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Abstract

Recently, Baker and Norine (Advances in Mathematics, 215(2): 766–788, 2007)
found new analogies between graphs and Riemann surfaces by developing a Riemann-
Roch machinery on a finite graph G. In this paper, we develop a general Riemann-
Roch theory for sub-lattices of the root lattice An analogue to the work of Baker
and Norine, and establish connections between the Riemann-Roch theory and the
Voronoi diagrams of lattices under certain simplicial distance functions. In this way,
we obtain a geometric proof of the Riemann-Roch theorem for graphs and generalise
the result to other sub-lattices of An. In particular, we provide a new geometric
approach for the study of the Laplacian of graphs. We also discuss some problems
on classification of lattices with a Riemann-Roch formula as well as some related
algorithmic issues.
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1 Introduction

Recently, Baker and Norine [2] proved a graph theoretic analogue of the classical Riemann-
Roch theorem for curves in algebraic geometry. The proof is combinatorial and makes use
of chip-firing games [5] and parking functions on graphs. Several papers later extended
the results of Baker and Norine to tropical curves [15, 18, 21]. The question treated in
this paper is to characterize those lattices which admit a Riemann-Roch theorem for the
corresponding analogue of the rank-function defined by Baker and Norine.

Chip-Firing Game. Let G = (V, E) be a finite connected (multi-)graph with the set
of vertices V and the set of edges E. We suppose that G does not have loops. The
chip-firing game is the following game played on the set of vertices of G: At the initial
configuration of the game, each vertex of the graph is assigned an integer number of
chips. A vertex can have a positive number of chips in its possession or can be assigned
a negative number meaning that the vertex is in debt with the amount described by the
absolute value of that number. At each step of the chip-firing game, a vertex in the graph
can decide to fire: firing means the vertex gives one chip along each edge incident with
it, to its neighbours. Thus, after the firing made by a vertex v of degree dv, the integer
assigned to v decreases by dv, while the integer associated to each vertex u connected by
ku (parallel) edges to v increases by ku. The objective of the vertices of the graph is to
come up with a configuration in which no vertex is in debt, i.e., a configuration in which
all the integers associated to vertices become non-negative.

Problem. Given an intial configuration, is there a finite sequence of chip-firings such
that eventually each vertex has a non-negative number of chips?

Let deg(C), degree of C, be the total number of chips present in the game, i.e., the
sum of the integers associated to the vertices of the graph. It is clear that degree remains
unchanged through each step of the game, thus, a necessary condition for a positive answer
to the above question is to have a non-negative degree.

Riemann-Roch Theorem For Graphs. To each given chip-firing configuration C,
Baker and Norine associate a rank r(C) as follows. The rank of C is −1 if there is no
way to obtain a configuration in which all the vertices have non-negative weights. And
otherwise, r(C) is the maximum non-negative integer r such that removing any set of
r chips from the game (in an arbitrary way), the obtained configuration can be still
transformed via a sequence of chip-firings to a configuration where no vertex is in debt.
In particular, note that r(C) > 0 if and only if there is a sequence of chip-firings which
results in a configuration with non-negative number of chips at each vertex.

The main theorem of [2] is a duality theorem for the rank function r(.). Let K be the
canonical configuration defined as follows: K is the configuration of chips in which every
vertex v of degree dv is assigned dv − 2 chips. Given a chip-firing configuration C, the
configuration K \ C is defined as follows: a vertex v of degree dv is assigned dv − 2 − cv

chips in K \ C if v is assigned cv chips in C.
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Recall that the genus g of a connected graph G with n + 1 vertices and m edges is
g := m− n.

Theorem 1.1 (Riemann-Roch theorem for graphs; Baker-Norine [2]) For every
configuration C, we have

r(C)− r(K \ C) = deg(C)− g + 1 .

The existing proof of the Riemann-Roch theorem for graphs (and its extension to
metric graphs and tropical curves [15, 18, 21]) is based on a family of specific configurations
which are called reduced. We refer to [2] for more details, explaining the origin of the name
given to this theorem in its connections with the Riemann-Roch theorem for algebraic
curves.
Here we just cite some direct consequences of the above theorem for the chip-firing game.

• If a configuration C contains at least g chips, there is a sequence of chip-firings
which produces a configuration where no vertex is in debt (more generally, one has
r(C) > deg(C)− g).

• r(K) = g − 1 (note that deg(K) = 2g − 2).

Reformulation in Terms of the Laplacian Lattice. Recall that a lattice is a discrete
subgroup of the abelian group (Rn, +) for some integer n (e.g., the lattice Zn ⊂ Rn), and
the rank of a lattice is its rank considered as a free abelian group. A sub-lattice of Zn is
called integral in this paper.

Let G = (V, E) be a given undirected connected (multi-)graph and V = {v0, . . . , vn}.
The Laplacian of G is the matrix Q = D − A, where D is the diagonal matrix whose
(i, i)−th entry is the degree of vi, and A is the adjacency matrix of G whose (i, j)−th
entry is the number of edges between vi and vj. It is well-known and easy to verify that Q
is symmetric, has rank n, and that the kernel of Q is spanned by the vector whose entries
are all equal to 1, c.f. [4].
The Laplacian lattice LG of G is defined as the image of Zn+1 under the linear map defined
by Q, i.e., LG := Q(Zn+1), c.f., [1]. Since G is a connected graph, LG is a sub-lattice of the
root lattice An of full-rank equal to n, where An ⊂ Rn+1 is the lattice defined as follows1:

An :=
{

x = (x0, . . . , xn) ∈ Zn+1 |
∑

xi = 0
}

.

Note that An is a discrete sub-group of the hyperplane

H0 =
{

x = (x0, . . . , xn) ∈ Rn+1|
∑

xi = 0
}

of Rn+1 and has rank n .

1Root refers here to root systems in the classification theory of simple Lie algebras [6]
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To each configuration C, it is straightforward to associate a point DC in Zn+1: DC
is the vector with coordinates equal to the number of chips given to the vertices of G.
For a sequence of chip-firings on C resulting in another configuration C ′, it is easy to see
that there exists a vector v ∈ LG such that DC′ = DC + v. Conversely, if DC′ = DC + v
for a vector v ∈ LG, then there is a sequence of chip-firings transforming C to C ′. Using
this equivalence, it is possible to transform the chip-firing game and the statement of the
Riemann-Roch theorem to a statement about Zn+1 and the Laplacian lattice LG ⊂ An.

Remark 1.2 Laplacian of graphs and their spectral theory have been well studied. The
Laplacian captures information about the geometry and combinatorics of the graph G,
for example, it provides bounds on the expansion of G (we refer to the survey [19]) or on
the quasi-randomness properties of the graph, see [8]. The famous Matrix Tree Theorem
states that the cardinality of the (finite) Picard group Pic(G) := An/LG is the number of
spanning trees of G.

Linear Systems of Integral Points and the Rank Function. Let L be a sub-lattice
of An of full-rank (e.g., L = LG). Define an equivalence relation ∼ on the set of points of
Zn+1 as follows: D ∼ D′ if and only if D −D′ ∈ L. This equivalence relation is referred
to as linear equivalence and the equivalence classes are denoted by Zn+1/LG. We say that
a point E in Zn+1 is effective or non-negative, if all the coordinates are non-negative. For
a point D ∈ Zn+1, the linear system associated to D is the set |D| of all effective points
linearly equivalent to D:

|D| =
{

E ∈ Zn+1 : E > 0, E ∼ D
}

.

The rank of an integral point D ∈ Zn+1, denoted by r(D), is defined by setting
r(D) = −1, if |D| = ∅, and then declaring that for each integer s > 0, r(D) > s if and
only if |D − E| 6= ∅ for all effective integral points E of degree s. Observe that r(D) is
well-defined and only depends on the linear equivalence class of D. Note that r(D) can
be defined as follows:

r(D) = min
{

deg(E) | |D − E| = ∅, E > 0
}
− 1.

Obviously, deg(D) is a trivial upper bound for r(D).

Extension of the Riemann-Roch Theorem to Sub-lattices of An. The main aim
of this paper is to provide a characterization of the sub-lattices of An which admit a
Riemann-Roch theorem with respect to the rank-function defined above. In the mean-
while, our approach provides a geometric proof of the theorem of Baker and Norine,
Theorem 1.1.

We show that Riemann-Roch theory associated to a full rank sub-lattice L of An

is related to the study of the Voronoi diagram of the lattice L in the hyperplane H0

under a certain simplicial distance function. The whole theory is then captured by the
corresponding critical points of this simplicial distance function.
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We associate two geometric invariants to each such sub-lattice of An, the min- and the
max-genus, denoted respectively by gmin and gmax. Two main characteristic properties
for a given sub-lattice of An are then defined. The first one is what we call Reflection
Invariance, and one of our results here is a weak Riemann-Roch theorem for reflection-
invariant sub-lattices of An of full-rank n.

Theorem 1.3 (Weak Riemann-Roch) Let L be a reflection invariant sub-lattice of An

of rank n. There exists a point K ∈ Zn+1, called canonical point, such that for every point
D ∈ Zn+1, we have

3gmin − 2gmax − 1 6 r(K −D)− r(D) + deg(D) 6 gmax − 1 .

The second characteristic property is called Uniformity and simply means gmin = gmax.
It is straightforward to derive a Riemann-Roch theorem for uniform reflection-invariant
sub-lattices of An of rank n from Theorem 1.3 above.

Theorem 1.4 (Riemann-Roch) Let L be a uniform reflection invariant sub-lattice of
An. Then there exists a point K ∈ Zn+1, called canonical, such that for every point
D ∈ Zn+1, we have

r(D)− r(K −D) = deg(D)− g + 1,

where g = gmin = gmax.

We then show that Laplacian lattices of undirected connected graphs are uniform
and reflection invariant, obtaining a geometric proof of the Riemann-Roch theorem for
graphs. As a consequence of our results, we provide an explicit description of the Voronoi
diagram of lattices generated by Laplacian of connected graphs and discuss some duality
concerning the arrangement of simplices defined by the points of the Laplacian lattice.

