducible conics defined over GF(q);

(b) Φ splits into an irreducible conic defined over GF(q) and two lines defined over GF(q2)
and conjugate over GF(q);

(c) Φ splits into four distinct lines defined over GF(q2) two by two conjugate over GF(q);

(d) Φ splits into two distinct absolutely irreducible conics defined over GF(q2) and con-
jugate over GF(q).

In the first three cases we may assume that Φ splits into two conics C1 and C2 defined
over GF(q), with P+ and P− on C1 and Q+ and Q− on C2. In case (a), both C1 and C2

are absolutely irreducible; in case (b) one of them is absolutely irreducible whereas the
other one is irreducible over GF(q) but reducible over GF(q2); finally, in case (c) both the
components C1 and C2 are absolutely reducible over GF(q2). We first investigate the case
q odd. We may assume that C1 and C2 have equations

C1 : f1(x0, x1) = (x0 − ix1)(x0 − iqx1) + αx0 + βx1 + γ = 0,
C2 : f2(x0, x1) = (x0 − ǫx1)(x0 + ǫx1) + α′x0 + β ′x1 + γ′ = 0,

where α, α′, β, β ′, γ, γ′ ∈ GF(q) and

ρf(x0, x1) = f1(x0, x1)f2(x0, x1). (7)
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Comparing in (7) the terms of degree four, three and two respectively gives the following
equalities:

ρ = 1/(a1 + b1), α = β = 0, γ = −m1, (8)

α′ = 2ℓ0, β ′ = −2ωℓ1, γ
′ = ℓ2

0 − ωℓ2
1. (9)

Conditions (9) imply that C2 is absolutely reducible as

f2(x0, x1) = (x0 − ǫx1 + ℓ0 − ǫℓ1)(x0 + ǫx1 + ℓ0 + ǫℓ1).

Therefore case (a) cannot occur. Furthermore we get

C1 : f1(x0, x1) = (x0 − ix1)(x0 − iqx1) − m1 = 0,
C2 : f2(x0, x1) = (x0 − ǫx1)(x0 + ǫx1) + 2ℓ0x0 − 2ωℓ1x1 + ℓ2

0 − ωℓ2
1 = 0.

Now, comparing the terms of degree one in (7) we get

2ℓ0(−m1) = ℓ1m0 − m1ℓ0 − n1

and
−2ωℓ1(−m1) = ωℓ1m1 − ℓ0m0 + n0,

that is,
{

m1ℓ0 + m0ℓ1 − n1 = 0
ωm1ℓ1 + ℓ0m0 − n0 = 0

. (10)

Conditions (10) give ℓm−n = 0, which is impossible. Hence neither case (b) nor case (c)
can occur.

Next suppose that Φ splits into two conjugate conics C1 and C2 over GF(q) with

C1 : c1(x0, x1) = (x0 − ǫx1)(x0 − iqx1) + αx0 + βx1 + γ = 0

and
C2 : c2(x0, x1) = (x0 + ǫx1)(x0 − ix1) + αqx0 + βqx1 + γq = 0,

where α, β, γ ∈ GF(q2). If condition

ρf(x0, x1) = c1(x0, x1)c2(x0, x1) (11)

occurs, then comparing the terms of degree four we have ρ = 1/(a1 + b1), whereas com-
paring the terms of degree three we get

(x0 − iqx1)(x0 − ix1)(2ℓ0x0 − 2ωℓ1x1) = (x0 − ǫx1)(x0 − iqx1)(α
qx0 + βqx1)

+(x0 + ǫx1)(x0 − ix1)(αx0 + βx1)
. (12)

Therefore (x0 − ix1) divides (x0 − ǫx1)(x0 − iqx1)(α
qx0 + βqx1) and (x0 − iqx1) divides

(x0 + ǫx1)(x0 − ix1)(αx0 + βx1).
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Since i 6= iq, this leaves only few possibilities: either i = ǫ and hence a0 = a1 = 0, or
αx0 + βx1 = α(x0 − iqx1). Since a 6= 0 we get:

C1 : c1(x0, x1) = (x0 − ǫx1)(x0 − iqx1) + α(x0 − iqx1) + γ = 0

and
C2 : c2(x0, x1) = (x0 + ǫx1)(x0 − ix1) + αq(x0 − ix1) + γq = 0,

with α, γ ∈ GF(q2).
Moreover, (12) yields

(2ℓ0x0 − 2ωℓ1x1) = αq(x0 − ǫx1) + α(x0 + ǫx1)

whence

2ℓ0 = α + αq, −2ωℓ1
1

ǫ
= (α − αq);

then by considering the sum of the two last equations

α = ℓ0 − ωℓ1
1

ǫ
.

Then

C1 : c1(x0, x1) = (x0 − ǫx1)(x0 − iqx1) + (ℓ0 −
ω

ǫ
ℓ1)(x0 − iqx1) + γ = 0

and
C2 : c2(x0, x1) = (x0 + ǫx1)(x0 − ix1) + (ℓ0 +

ω

ǫ
ℓ1)(x0 − ix1) + γq = 0,

with γ ∈ GF(q2). By considering the degree two terms in (11) we get

(x0 − ix1)(x0 − iqx1)(ℓ
2
0 − ωℓ2

1) − ρm1(x0 − ǫx1)(x0 + ǫx1) =
γq(x0 − ǫx1)(x0 − iqx1) + γ(x0 + ǫx1)(x0 − ix1) + (ℓ2

0 − ωℓ2
1)(x0 − iqx1)(x0 − ix1)

that is,

−ρm1(x0 − ǫx1)(x0 + ǫx1) = γq(x0 − ǫx1)(x0 − iqx1) + γ(x0 + ǫx1)(x0 − ix1).