In the case of the Laplacian lattices of connected regular digraphs, we also provide a
slightly stronger statement than Theorem 1.3 above.

The above results also provide a characterization of full-rank sub-lattices of An for
which a Riemann-Roch formula holds, indeed, these are exactly those lattices which have
the uniformity and the reflection-invariance properties. We conjecture that any such
lattice is the Laplacian lattice of an oriented multi-graph (as we will see, there are examples
of such lattices which are not the Laplacian lattice of any unoriented multi-graph).

Organisation of the Paper. The paper is structured as follows. Sections 2 and 3
provide the preliminaries. This includes the definition of a geometric region in Rn+1

associated to a given lattice, called the Sigma-region, some results on the shape of this
region in terms of the extremal points, and the definition of the min- and max-genus. In
Section 4, we provide the geometric terminology we need in the following sections for the
proof of our main results. This is done in terms of a certain kind of Voronoi diagram, and
in particular, some main properties of the Voronoi diagram of sub-lattices of An under a
certain simplicial distance function are provided in this section. The proof of our Riemann-
Roch theorem is provided in Section 5. Most of the geometric terminology introduced in
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the first sections will be needed to define an involution on the set of extremal points of
the Sigma-Region, the proof of the Riemann-Roch theorem is then a direct consequence
of this and the definition of the min- and max-genus. It is helpful to note that the main
ingredients used directly in the proof of Theorems 1.3 and 1.4 are the results of Section 2
and Lemma 4.11 (and its Corollary 4.12). The results of the first sections are then used in
treating the examples in Section 6, specially for the Laplacian lattices. We derive in this
section a new proof of the main theorem of [2], the Riemann-Roch theorem for graphs.
Our work raises questions on the classification of sub-lattices of An with reflection in-
variance and/or uniformity properties. In Section 6, we present a complete answer for
sub-lattices of A2. Finally, some algorithmic questions are discussed in Section 7, e.g.,
we show that it is computationally hard to decide if the rank function is non-negative
at a given point for a general sub-lattice of An. This is interesting since in the case of
Laplacian lattices of graphs, the problem of deciding if the rank function is non-negative
can be solved in polynomial time.

As we said, in what follows we will assume that L is an integral sub-lattice in H0 of
full-rank, i.e., a sub-lattice of An. But indeed, what we are going to present also works
in the more general setting of full rank sub-lattices of H0, though the invariants and rank
function defined for these lattices are not integer. We will say a few words on this and
some other results in the concluding section.

Basic Notations. A point of Rn+1 with integer coordinates is called an integral point.
By a lattice L, we mean a discrete subgroup of H0 of maximum rank. Recall that H0 is
the set of all points of Rn+1 such that the sum of their coordinates is zero. The elements
of L are called lattice points. The positive cone in Rn+1 consists of all the points with
non-negative coordinates. We can define a partial order in Rn+1 as follows: a 6 b if and
only if b−a is in the positive cone, i.e., if each coordinate of b−a is non-negative. In this
case we say b dominates a. Also we write a < b if all the coordinates of b− a are strictly
positive.

For a point v = (v0, . . . , vn) ∈ Rn+1, we denote by v− and v+ the negative and positive
parts of v respectively. For a point p = (p0, . . . , pn) ∈ Rn+1, we define the degree of p as
deg(p) =

∑n
i=0 pi. For each k, by Hk we denote the hyperplane consisting of points of

degree k, i.e., Hk = {x ∈ Rn+1 | deg(x) = k}. By πk, we denote the projection from Rn+1

onto Hk along ~1 = (1, . . . , 1). In particular, π0 is the projection onto H0. Finally for an
integral point D ∈ Zn+1, by N(D) we denote the set of all neighbours of D in Zn+1, which
consists of all the points of Zn+1 which have distance at most one to D in `∞ norm.

In the following, to simplify the presentation, we will use the convention of tropi-
cal arithmetic, briefly recalled below. The tropical semiring (R,⊕,⊗) is defined as fol-
lows: As a set this is just the real numbers R. However, one redefines the basic arith-
metic operations of addition and multiplication of real numbers as follows: x ⊕ y :=
min (x, y) and x ⊗ y := x + y. In words, the tropical sum of two numbers is their
minimum, and the tropical product of two numbers is their sum. We can extend the
tropical sum and the tropical product to vectors by doing the operations coordinate-wise.
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2 Preliminaries

All through this section L will denote a full rank (integral) sub-lattice of H0.

2.1 Sigma-Region of a Given Sub-lattice L of An

Every point D in Zn+1 defines two “orthogonal” cones in Rn+1, denoted by H−
D and H+

D ,
as follows: H−

D is the set of all points in Rn+1 which are dominated by D. In other words

H−
D = {D′ | D′ ∈ Rn+1, D −D′ > 0 }.

Similarly H+
D is the set of points in Rn+1 that dominate D. In other words,

H+
D = {D′ | D′ ∈ Rn+1, D′ −D > 0 }.

For a cone C in Rn+1, we denote by C(Z) and C(Q), the set of integral and rational points
of the cone respectively. When there is no risk of confusion, we sometimes drop (Z) (resp.
(Q)) and only refer to C as the set of integral points (resp. rational points) of the cone C.
The Sigma-Region of the lattice L is, roughly speaking, the set of integral points of Zn+1

that are not contained in the cone H−
p for any point p ∈ L. More precisely:

Definition 2.1 The Sigma-Region of L, denoted by Σ(L), is defined as follows:

Σ(L) = {D | D ∈ Zn+1 & ∀ p ∈ L, D � p }

= Zn+1 \
⋃
p∈L

H−
p .

The following lemma shows the relation between the Sigma-Region and the rank of
an integral point as defined in the previous section.

Lemma 2.2

(i) For a point D in Zn+1, r(D) = −1 if and only if −D is a point in Σ(L).

(ii) More generally, r(D) + 1 is the distance of −D to Σ(L) in the `1 norm, i.e.,

r(D) = dist`1(−D, Σ(L))− 1 := inf{||p + D||`1 | p ∈ Σ(L)} − 1,

where ||x||`1 =
∑n

i=0 |xi| for every point x = (x0, x1, . . . , xn) ∈ Rn+1.

Before presenting the proof of Lemma 2.2, we need the following simple observation.

Observation 1 ∀D1, D2 ∈ Zn+1, we have D1 ∈ Σ(L)−D2 if and only if D2 ∈ Σ(L)−D1.

We shall usually use this observation without sometimes mentioning it explicitly.

Proof of Lemma 2.2

(i) Recall that r(D) = −1 means that |D| = ∅. This in turn means that D � p for any
p in L, or equivalently −D � q for any point q in L (because L = −L). We infer
that −D is a point of Σ(L). Conversely, if −D belongs to Σ(L), then −D � q for
any point q in L, or equivalently D � p for any p in L (because L = −L). This
implies that |D| = ∅ and hence r(D) = −1.

the electronic journal of combinatorics 17 (2010), #R124 8



Figure 1: A finite portion of the Sigma-Region of a sub-lattice of A1. All the black
points belong to the Sigma-Region. The integral points in the grey part are out of the
Sigma-Region.

(ii) Let p∗ be a point in Σ(L) which has minimum `1 distance from −D, and define
v∗ = p∗ + D. Write v∗ = v∗,+ + v∗,−, where v∗,+ and v∗,− are respectively the
positive and the negative parts of v∗. We first claim that v∗ is an effective integral
point, i.e., v∗,− = 0. For the sake of a contradiction, let us assume the contrary, i.e.,
assume that ||v∗,−||`1 > 0. Since −D + v∗,+ + v∗,− = −D + v∗ = p∗ is contained in
Σ(L), and because v∗,− 6 0, the point p∗,+ = −D + v∗,+ has to be in Σ(L). Also
||v∗,+||`1 < ||v∗||`1 (because ||v∗||`1 = ||v∗,+||`1 + ||v∗,−||`1 and ||v∗,−||`1 > 0). We
obtain ||D +p∗,+||`1 = ||v∗,+||`1 < ||D +p∗||`1 , which is a contradiction by the choice
of p∗. Therefore, we have

r(D) = min{ deg(v) | |D − v| = ∅, v > 0 } − 1

= min{ deg(v) | v −D ∈ Σ(L), v > 0 } − 1 (By the first part of Lemma 2.2)

= min{ ||v||`1 | v −D ∈ Σ(L), v > 0 } − 1

= min{ ||D + p||`1 − 1 | p ∈ Σ(L) and D + p > 0 }
= dist`1(−D, Σ(L))− 1 (By the above arguments).

2
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Lemma 2.2 shows the importance of understanding the geometry of the Sigma-Region
for the study of the rank function. This will be our aim in the rest of this section and in
Section 4. But we need to introduce another definition before we proceed. Apparently, it
is easier to work with a “continuous” and “closed” version of the Sigma-Region.

Definition 2.3 ΣR(L) is the set of points in Rn that are not dominated by any point in
L.

ΣR(L) =
{

p | p ∈ Rn+1 and p � q, ∀q ∈ L
}

= Rn+1 \
⋃
p∈L

H−
p .

By Σc(L) we denote the topological closure of ΣR(L) in Rn+1.

Remark 2.4 One advantage of this definition is that it can be used to define the same
Riemann-Roch machinery for any full dimensional sub-lattice of H0. Indeed for such a
sub-lattice L, it is quite straightforward to associate a real-valued rank function to any
point of Rn+1 (c.f. Section 8). The main theorems of the paper can be proved in this
more general setting. As all the examples of interest for us are integral lattices, we have
restricted the presentation to sub-lattices of An.

2.2 Extremal Points of the Sigma-Region

We say that a point p ∈ Σ(L) is an extremal point if it is a local minimum of the degree
function. In other words

Definition 2.5 The set of extremal points of L denoted by Ext(L) is defined as follows:

Ext(L) := {ν ∈ Σ(L) | deg(ν) 6 deg(q) ∀ q ∈ N(ν) ∩ Σ(L)}).

Recall that for every point D ∈ Zn+1, N(D) is the set of neighbours of D in Zn+1, which
consists of all the points of Zn+1 which have distance at most one to D in `∞ norm.

We also define extremal points of Σc(L) as the set of points that are local minimum of the
degree function and denote it by Extc(L). Local minimum here is understood with respect
to the topology of Rn+1: x is a local minimum if and only if there exists an open ball B
containing x such that x is the point of minimum degree in B ∩ Σc(L). The following
theorem describes the Sigma-Region of L in terms of its extremal points.

Theorem 2.6 Every point of the Sigma-Region dominates an extremal point. In other
words, Σ(L) = ∪ν∈Ext(L)H

+
ν (Z). Recall that H+

ν (Z) is the set of integral points of the cone
H+

v .

Indeed, we first prove the following continuous version of Theorem 2.6.

Theorem 2.7 For any (integral) sub-lattice L of H0, we have Σc(L) = ∪ν∈Extc(L)H
+
ν .
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And Theorem 2.6 is derived as a consequence of Theorem 2.7. The proof of these two
theorems are presented in Section 3. The proof shows that every extremal point of Σc(L)
is an integral point and Σ(L) = Σc

Z(L)+(1, . . . , 1), where Σc
Z(L) denotes the set of integral

points of Σc(L). We refer to Section 3 for more details.

Proposition 2.8 We have Σ(L) = Σc
Z(L)+(1, . . . , 1) and Ext(L) = Extc(L)+(1, . . . , 1).

In particular, π0(Extc(L)) = π0(Ext(L)).

The important point about Theorem 2.6 is that one can use it to express r(D) in
terms of the extremal points of Σ(L). For an integral point D = (d0, . . . , dn) ∈ Zn+1, let
us define deg+(D) := deg(D+) =

∑
i : di>0 di and deg−(D) := deg(D−) =

∑
i : di60 di. We

have:

Lemma 2.9 For every integral point D ∈ Zn+1,

r(D) = min { deg+(ν + D) | ν ∈ Ext(L) } − 1 .

Proof First recall that

r(D) = min{ deg(E) | |D − E| = ∅ and E > 0 } − 1

= min{ deg(E) | E −D ∈ Σ(L) and E > 0 } − 1 (By Lemma 2.2).

Let E > 0 and p = E−D be a point in Σ(L). By Theorem 2.6, we know that p is a point
in Σ(L) if and only if p = ν + E ′ for some point ν in Ext(L) and E ′ > 0. So we can write
E = p + D = ν + E ′ + D where ν ∈ Ext(L) and E ′ > 0. Hence we have

r(D) = min{ deg(ν + E ′ + D) | ν ∈ Ext(L), E ′ > 0 and ν + E ′ + D > 0 } − 1.

We now observe that for every ν ∈ Zn+1, the integral point E ′ > 0 of minimum degree
such that E ′ + ν + D > 0 has degree exactly deg+(−ν −D). We infer that

deg(ν + E ′ + D) = deg(E ′) + deg(ν + D) = deg+(−ν −D) + deg(ν + D)

= deg−(ν + D) + deg(ν + D) = deg+(ν + D).

We conclude that r(D) = min{ deg+(ν + D) | ν ∈ Ext(L) } − 1, and the lemma follows.
2

2.3 Min- and Max-Genus of Sub-Lattices of An and Uniform
Lattices

We define two notions of genus for full-rank sub-lattices of An , min- and max-genus, in
terms of the extremal points of the Sigma-Region of L. (The same definition works for
full-rank sub-lattices of H0.)
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Definition 2.10 (Min- and Max-Genus) The min- and max-genus of a given sub-lattice
L of An of dimension n, denoted respectively by gmin and gmax, are defined as follows:

gmin(L) = inf { − deg(ν) | ν ∈ Ext(L) }+ 1 .

gmax(L) = sup{ − deg(ν) | ν ∈ Ext(L) }+ 1 .

Remark 2.11 There are some other notions of genus associated to a given lattice, e.g.,
the notion spinor genus for lattices developed by Eichler (see [14] and [10]) in the context
of integral quadratic forms. Every sub-lattice of An provides a quadratic form in a natural
way. But a priori there is no relation between these notions.

It is clear by definition that gmin 6 gmax. But generally these two numbers could be
different.

Definition 2.12 A sub-lattice L ⊆ An of dimension n is called uniform if gmin = gmax.
The genus of a uniform sub-lattice is g = gmin = gmax.

As we will show later in Section 6, sub-lattices generated by Laplacian of graphs are
uniform.

3 Proofs of Theorem 2.6 and Theorem 2.7

In this section, we present the proofs of Theorem 2.6 and Theorem 2.7. This section is
quite independent of the rest of this paper and can be skipped in the first reading.

Recall that ΣR(L) is the set of points in Rn+1 that are not dominated by any point
in L and Σc(L) is the topological closure of ΣR(L) in Rn+1. Also, recall that Extc(L)
denotes the set of extremal points of Σc(L). These are the set of points which are local
minimum of the degree function. As we said before, instead of working with the Sigma-
Region directly, we initially work with Σc(L). We first prove Theorem 2.7. Namely, we
prove Σc(L) = ∪ν∈Extc(L)H

+
ν . To prepare for the proof of this theorem, we need a series

of lemmas.
The following lemma provides a description of Σc(L) in terms of the domination order
in Rn+1. Recall that for two points x = (x0, . . . , xn) and y = (y0, . . . , yn), x 6 y (resp.
x < y) if xi 6 yi (resp. xi < yi) for all 0 6 i 6 n.

Lemma 3.1 Σc(L) = { p | p ∈ Rn+1 and ∀ q ∈ L : p ≮ q }.

Proof Easy and omitted. 2

Lemma 3.2 Extremal points of Σc(L) are contained in ∂(Σc(L)).

Proof Easy and omitted. 2
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Let p be a point in Σc(L) and let d be a vector in Rn+1. We say that d is feasible for
p, if it satisfies the following properties:
1. deg(d) < 0.
2. There exists a δ0(p, d) > 0 such that for every 0 6 δ 6 δ0(p, d), p + δd ∈ Σc(L). By
Lemma 3.1, this means that p + δd ≮ p′ for all lattice points p′ ∈ L.

Furthermore, we define the function εp,d : L → R ∪ {∞} as follows:

εp,d(q) = inf { ε | ε > 0 and p + εd < q }.

Let I = { i | 0 6 i 6 n and pi > qi }. We have the following explicit description of εp,d.

εp,d(q) =


0 if I = ∅.
maxi∈I

(qi−pi)
di

if I 6= ∅, ∀ i ∈ I, di < 0, and ∃ ε > 0 such that p + εd < q,

∞ otherwise.

(1)
One can easily verify that

Lemma 3.3 For a point p in Σc(L), εd,p(q) > εd−,p(q) for all q ∈ L . In the only cases
when the inequality is strict, we must have εd,p(q) = ∞ and εd−,p(q) > 0.

We now prove the following lemma which links the function εd,p to the feasibility of d at
p.

Lemma 3.4 For a point p in Σc(L) and d in Rn+1 with deg(d) < 0, d is not feasible for
p if and only if εp,d(q) = 0 for some q ∈ L.

Proof Let p be a point of Σc(L).
(⇒). Assume the contrary, then we should have the following properties:

1. deg(d) < 0 ,

2. εp,d(q) > 0 for all q ∈ L ,

We claim that infq∈L { εp,d(q) } > δ0 , for some δ0 > 0 . By the definition of εp,d, if

εp,d(q) 6= 0, then εp,d(q) is at least min{i: di<0}
{pi}
|di| , where 0 < {pi} = pi − dpi − 1e 6 1

is the rational part of pi if pi is not integral, and is 1 if pi is integral. As the number
of indices is finite, we conclude that δ0 = min{i: di<0} |{pi}

di
| and the claim holds. It fol-

lows that p+εd ≮ q for all q in L and for all 0 6 ε 6 δ0. This implies that d is feasible for p.

(⇐). If εp,d(q) = 0 for some q ∈ L, then there exists a δ0 > 0 such that p + δd < p′ for
every 0 < δ 6 δ0. This shows that d is not feasible for p. 2

Corollary 3.5 For a point p in Σc(L), p is an extremal point if and only if for every
vector d ∈ Rn+1 with deg(d) < 0, we have εp,d(q) = 0 for some q in L.
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Combining Lemma 3.3 and Corollary 3.5, we obtain the following result:

Lemma 3.6 If p is not an extremal point of Σc(L), then there exists a vector d in H−
O

which is feasible for p.

Proof If p is not an extremal point of Σc(L), then there exists a vector d0 in Rn+1 that
is feasible for p. By Corollary 3.5, d0 has the following properties:

1. deg(d0) < 0 ,

2. εd0,p(q) > 0 for all q ∈ L ,

Let d := d−0 . We have deg(d) < 0, since deg(d0) < 0 and d = d−0 . By Lemma 3.3, we have
εd0,p(q) > εd,p(q) for all q ∈ L, and in the only cases for q when the inequality is strict
we have εd,p(q) > 0. We infer that d also satisfies Properties 1 and 2. By Corollary 3.5, d
is also feasible for p and by construction, d belongs to H−

O ; the lemma follows. 2

Consider the set deg(Σc(L)) = { deg(p) | p ∈ Σc(L) }. The next lemma shows that
the degree function is bounded below on the elements of Σc(L) (by some negative real
number).

Lemma 3.7 For an n−dimensional sub-lattice L of An, inf(deg(Σc(L)) is finite.

Proof It is possible to give a direct proof of this lemma. But using our results in Section 4
allows us to shorten the proof. So we postpone the proof to Section 4. 2

We are now in a position to present the proofs of Theorem 2.7 and Theorem 2.6.

Proof of Theorem 2.7 Consider a point p in Σc(L). We should prove the existence of
an extremal point ν ∈ Extc(L) such that ν 6 p.
Consider the cone H−

p . As a consequence of Lemma 3.7, we infer that the region Σc(L)∩
H−

p is a bounded closed subspace of Rn+1, and so it is compact. The degree function deg
restricted to this compact set, achieves its minimum on some point ν ∈ Σc(L) ∩H−

p . We
claim that ν ∈ Extc(L). Suppose that this is not the case. By Lemma 3.6, there exists a
feasible vector d ∈ H−

O for ν, i.e., such that ν + δd ∈ Σc(L) for all sufficiently small δ > 0.
Now it is easy to check that

• ν + δ d ∈ H−
p and hence ν + δd 6 p ,

• deg(ν + δ d) < deg(ν).