Arguing as before, we have that (x0 − ǫx1) divides (x0 − ix1). Hence we get a0 = a1 = 0
unless m1 = 0. But if m1 = 0 then

γq(x0 − ǫx1)(x0 − iqx1) = −γ(x0 + ǫx1)(x0 − ix1),

whence γq = γ = 0. Therefore all the coefficients in f of degree less than two must be
equal to zero, that is (ρ(ℓ1m0 − n1), ρ(−ℓ0m0 + n0), ρ(−ℓ0n1 + ℓ1n0)) = (0, 0, 0), and this
gives ℓm − n = 0, a contradiction.

Now consider the even q case. We may assume that C1 and C2 have equations

C1 : f1(x0, x1) = (x0 − ix1)(x0 − iqx1) + αx0 + βx1 + γ = 0,
C2 : f2(x0, x1) = (x0 − ǫx1)(x0 − (1 + ǫ)x1) + α′x0 + β ′x1 + γ′ = 0,
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where α, α′, β, β ′, γ, γ′ ∈ GF(q) and

ρf(x0, x1) = f1(x0, x1)f2(x0, x1). (13)

Arguing as in the odd q case we have the following equalities:

ρ = 1/(a1 + b1) α = β = 0, γ = m1, (14)

α′ = ℓ1, β ′ = ℓ0, γ
′ = ℓ2

0 + ℓ0ℓ1 + νℓ2
1, (15)

that come by comparing in (13) the terms of degree four, three and two.
Conditions (15) imply that C2 is absolutely reducible as

f2(x0, x1) = (x0 − ǫx1 + ℓ0 − ǫℓ1)[x0 − (1 + ǫ)x1 + ℓ0 − (1 + ǫ)ℓ1].

Therefore case (a) cannot occur. Then we have

C1 : f1(x0, x1) = (x0 − ix1)(x0 − iqx1) + m1 = 0,
C2 : f2(x0, x1) = (x0 − ǫx1)(x0 − (1 + ǫ)x1) + ℓ1x0 + ℓ0x1 + ℓ2

0 + ℓ0ℓ1 + νℓ2
1 = 0.

By considering the degree one terms in (13) we get

ℓ0m1 = ℓ0m0 + ℓ0m1 + νℓ1m1 + n0,

and
ℓ1m1 = ℓ0m1 + ℓ1m0 + n1

that is,
{

ℓ0m0 + νℓ1m1 + n0 = 0
ℓ1m1 + ℓ0m1 + ℓ1m0 + n1 = 0

. (16)

Conditions (16) give ℓm−n = 0, which is impossible. Hence neither case (b) nor case (c)
can occur.

Now, suppose that Φ splits into two conjugate conics C1 and C2 over GF(q) with

C1 : c1(x0, x1) = (x0 − ǫx1)(x0 − ix1) + αx0 + βx1 + γ = 0

and
C2 : c2(x0, x1) = (x0 − (1 + ǫ)x1)(x0 − iqx1) + αqx0 + βqx1 + γq = 0,

with α, β, γ ∈ GF(q2). If condition

ρf(x0, x1) = c1(x0, x1)c2(x0, x1) (17)

occurs, then comparing the terms of degree four we have ρ = 1/(a1 + b1), whereas com-
paring the terms of degree three we get

(x0 − ix1)(x0 − iqx1)(ℓ0x1 + ℓ1x0) = (x0 − ǫx1)(x0 − ix1)(α
qx0 + βqx1)+

(x0 − (1 + ǫ)x1)(x0 − iqx1)(αx0 + βx1).
(18)
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Therefore (x0 − ix1) divides (αx0 + βx1). Since (a0, a1) 6= (0, 0), this leaves αx0 + βx1 =
α(x0 − ix1) Moreover, (18) yields

(ℓ0x1 + ℓ1x0) = αq(x0 − ǫx1) + α(x0 − (1 + ǫ)x1)

whence
ℓ1 = α + αq, −(1 + ǫ)α − ǫαq = ℓ0;

then we get
α = ℓ0 + ǫℓ1.

Hence
C1 : c1(x0, x1) = (x0 − ǫx1)(x0 − ix1) + (ℓ0 + ǫℓ1)(x0 − ix1) + γ = 0

and

C2 : c2(x0, x1) = (x0 − (1 + ǫ)x1)(x0 − iqx1) + (ℓ0 + (1 + ǫ)ℓ1)(x0 − iqx1) + γq = 0,

with γ ∈ GF(q2).
By considering the degree two terms in (17) we get

ρm1(x0 − ǫx1)(x0 − (1 + ǫ)x1) = γq(x0 − ǫx1)(x0 − ix1) + γ(x0 − (1 + ǫ)x1)(x0 − iqx1).

Arguing as before, we get either that (x0 − ǫx1) divides (x0 − iqx1), which is impossible,
or m1 = 0. But if m1 = 0 then

γq(x0 − ǫx1)(x0 − ix1) = γ(x0 − (1 + ǫ)x1)(x0 − iqx1),

whence γq = γ = 0. Hence all the coefficients in f of degree less than two must be equal
to zero giving ℓm − n = 0, a contradiction.

Now, we can apply Hasse’s Theorem to the irreducible curve Φ; see [8, Theorem 9.57].
It follows that

q + 1 − 6
√

q 6 Rq 6 q + 1 + 6
√

q, (19)

where Rq is the number of points of Φ which lie in PG(2, q). Therefore, Ua,b ∩Ω is a k-arc
with q − 6

√
q − 2 6 k 6 q + 6

√
q − 2 because Φ has four points at infinity which do not

correspond to any points of Ω. Since an absolutely irreducible quartic and a conic share
at most eight points, Ua,b ∩ Ω meets every subconic of Ω in at most eight points.
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