This contradicts the choice of ν. 2
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Proof of Theorem 2.6
In order to establish Theorem 2.6, we first prove that every point in Extc(L) is an

integral point. For the sake of a contradiction, suppose that there exists a non integral
point in Extc(L). Let p = (p0, . . . , pn) be such a point and suppose without loss of
generality that p0 is not integer. We claim that the vector d = −e0 = (−1, 0, 0, . . . , 0) is
feasible. Indeed it is easy to check that εp,d(q) > 0 for all q ∈ L, and so by Corollary 3.5
we conclude that p could not be an extremal point of Σc(L).
Let Σc

Z(L) be the set of integral points of Σc(L). We show that Σc
Z(L)+(1, . . . , 1) = Σ(L).

Note that as soon as this is proved, Theorem 2.7 and the fact that extremal points of
Σc(L) are all integral points implies Theorem 2.6.

We prove Σc
Z(L) + (1, . . . , 1) ⊆ Σ(L).— Let u = v + (1, . . . , 1) ∈ Σc

Z(L) + (1, . . . , 1), for a
point v ∈ Σc

Z(L). To show u ∈ Σ(L) we should prove that ∀q ∈ L : u � q. Suppose that
this is not the case and let q ∈ L be such that u 6 q. It follows that u − (1, . . . , 1) < q
and hence, v /∈ Σc(L), which is a contradiction.

We prove Σ(L) ⊆ Σc
Z(L) + (1, . . . , 1).— A point u in ∂Σc(L) is contained in H−(q) for

some q in L and hence u 6 q. We infer that Σ(L) is contained in the interior of Σc(L), and
so for each point p of Σ(L), every vector in Rn+1 of negative degree will be feasible. By
Lemma 3.7, there exists a point pc ∈ ∂Σc(L) such that p = pc + t(1, . . . , 1) for some t > 0.
It follows that p > pc. By Theorem 2.7, pc ∈ H+

ν for some ν in Extc(L). This implies
that p > ν for some ν ∈ Extc(L). By definition, p is an integral point and we just showed
that ν is also an integral point. Hence we can further deduce that p > ν + (1, . . . , 1). We
infer that p− (1, . . . , 1) > ν and therefore, p− (1, . . . , 1) ∈ Σc(L) (because H+

ν ⊂ Σc(L)).
It follows that p ∈ Σc

Z(L) + (1, . . . , 1).
The proof of Theorem 2.6 is now complete. 2

4 Voronoi Diagrams of Lattices under Simplicial Dis-

tance Functions

In this section, we provide some basic properties of the Voronoi diagram of a sub-lattice
L of An under a simplicial distance function d4(. , .) which we define below. The distance
function d4(. , .) has the following explicit form, and as we will see in this section, is
the distance function having the homotheties of the standard simplex in H0 as its balls
(which explains the name simplicial distance function). For two points p and q in H0, the
simplicial distance between p and q is defined as follows

d4(p, q) := inf
{

λ | q − p + λ(1, . . . , 1) > 0
}

.

The basic properties of d4 are better explained in the more general context of polyhedral
distance functions that we now explain.
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4.1 Polyhedral Distance Functions and their Voronoi Diagrams

Let Q be a convex polytope in Rn with the reference point O = (0, . . . , 0) in its interior.
The polyhedral distance function dQ(. , .) between the points of Rn is defined as follows:

∀ p, q ∈ Rn, dQ(p, q) := inf{λ > 0 | q ∈ p + λ.Q}, where λ.Q = { λ.x | x ∈ Q }.

dQ is not generally symmetric, indeed it is easy to check that dQ(. , .) is symmetric if
and only if the polyhedron Q is centrally symmetric i.e., Q = −Q. Nevertheless dQ(. , .)
satisfies the triangle inequality.

Lemma 4.1 For every three points p, q, r ∈ Rn, we have dQ(p, q) + dQ(q, r) > dQ(p, r).
In addition, if q is a convex combination of p and r, then dQ(p, q) + dQ(q, r) = dQ(p, r).

Proof To prove the triangle inequality, it will be sufficient to show that if q ∈ p + λ.Q
and r ∈ q + µ.Q, then r ∈ p + (λ + µ).Q. We write q = p + λ.q′ and r = q + µ.r′ for two
points q′ and r′ in Q. We can then write r = p+λ.q′+µ.r′ = p+(λ+µ)( λ

λ+µ
.q′+ µ

λ+µ
.r′).

Q being convex and λ, µ > 0, we infer that λ
λ+µ

.q′ + µ
λ+µ

.r′ ∈ Q, and so r ∈ p + (λ + µ).Q.
The triangle inequality follows.
To prove the second part of the lemma, let t ∈ [0, 1] be such that q = t.p + (1 − t).r .
By the triangle inequality, it will be enough to prove that dQ(p, q) + dQ(q, r) 6 dQ(p, r).
Let dQ(p, r) = λ so that r = p + λ.r′ for some point r′ in Q. We infer first that q =
t.p+(1−t).r = t.p+(1−t)(p+λ.r′) = p+(1−t)λ.r′, which implies that dQ(p, q) 6 (1−t)λ.
Similarly we have t.r = t.p + tλ.r′ = q − (1− t)r + tλ.r′. It follows that r = q + tλr′ and
so dQ(q, r) 6 tλ . We conclude that dQ(p, q) + dQ(q, r) 6 dQ(p, r), and the lemma follows.

2

We also observe that the polyhedral metric dQ(. , .) is translation invariant, i.e.,

Lemma 4.2 For any two points p, q in Rn, and for any vector v ∈ Rn, we have dQ(p, q) =
dQ(p− v, q − v). In particular, dQ(p, q) = dQ(p− q, O) = dQ(O, q − p).

Proof The proof is easy: if q ∈ p+λ.Q, then q− v ∈ p− v +λ.Q, and vice versa. 2

Remark 4.3 The notion of a polyhedral distance function is essentially the concept of
a gauge function of a convex body that has been studied in [25]. Lemmas 4.1 and 4.2
can be derived in a straight forward way from the results in [25]. For the sake of easy
reference, we included them here.

Consider a discrete subset S in Rn. For a point s in S, we define the Voronoi cell of s
with respect to dQ as VQ(s) = { p ∈ Rn | dQ(p, s) 6 dQ(p, s′) for any other point s′ ∈ S } .
The Voronoi diagram VorQ(S) is the decomposition of Rn induced by the cells VQ(s), for
s ∈ S . We note however that this need not be a cell decomposition in the usual sense.

We state the following lemma on the shape of cells VQ(s).
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Lemma 4.4 [7] Let S be a discrete subset of Rn and VorQ(S) be the Voronoi cell decom-
position of Rn. For any point s in S, the Voronoi cell VQ(s) is a star-shaped polyhedron
with s as a kernel.

Proof It is easy to see that VQ(s) is a polyhedron. We show that it is star-shaped.
Assume the contrary. Then there is a line segment [s, r] and a point q between s and r
such that r ∈ VQ(s) and q /∈ VQ(s). Suppose that q is contained in V (s′) for some s′ 6= s.
We should then have dQ(q, s) > dQ(q, s′). By Lemma 4.1, dQ(r, s) = dQ(r, q) + dQ(q, s).
We infer that

dQ(r, s) = dQ(r, q) + dQ(q, s) > dQ(r, q) + dQ(q, s′) > dQ(r, s′), contradicting r ∈ VQ(s).

2

4.2 Voronoi Diagram of Sub-Lattices of An

Voronoi diagrams of root lattices under the Euclidean metric have been studied previously
in literature. Conway and Sloane [11, 10], describe the Voronoi cell structure of root
lattices and their duals under the Euclidean metric.
Here we study Voronoi diagrams of sub-lattices of An under polyhedral distance functions
(and later under the simplicial distance functions d4(. , .)). We will see the importance
of this study in the proof of Riemann-Roch Theorem in Section 5, and in the geometric
study of the Laplacian of graphs in Section 6.
Let L be a sub-lattice of An of full rank. Note that L is a discrete subset of the hyperplane
H0 and H0 ' Rn. Let Q ⊂ H0 be a convex polytope of dimension n in H0. We will be
interested in the Voronoi cell decomposition of the hyperplane H0 under the distance
function dQ(. , .) induced by the points of L. The following lemma, which essentially uses
the translation-invariance of dQ(. , .), shows that these cells are all simply translations of
each other.

Lemma 4.5 For a point p in L, VQ(p) = VQ(O) + p . As a consequence, VorQ(L) =
VQ(O) + L.

Proof Easy and omitted. 2

By Lemma 4.5, to understand the Voronoi cell decomposition of H0, it will be enough to
understand the cell VQ(O). We already know that VQ(O) is a star-shaped polyhedron.
The following lemma shows that VQ(O) is compact, and so it is a (non-necessarily convex)
star-shaped polytope.

Lemma 4.6 The Voronoi cell VQ(O) is compact.

Proof The proof is standard. It will be sufficient to prove that VQ(O) does not contain
any infinite ray. Indeed, VQ(O) being star-shaped and closed, this will imply that VQ(O)
is bounded and so we have the compactness.
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Assume, for the sake of a contradiction, that there exists a vector v 6= O in H0 such
that the ray t.v for t > 0 is contained in VQ(O). This means that

For every t > 0 and for every p ∈ L, we have dQ(t.v, O) 6 dQ(t.v, p). (2)

Choose a real number λ such that 0 < λ < dQ(v, O). By Lemma 4.1, dQ(t.v, O) =
tdQ(v, O) > λt for t > 0. By the definition of dQ, the choice of λ and Property (2),
the polytope t.v + tλ.Q = t.(v + λQ) does not contain any point p ∈ L for t > 0. Let
C =

⋃
t>0 t.(v + λ.Q). It is easy to check that C is the cone generated by v + λ.Q. It

follows that C does not contain any lattice point apart from O (for t = 0). In addition,
Q being a polytope of dimension n, C should be a cone of full dimension in H0. But this
will provide a contradiction, because as we will show below for any vector v̄ with rational
coordinates in H0, the open ray t.v̄ for t > 0 contains a lattice point in L. (And it is clear
that any cone C of full dimension in H0 contains a rational vector.) To see this, observe
that a basis for L is also a basis for the n-dimensional Q-vector space H0(Q). Here H0(Q)
denotes the rational points of the hyperplane H0. This means that v̄ can be written as
a rational combination of some points in L. Multiplying by a sufficiently large integer
number N , N.v̄ can be written as an integral combination of the same points in L, i.e.,
N.v̄ ∈ L, and this finishes the proof of the lemma. 2

From now on, we will restrict ourselves to two special polytopes 4 and 4̄ in H0.
They are both standard simplices of H0 under an appropriate isometry H0 ' Rn. The
n-dimensional regular simplex 4(O) centred at the origin O has vertices at the points
b0, b1, . . . , bn. For all 0 6 i, j 6 n, the coordinates of bi are given by:

(bi)j =

{
n if i=j,

−1 otherwise.

The simplex 4̄(O) is the opposite simplex to 4(O), i.e., 4̄(O) := −4(O). The
simplicial distance functions d4(., .) and d4̄(., .) are the distance functions in Rn+1 defined
by 4 and 4̄ respectively. It is easy to check the following anti-symmetric property for the
above distance functions: For any pair of points p, q ∈ Rn+1, we have d4(p, q) = d4̄(q, p).
(This is indeed true for any convex polytope Q: dQ(p, q) = dQ̄(q, p), where Q̄ = −Q.)

Notation. In the following we will use the following terminology: For a point v ∈ H0,
we let 4(v) = v +4(O) and 4̄(v) = v + 4̄(O). More generally given a real λ > 0 and
v ∈ H0, we define 4λ(v) = v + λ · 4(O), and similarly, 4̄λ(v) = v + λ · 4̄(O). We can
think of these as balls of radius λ around v for d4 and d4̄ respectively.

The following lemma shows that the definition given in the beginning of this section
coincides with the definition of d4 given above. We can explicitly write a formula for
d4(. , .) and d4̄(. , .) in the hyperplane H0:

Lemma 4.7 For two points p = (p0, p1, . . . , pn) and q = (q0, q1, . . . , qn) in H0, the 4-
simplicial distance from p to q is given by d4(p, q) = |

⊕n
i=0(qi−pi)|. And the 4̄-simplicial
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Figure 2: The shape of a Voronoi-cell in the Laplacian lattice of a graph with three vertices.
The multi-graph G has three vertices and 7 edges. The lattice A2 is generated by the two
vectors x = (1,−1, 0) and y = (−1, 0, 1). The corresponding Laplacian sub-lattice of A2,
whose elements are denoted by •, is generated by the vectors (−5, 3, 2) = −3x + 2y and
(3,−5, 2) = 5x + 2y (and (2, 2,−4) = −2x− 4y), which correspond to the vertices of G.

distance from p to q is given by d4̄(p, q) = |
⊕n

i=0(pi − qi) |. Here the sum
⊕

i(xi − yi)
denotes the tropical sum of the numbers xi − yi.

Proof By the anti-symmetry property of the distance function d4(., .) (namely d4(p, q) =
d4̄(q, p), ∀p, q), we only need to prove the lemma for d4(. , .). By definition, d4(p, q) is
the smallest positive real λ such that q ∈ p + λ.4. The simplex 4 being the convex
hull of the vectors bi defined above, it follows that for an element x ∈ λ.4, there should
exist non-negative reals µi > 0 such that

∑n
i=0 µi = λ and x = µ0b0 + µ1b1 + · · · + µnbn.

From the definition of the vector bi’s, we obtain x = (n + 1)(µ0, µ1, . . . , µn)− λ(1, . . . , 1).
It follows that d4(p, q) is the smallest λ such that q − p + λ.(1, . . . , 1) becomes equal
to (n + 1)(µ0, µ1, . . . , µn) for some µi > 0 such that

∑
i µi = λ. Let λ0 be the smallest

positive real number such that the vector µ := 1
n+1

(q−p+λ0.(1, . . . , 1)) has non-negative
coordinates. As p, q ∈ H0, a simple calculation shows that the other condition

∑
i µi = λ0

holds automatically, and hence such λ0 is equal to d4(p, q). It is now easy to see that
λ0 = maxi (pi − qi) = −mini (qi − pi). It follows that d4(p, q) = |

⊕n
i=0(qi − pi)|. 2
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4.3 Vertices of Vor4(L) that are Critical Points of a Distance
Function.

For a discrete subset S of H0 (e.g., S = L), the simplicial distance function h4,S : H0 → R
is defined as follows:

h4,S(x) =
⊕
p∈S

d4(x, p) = min
p∈S

d4(x, p).

By definition, it is straightforward to verify that h4,S(x) = sup{λ | (x+λ ·4)∩S = ∅}.
Note that our definition above exactly imitates the classical definition of a distance func-
tion [16]. In what follows, we restrict ourselves to S = L.

Let L be a full-rank sub-lattice of An and h4,L be the distance function defined by L.
We first give a description of ∂Σc(L) (see Section 2.2) in terms of h4,L. The lower-graph
of h4,L is the graph of the function h4,L in the negative half-space of Rn+1, i.e., in the
half-space of Rn+1 consisting of points of negative degree. More precisely, the lower-graph
of h4,L, denoted by Gr(h4,L), consists of all the points y − h4,L(y)(1, . . . , 1) for y ∈ H0.
We have

Lemma 4.8 The lower-graph of h4,L and ∂Σc(L) coincide, i.e., Gr(h4,L) = ∂Σc(L).

In order to present the proof of Lemma 4.8, we need to make some remarks. Let p be
a point of L. The function fp : H0 → Rn+1 is defined as follows:

∀ y ∈ H0, fp(y) := sup {yt | yt = y − t.(1, . . . , 1), t > 0, and yt 6 p }.

Note that sup is defined with respect to the ordering of Rn+1, and is well-defined because
yt > yt′ if and only if t 6 t′. Remark also that fp(y) is finite.

Remark 4.9 The above notion has the following tropical meaning: Let λp = min {t ∈
R | t� p⊕ y = y}. Then yp = (−λp)� y. The numbers λp are used in [12] to define the
tropical closest point projection into some tropical polytopes. For a finite set of points
p1, . . . , pl with the tropical convex-hull polytope Q, the tropical projection map πQ at the
point y is defined as πQ(y) = λp1 � p1 ⊕ · · · ⊕ λpl

� pl. It would be interesting to explore
the connection between the work presented here and the theory of tropical polytopes.

A simple calculation shows that fp(y) = y − |
⊕

i(pi − yi)|.(1, . . . , 1), and hence by
Lemma 4.7, we obtain fp(y) = y − d4(y, p).(1, . . . , 1). In other words, fp(y) is the lower-
graph of the function d4(. , p). We claim that for all y ∈ H0, y − h4,L(y)(1, . . . , 1) =
supp∈L fp(y). Here, sup is understood as before with respect to the ordering of Rn+1.
In other words, the lower-graph Gr(h4,L) is the lower envelope of the graphs Gr(fp)
for p ∈ L. To see this, remark that supp∈L fp(y) = supp∈L(y − d4(y, p).(1, . . . , 1)) =
y − (minp∈L d4(y, p)).(1, . . . , 1) = y − h4,L(y).(1, . . . , 1).

Proof of Lemma 4.8 It is easy to see that for every point y ∈ H0, the intersection of the
half-ray {y−t(1, . . . , 1)|t > 0} with ∂Σc(L) is the point y−h4,L(L).(1, . . . , 1) ∈ Gr(h4,L).
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This gives the lemma. More precisely, by the definition of Σc(L) (see Section 2.2), we
have

∂Σc(L) = { z | z 6 p for some p ∈ L and z ≮ p, ∀p ∈ L}
= { sup

p∈L
fp(y) | y ∈ H0 } = Gr(h4,L) (By the discussion above).

2

It is possible to strengthen Lemma 4.8 and to obtain a description of the Voronoi diagram
Vor4(L) in terms of the boundary of the Sigma-Region. The following lemma can be
seen as the simplicial Voronoi diagram analogue of the classical result that the Voronoi
diagram under the Euclidean metric is the projection of a lower envelope of paraboloids
[13].

Lemma 4.10 The Voronoi diagram of L under the simplicial distance function d4(. , .)
is the projection of ∂Σc(L) along (1, . . . , 1) onto the hyperplane H0. More precisely, for
any p ∈ L, the Voronoi cell V4(p) is obtained as the image of H−

p ∩ ∂Σc(L) under the
projection map π0.

Proof By definition, H−
p consists of the points which are dominated by p. It follows that

the intersection H−
p ∩ ∂Σc(L) consists of all the points of ∂Σc(L) which are dominated

by p. By Lemma 4.8, the boundary of Σc(L), ∂Σc(L) coincides with the graph of the
simplicial distance function h4,L. It follows that the intersection H−

p ∩ ∂Σc(L) consists
of all the points of the lower-graph of h4,L that are dominated by p. By definition, any
point of the lower-graph of h4,L is of the form y−h4,L(y).(1, . . . , 1) for some y ∈ H0. By
definition of the function fp, such a point is dominated by p if and only if h4,L(y) > fp(y).
By definition, we know that h4,L(y) 6 fp(y) for all y ∈ H0. We infer that for y ∈ H0,
y−h4,L(y).(1, . . . , 1) ∈ H−

p ∩∂Σc(L) if and only if h4,L(y) = fp(y), or equivalently, if and
only if y ∈ V4(p). We conclude that V4(p) = π0(H

−
p ∩ ∂Σc(L)) and the lemma follows.

2

As we show in the next two lemmas, it is possible to describe Voronoi vertices that are
local maxima of h4,L as the projection of the extremal points of the Sigma-Region onto
the hyperplane H0 (see below, Lemma 4.13, for a precise statement).
Let us denote by Crit(L) the set of all local maxima of h4,P . (In the example given in
Figure 2, these are all the vertices of the polygon drawn in the plane H2 (the right figure)
having one concave and one convex neighbours on the polygon. There are six of them.)

We have

Lemma 4.11 The critical points of L are the projection of the extremal points of Σc(L)
along the vector (1, . . . , 1). In other words, Crit(L) = π0(Extc(L)).

Proof Let c be a point in Crit(L), and let x = c−h4,L(c).(1, . . . , 1), be the corresponding
point of the lower-graph of h4,L, Gr(h4,L)(= ∂Σc(L) by Lemma 4.8). Note that π0(x) = c.
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We claim that x ∈ Extc(L). Assume the contrary. Then there should exist an infinite
sequence {xi}∞i=1 such that (i)xi ∈ ∂Σc(L), (ii) deg(xi) < deg(x), and (iii) limi→∞ xi = x.
By (i) and Lemma 4.8, we can write xi = pi−h4,L(pi).(1, . . . , 1) for some pi ∈ H0. By (ii),
we should have −(n + 1)h4,L(pi) = deg(xi) < deg(x) = −(n + 1)h4,L(c) for every i, and
so h4,L(pi) > h4,L(pi). By (iii), we have limi→∞ pi = c. All together, we have obtained
an infinite sequence of points {pi} in H0 such that h4,L(pi) > h4,L(c) and limi→∞ pi = c.
This is a contradiction to our assumption that c ∈ Crit(L) is a local maximum of h4,L.
A similar argument shows that for every point x ∈ Extc(L), π0(x) is in Crit(L), and the
lemma follows. 2

By Proposition 2.8, we have π0(Extc(L)) = π0(Ext(L)), and so

Corollary 4.12 We have Crit(L) = π0(Ext(L)).

The following lemma gives a precise meaning to our claim that the critical points are
the Voronoi vertices of the Voronoi diagram, and will be used in Section 6 in the proof of
Theorem 6.9 (also used to drive Theorem 8.1).

Lemma 4.13 Each v ∈ Crit(L) is a vertex of the Voronoi diagram Vor4(L): there exist
n + 1 different points p0, . . . , pn in L such that v ∈

⋂
i V (pi). More precisely, a point

v ∈ H0 is critical, i.e., v ∈ Crit(L), if and only if it satisfies the following property: for
each of the n+1 facets Fi of 4̄h4,L(v)(v), there exists a point pi ∈ L such that pi ∈ Fi and
pi is not in any of Fj for j 6= i.

Remark that this shows that every point in Crit(L) is a vertex of the Voronoi diagram
Vor4(L).

Proof We first prove that for every v ∈ Crit(L), there exist (n + 1) different points
pi ∈ L, i = 0, . . . , n, such that the corresponding Voronoi cells V4(pi) shares v, i.e., such
that v ∈ V4(pi) for i ∈ { 0, . . . , n }. By Lemma 4.11, we know that there exists a point
x ∈ Extc(L) such that π0(x) = v. We will prove the following: there exist (n+1) different
points pi ∈ L, i = 0, . . . , n such that x ∈ H−

pi
for all i ∈ { 0, . . . , n }. Once this has been

proved, we will be done. Indeed by Lemma 4.10, we know that that every Voronoi cell
V4(p), for p ∈ L, is of the form π0(H

−
p ) ∩ ∂Σc(L). So v ∈ π0(H

−
pi
∩ ∂Σc(L)) = V4(pi) for

each point pi, and this is exactly what we wanted to prove.
To prove the second part, it will be enough to show that the points pi have the desired

property. Remark that we have d4̄(pi, v) = d4(v, pi) = h4,L(v), so pi ∈ ∂4̄h4,L(v)(v) for
all i. By the choice of pi, we have (pi)j > xj for all j 6= i and (pi)i = xi. Since v = π0(x),
it is now easy to see that pi is in the facet Fi of 4̄h4,L(v)(v) defined by

Fi = { u ∈ 4̄h4,L(v)(v) | ui = vi − h4,L(v) and uj > vj − h4,L(v) }.

(Remark that d4̄(x, v) = | ⊕j (xj − vj)| so this is a facet of 4̄h4,L(v)(v).) And pi is not
in any of the other facets Fj (since (pi)j > vj − h4,L(v) for j 6= i). So the proof of one
direction is now complete. To prove the other direction, let v be a point such that each
of the n + 1 facets Fi of 4̄h4,L(v)(v) has a point pi ∈ L and pi is not in any of the other
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facets Fj for j 6= i. We show that v is critical, i.e., v is a local maxima of h4,L. It will
be enough to show that for any non-zero vector d ∈ H0 of sufficiently small norm, there
exists one of the points pi such that d4(v + d, pi) < h4,L(v) = d4(v, pi). For all j, by
the characterisation of the facet Fj (see above) and by pj /∈ Fk for all k 6= i, we have
d4(v + d, pj) = d4̄(pj, v + d) = |

⊕
k(pj)k − vk − dk| = dj + vj − (pj)j = h4,L(v) + dj if

all dk’s are sufficiently small (namely if for all k, |dk| 6 ε where ε > 0 is chosen so that
2ε < minj,k:k 6=j

[
(pj)k − vk + h4,L(v)

]
). As d ∈ H0 and d 6= 0, there exists i such that

di < 0. It follows that h4,L(d + v) 6 d4(v + d, pi) < h4,L(v). And this shows that v is a
local maximum of h4,L. The proof of the lemma is now complete. 2

4.4 Proof of Lemma 3.7

We end this section by providing the promised short proof of Lemma 3.7, which claims
that the degree function is bounded below in the region Σc(L).

In Section 4.3 we obtained the following explicit formula for fp(y):

∀y ∈ H0, fp(y) = y − d4(y, p)(1, . . . , 1).

We infer that
∀ y ∈ V4(p) : fp(y) = y − h4,L(y).(1, . . . , 1). (3)

By Lemma 4.8, we have ∂Σc(L) = Gr(h4,L). It follows from Equation 3 that

∂Σc(L) = { fp(y) | y ∈ V4(p) and p ∈ L}.

We now observe that:

∀ y ∈ H0 : deg(fp(y)) = deg(y)− (n + 1)d4(y, p) = − (n + 1)d4(y, p).

This shows that deg(fp(y)) depends only on the simplicial distance d4 between y and
p. By translation invariance of the simplicial distance function (Lemma 4.2), translation
invariance of the Voronoi cells (Lemma 4.5), and the above observations, we obtain

inf(deg(Σc(L))) = inf
y∈V4(p)

{ −(n + 1)d4(y, p) }

= inf
y∈V4(O)

{ −(n + 1)d4(y, O) }

= −(n + 1) sup
y∈V4(O)

{ d4(y, O) }.

By Lemma 4.6, we know that V4(O) is compact. Also the function d4(O, y) is continuous
on y. Hence supy∈V4(O){d4(y, O)}} is finite and the lemma follows.
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5 Riemann-Roch Theorem for Uniform Reflection

Invariant Sub-Lattices

Consider a full dimensional sub-lattice L of An and its Voronoi diagram Vor4(L) under
the simplicial distance function. From the previous sections, we know that the points of
Crit(L) are vertices of Vor4(L). We know that V4(O) is a compact star-shaped polyhe-
dron with O as a kernel, and that the other cells are all translations of V4(O) by points
in L. Consider now the subset CritV4(O) of vertices of V4(O) which are in Crit(L). The
sub-lattices of An of interest for us should have the following symmetry property:

Definition 5.1 (Reflection Invariance) A sub-lattice L ⊆ An is called reflection in-
variant if −Crit(L) is a translate of Crit(L), i.e., if there exists t ∈ Rn+1 such that
−Crit(L) = Crit(L) + t. Furthermore, L is called strongly reflection invariant if the same
property holds for CritV4(O), i.e., if there exists t ∈ Rn+1 such that −CritV4(O) =
CritV4(O) + t.

By translation invariance, it is easy to show that every strongly reflection invariant sub-
lattice of An is indeed reflection invariant. Also, note that the vector t in the definition
of reflection invariance lattices above is not uniquely defined: by translation invariance,
if t′ is linearly equivalent to t, t′ also satisfies the property given in the definition.

Reflection Invariance and Involution of Ext(L). Let L be a reflection invariant
sub-lattice and t ∈ Rn+1 be a point such that −Crit(L) = Crit(L) + t. This means that
for any c ∈ Crit(L) there exists a unique c̄ ∈ Crit(L) such that c+ c̄ = −t. By Lemma 4.11
and Corollary 4.12, for every point c in Crit(L), there exists a point ν in Ext(L) such that
c = π0(ν). Thus, for every point ν in Ext(L), there exists a point ν̄ in Ext(L) such that
π0(ν + ν̄) = −t. This allows to define an involution φ(= φt) : Ext(L) → Ext(L):

For any point ν ∈ Ext(L), φ(ν) := ν̄.

Note that φ is well defined. Indeed, if there exist two different points ν̄1 and ν̄2 such that
π0(ν + ν̄i) = −t for i = 1, 2, then π0(ν̄1) = π0(ν̄2) and this would imply that ν̄1 > ν̄2 or
ν̄2 > ν̄1 which contradicts the hypothesis that ν̄1, ν̄2 ∈ Ext(L). A similar argument shows
that φ is a bijection on Ext(L) and is an involution.

5.1 A Riemann-Roch Inequality for Reflection Invariant Sub-
Lattices: Proof of Theorem 1.3

In this subsection, we provide the proof of the Riemann-Roch inequality stated in Theo-
rem 1.3 for reflection invariant sub-lattices of An. We refer to Section 2.3 for the definition
of gmin and gmax.

Let L be a reflection invariant sub-lattice of An. We have to show the existence of a
canonical point K ∈ Zn+1 such that for every point D ∈ Zn+1, we have

3gmin − 2gmax − 1 6 r(K −D)− r(D) + deg(D) 6 gmax − 1 . (4)
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K is defined up to linear equivalence (which is manifested in the choice of t in the definition
of reflection invariance).

Construction of a Canonical Point K.
We define the canonical point K as follows: Let ν0 ∈ Ext(L) be an extremal point such
that ν0 + φ(ν0) has the maximum degree, i.e., ν0 = argmax { deg(ν + φ(ν)) | ν ∈ Ext(L) }.
The map φ is the involution defined above. Define K := −ν0 − φ(ν0).

Proof of the Riemann-Roch Inequality. We first observe that K is well-defined and
for any point ν in Ext(L), ν + ν̄ 6 −K. This is true because all the points ν + ν̄ are on
the line −t+α(1, . . . , 1), α ∈ R, and K is chosen in such a way to ensure that −K has the
maximum degree among the points of that line. We infer that for any point ν ∈ Ext(L),
there exists an effective point Eν such that ν + ν̄ = −K −Eν . Using this, we first derive
an upper bound on the quantity deg+(K −D + ν̄)− deg+(ν + D) as follows:

deg+(K −D + ν̄)− deg+(ν + D) = deg+(−ν − ν̄ − Eν −D + ν̄)− deg+(ν + D) (5)

= deg+(−ν − Eν −D)− deg+(ν + D) (6)

6 deg+(−ν −D)− deg+(ν + D) (7)

= deg(−ν −D) = − deg(ν)− deg(D) (8)

6 gmax − deg(D)− 1. (9)

To obtain Inequality (6), we use the fact that if E > 0 then deg+(D − E) 6 deg+(D).
Also remark that Inequality (9) is a simple consequence of the definition of gmax.
Now, we obtain a lower bound on the quantity deg+(K −D + ν̄)−deg+(ν +D). In order
to do so, we first obtain an upper bound on the degree of Eν , for the effective point Eν

such that ν + ν̄ = −K − Eν . To do so, we note that by the definition of K and by the
definition of gmin, we have deg(K) = min(deg(−ν − ν̄)) > 2gmin − 2. Also observe that
by the definition of gmax, we have deg(−ν − ν̄) 6 2gmax − 2. It follows that

deg(Ev) = − deg(K) + deg(−ν − ν̄) 6 2(gmax − gmin).

We proceed as follows

deg+(K −D + ν̄)− deg+(ν + D) = deg+(−ν − Eν −D)− deg+(ν + D)

> deg+(−ν −D)− deg(Eν)− deg+(ν + D)

> 2(gmin − gmax) + deg+(−ν −D)− deg+(ν + D)

> 2(gmin − gmax)− deg(ν + D)

= 2(gmin − gmax)− deg(ν)− deg(D)

> 3gmin − 2gmax − deg(D)− 1.

The last inequality follows from the definition of gmin. Now since the map φ(ν) = ν̄ is a
bijection from Ext(L) onto itself, we can easily see that

3gmin − 2gmax − deg(D)− 1 6 min
ν∈Ext(L)

deg+(K + ν̄ −D)− min
ν∈Ext(L)

deg+(ν + D)

6 gmax − deg(D)− 1.
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By Lemma 2.9 and the fact φ is a bijection, we know that:

r(D) = minν∈Ext(L) deg+(ν + D)− 1,
r(K −D) = minν̄∈Ext(L) deg+(K −D + ν̄)− 1.

Finally we infer that 3gmin−2gmax−deg(D)−1 6 r(K−D)−r(D) 6 gmax−deg(D)−1 ,
and the Riemann-Roch Inequality (1.3) follows.

Remark 5.2 As the above proof shows, we indeed obtain a slightly stronger inequality

gmin − deg(D)− 1− max
ν∈Ext(L)

deg(Eν) 6 r(K −D)− r(D).

In particular if Eν = 0 for all ν ∈ Ext(L) (see Section 6.2 for examples, e.g., regular
digraphs), we have:

gmin − deg(D)− 1 6 r(K −D)− r(D) 6 gmax − deg(D)− 1.

We remark that the proof technique used above is quite similar to the one used by
Baker and Norine [2].

Remark 5.3 From Lemma 2.9, it is easy to obtain the inequality deg(D)−r(D) 6 gmax,
for all sub-lattices L of An and all D ∈ Zn+1. This inequality is usually referred to
as Riemann’s inequality. Note that the Riemann-Roch inequality (4) is more sensitive
to (and contains more information about) the extent of “un-evenness” of the extremal
points, while the above trivial inequality does not provide any such information.

5.2 Riemann-Roch Theorem for Uniform Reflection Invariant
Lattices

Recall that a lattice L is called uniform if gmax = gmin, i.e., every point in Ext(L) has the
same degree. By Corollary 4.12 and the definition of h4, this is equivalent to saying that
the set of critical values of h4,L is a singleton. We call g = gmax = gmin the genus of the
lattice.

The following is a direct consequence of Theorem 1.3. However we give it as a separate
theorem.

Theorem 5.4 Every uniform reflection invariant sub-lattice L ⊆ An of dimension n has
the Riemann-Roch property.

Proof Let D ∈ Zn+1. If L is a reflection invariant lattice, we can apply Theorem 1.3 to
obtain 3gmin−2gmax−1 6 r(K−D)−r(D)+deg(D) 6 gmax−1, where K is the canonical
point defined as in the proof of Theorem 1.3. Since L is uniform we have gmax = gmin = g
and we obtain r(K−D)−r(D)+deg(D) = g−1. It remains to show that deg(K) = 2g−2.
But, we know from the construction of K that K = −(ν + ν̄) for a point ν ∈ Ext(L).
Since L is uniform, we infer that deg(K) = − deg(ν) − deg(ν̄) = 2g − 2 (and also that
K = −ν − ν̄, ∀ ν ∈ Ext(L)). 2
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We say that a sub-lattice L of An has a Riemann-Roch formula if there exists an
integer m and an integral point Km, or simply K, of degree 2m − 2 (a canonical point)
such that for every integral point D, we have:

r(D)− r(K −D) = deg(D)− (m− 1).

The following result shows the amount of geometric information one can obtain from
the Riemann-Roch Property.

Theorem 5.5 A sub-lattice L has a Riemann-Roch formula if and only if it is uniform
and reflection invariant. Moreover, for a uniform and reflection invariant lattice m = g
(the genus of the lattice).

The rest of this section is devoted to the proof of this theorem. One direction is already
shown, we prove the other direction.

We first prove that

Claim 1 If L has a Riemann-Roch formula, then m = gmax.

Proof The Riemann-Roch formula for a point D with deg(D) > 2m − 2 implies that
deg(D) − r(D) = m. We know that if deg(D) > 2gmax − 2 then deg(D) − r(D) 6 gmax.
This for D with deg(D) > 2 max{m, gmax} − 2 shows that m 6 gmax. By the Riemann-
Roch formula, we have r(D) > 0 for any D with deg(D) > m. Let D = −νmax, where
νmax is an extremal point of minimal degree. Remark that we have r(D) = −1. This
shows that m > gmax. And we infer that m = gmax. 2

We now prove that

Claim 2 If L has a Riemann-Roch formula, then L is uniform and m = g.

Proof Let N be the set of points of Σ(L) of degree −gmax + 1. We note that every
point in N is extremal, i.e., N ⊂ Ext(L). To prove the uniformity, we should prove that
N = Ext(L). We claim that Σ(L) = ∪ν∈NH+

ν , and this in turn implies that N = Ext(L).
Indeed, if the claim holds, then every extremal point ν ∈ Ext(L) should dominate a point
u in N , and so u = ν, meaning that N = Ext(L).

To prove the claim, we proceed as follows. Let −D be a point in Σ(L). We know
that r(D) = −1. We should prove the existence of a point ν in N such that ν 6 −D.
By the Riemann-Roch formula there exists E > 0 with deg(E) = gmax − 1− deg(D) and
r(D + E) = −1. The point −D − E has degree −gmax + 1 and so is in N . In addition
−D − E 6 −D. And this is what we wanted to prove. The proof of the uniformity is
now complete. 2

To finish the proof of the theorem, it remains to show that

Claim 3 If a uniform sub-lattice L of An of full dimension has a Riemann-Roch formula,
then it is reflection invariant.
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Proof Consider a uniform lattice satisfying the Riemann-Roch property. By Lemma 2.2,
we know that for a point ν in Ext(L), r(−ν) = −1. Now, if we evaluate the Riemann-Roch
formula for D = −ν, we get r(−ν) = r(K + ν). Hence, we have r(−ν) = r(K + ν) = −1.
Again by Lemma 2.2, this implies that −K− ν is a point in Σ(L). By the Riemann-Roch
property and Claim 2 above, deg(K) = 2g − 2. Since L is uniform and ν ∈ Ext(L), we
have deg(ν) = g− 1. We infer that deg(K + ν) = g− 1, and it follows that −K − ν is an
extremal point of Σ(L). We now define ν̄ = −K−ν. Clearly, the map ν → ν̄ is a bijection
from Ext(L) onto itself. Let t = π0(−K). We obtain t = π0(−ν− ν̄) = −π0(ν)−π0(ν̄) for
all ν ∈ Ext(L). By Corollary 4.12, we have Crit(L) = π0(Ext(L)) and hence t = −c − c̄
for every c in Crit(L). This implies that −c̄ = t + c. To finish the proof, observe that
c̄ → c is a bijection from Crit(L) onto itself, and so we have −Crit(L) = Crit(L) + t.

2

The proof of Theorem 5.5 is now complete.

6 Examples

In this section we study the machinery we presented in the previous sections through a
few classes of examples.

6.1 Lattices Generated by Laplacian of Connected Graphs

Probably the most interesting examples of the sub-lattices of An are generated by Lapla-
cian of connected multi-graphs (and more generally directed multi-graphs) on n + 1 ver-
tices. In this subsection, we provide a geometric study of these sub-lattices. We prove
the following result:

Theorem 6.1 For any connected graph G, the sub-lattice LG of An generated by the
Laplacian of G is strongly reflection invariant and uniform.

Theorem 6.1 will be a direct consequence of Theorem 6.9 below. Combining this theorem
with Theorem 1.4 gives the main result of [2].

Corollary 6.2 (Theorem 1.12 in [2]) For any connected graph G on n+1 vertices and
with m edges, the Laplacian lattice LG has the Riemann-Roch property. In addition, we
have gmax = gmin = m−n and the canonical point K is given by (δ0−2, δ1−2, . . . , δn−2)
of Zn+1 where δi’s are the degrees of the vertices of G.

Remark 6.3 Using reduced devisors, and the results of [2], it is probably quite straight-
forward to obtain a proof of Theorem 6.1. (This is not surprising since, as we pointed
out in the previous section, a lattice with a Riemann-Roch formula has to be uniform
and reflection invariant.) The proof we will present for Theorem 6.1 gives indeed more
than what is the content of this theorem. We give a complete description of the Voronoi-
diagram and its dual Delaunay triangulation. And we do not use reduced divisors, which
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is the main tool used in the previous proofs of the Riemann-Roch theorem. As we will
see, the form of the canonical divisor for a given graph (and the genus) as defined in [2]
comes naturally out of this explicit description.

Let G be a connected graph on n + 1 vertices v0, v1, . . . , vn and m edges. Let LG, or
simply L if there is no risk of confusion, be the Laplacian sub-lattice of An. We summarise
the main properties of the lattice LG and the matrix Q, defined in Section 1. LG is an
n-dimensional sub-lattice of An with {b0, . . . , bn−1} as a basis such that the (n+1)×(n+1)
matrix Q has {b0, . . . , bn−1} as the first n rows and bn = −

∑n−1
i=0 bi as the last row. In

addition, the matrix

Q =


δ0 −b01 −b02 . . . −b0n

−b10 δ1 −b12 . . . −b1n
...

...
. . .

−bn0 −bn1 −bn2 . . . δn

 (10)

has the following properties:

(C1) bij’s are integers, bij > 0 for all 0 6 i 6= j 6 n and bij = bji, ∀i 6= j.

(C2) δi =
∑n

j=1,j 6=i bij =
∑n

j=1,j 6=i bji (and is the degree of the i-th vertex).

We denote by B the basis {b0, . . . , bn−1} of LG.

6.1.1 Voronoi Diagram Vor4(LG) and the Riemann-Roch Theorem for Graphs

We first provide a decomposition of H0 into simplices with vertices in L such that the
vertices of each simplex forms an affine basis of LG. Recall that a subset of lattice points
X ⊂ L of size n + 1 is called an affine basis of L, if for v ∈ X, the set of vectors u − v,
u ∈ X and u 6= v, forms a basis of L. In other words, if the simplex defined by X
is minimal (which means it is full-dimensional and has minimum volume among all the
(full-dimensional) simplices whose vertices lie in L). The whole decomposition is derived
from the symmetries of the affine basis B, and describes in a very nice way the Voronoi
decomposition Vor4(LG). What follows could be considered as an explicit construction
of the “Delaunay dual”, Del4(LG), of Vor4(LG).

We consider the family of total orders on the set { 0, 1, . . . , n }. A total order <π on
{ 0, 1, . . . , n } gives rise to an element π of the symmetric group Sn+1, defined in such
a way that π(0) <π π(1) <π · · · <π π(n − 1) <π π(n). It is clear that the set of all
total orders on {0, . . . , n} is in bijection with the elements of Sn+1. In addition, the
total orders which have n as the maximum element are in bijection with the subgroup
Sn ⊂ Sn+1 consisting of all the permutations which fix n, i.e., π(n) = n. In the following
when we talk about a permutation in Sn, we mean a permutation of Sn+1 which fixes
n. For π ∈ Sn, we denote by π̄ the opposite permutation to π defined as follows: we
set π̄(n) = n and π̄(i) = π(n − 1 − i) for all i = 0, . . . , n − 1. In other words, for all
i = 0, . . . , n − 1, i <π j if and only if j <π̄ i, and j 6π̄ n for all j. Let Cn+1 denotes the
group of cyclic permutations of {0, . . . , n}, i.e., Cn+1 =< σ > where σ is the element of
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Sn+1 defined by σ(i) = i + 1 for 0 6 i 6 n − 1 and σ(n) = 0. It is easy to check that
Sn+1 = SnCn+1.

Let <π be a total order such that π ∈ Sn, i.e., π ∈ Sn+1 and π(n) = n. We first define
a set of vectors Bπ = { bπ

0 , . . . , b
π
n } as follows:

∀ i ∈ { 0, . . . , n }, bπ
i :=

∑
j6πi

bj .

In particular, note that bπ
n = bπ

π(n) :=
∑

j6ππ(n) bj =
∑n

j=0 bj = 0.

Lemma 6.4 For any total order <π with n as maximum, or equivalently for any π in Sn,
the set Bπ = { bπ

0 , . . . , b
π
n } forms an affine basis of LG.

Proof It is easy to see that the matrix of {bπ
π(0), . . . , b

π
π(n−1)} in the base B is upper

triangular with diagonals equal to 1. It follows that the set {bπ
π(0), . . . , b

π
π(n−1)} is a basis

of L. As bπ
π(n) = 0, it follows that Bπ is an affine basis. 2

We denote by 4π the simplex defined by Bπ. In other words, 4π := Conv(Bπ), the
convex-hull of Bπ. Consider the fundamental parallelotope F (B) defined by the basis B of
LG. Note that F (B) is the convex-hull of all the vectors bπ

i for π ∈ Sn and i ∈ {0, . . . , n}.
We next show that the set of simplices {4π}π∈Sn provides a simplicial decomposition (i.e.,
a triangulation) of F (B). But before we need the following simple lemma:

Lemma 6.5 Let �n = { (x0 . . . , xn−1) | 0 6 xi 6 1} be the unit hypercube in Rn. For a
permutation π ∈ Sn, let 4̄π

n = { x = (x0, . . . , xn−1) ∈ Rn | 0 6 xπ(n−1) 6 xπ(n−2) 6 . . . 6
xπ(0) 6 1}. The set of simplices { 4̄π

n }π∈Sn is a simplicial decomposition of �n.

We have

Lemma 6.6 Let G be a connected graph and L ⊂ An be the corresponding Laplacian
lattice. The set of simplices {4π}π∈Sn is a simplicial decomposition of F (B).

Proof Since B is a basis of the n dimensional lattice LG, which is contained in H0, it
is also a basis of H0. By definition, F (B) is the unit cube with respect to the basis B.
By Lemma 6.5, the family of simplices {4̄π}π∈Sn is a simplicial decomposition of F (B),
where 4̄π = { x = x0b0 + · · ·+ xn−1bn−1) ∈ H0 | 0 6 xπ(n−1) 6 xπ(n−2) 6 . . . 6 xπ(0) 6 1}
and the vectors are written in the B-basis. Now recall that the vertices of 4π are given
by the points bπ

j . Recall also that ∀ i ∈ { 0, . . . , n }, bπ
i :=

∑
j6πi bj , and that bπ

n = 0.

A simple calculation shows that 4π coincides with the simplex 4̄π above, and the proof
follows. 2

A combination of this lemma with the simple fact that F (B) + LG is a tiling of H0 gives
us:

Corollary 6.7 The set of simplices {4π + p | π ∈ Sn, p ∈ LG } forms a triangulation of
H0.
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In the simplicial decomposition {4π + p | π ∈ Sn & p ∈ L} of H0, consider the set SimO

consisting of all the simplices that contain the origin O as a vertex. We have

Lemma 6.8 A simplex is in SimO if and only if it is spanned by Bπ for some π in Sn+1.
(Remark that we do not assume that π(n) = n.)

Proof By Corollary 6.7, we know that every simplex in SimO is of the form: 4π0 + q
for some π0 in Sn and q in L. Recall that the element π of Sn is regarded as an element
of Sn+1, with the property that π(n) = n. Since, the vertex set of 4π0 is V (4π0) =
{bπ0

0 , . . . , bπ0
n−1, O}, we should have q = −bπ0

i for some 0 6 i 6 n − 1. Let 0 6 j 6 n be
such that π0(j) = i. A straightforward calculation shows that V (4π0) − bπ0

i = V (4π),
where π = π0σ

j and σ is the cyclic permutation (0, 1, 2, .., n) → (1, . . . , n, 0). The lemma
follows because every element π ∈ Sn+1 can be written uniquely in the form σiπ0 for some
π0 ∈ Sn (Sn+1 = SnCn+1). 2

Remark also that |SimO| = |Sn+1| = (n + 1)!.
Our aim now will be to provide a complete description of the set Extc(LG) of extremal

points of Σc(L) (and equivalently the set Ext(LG) = Extc(LG)−(1, . . . , 1)) in terms of this
triangulation. Actually we obtain an explicit description of the set CritV4(O). Before we
proceed, let us introduce an extra notation. Let π be an element of the permutation group
Sn+1. We do not suppose anymore that π(n) = n. We define the point νπ ∈ Zn+1 as the
tropical sum of the points of Bπ, i.e., νπ :=

⊕n
i=0 bπ

i . (And recall that bπ
i =

∑
j6πi bj.)

We have the following theorem.

Theorem 6.9 Let G be a connected graph and LG be the Laplacian lattice of G.

(i) The set of extremal points of Σc(LG) consists of all the points νπ + p for π ∈ Sn+1

and p ∈ LG, i.e., Extc(LG) = { νπ + p | π ∈ Sn+1 and p ∈ LG }. As a consequence,
we have Ext(LG) = { νπ + p + (1, . . . , 1) | π ∈ Sn+1 and p ∈ LG }.

(ii) We have CritV4(O) = π0({ νπ | π ∈ Sn+1 }).

It is quite easy to see that the set {νπ} has the following properties (c.f. Theorem 6.1
below.)

(P1)- Reflection Invariance. For all π ∈ Sn+1, νπ + ν π̄ = (−δ0,−δ1, . . . ,−δn) where π̄
is the opposite permutation to π, and δi denotes the degree of the vertex vi. Since
CritV4(O) = π0({ νπ |π ∈ Sn+1 }), it follows that LG is strongly reflection invariant.
More precisely we have CritV4(O) = −CritV4(O)+π0((−δ0, . . . ,−δn)). (Recall that
π0 is the projection function.)

(P2)- Uniformity. For all π ∈ Sn+1, deg(νπ) = −m. In other words, the Laplacian
lattice LG is uniform.
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The proof of the results of this section will be given in the next subsection. However, let
us quickly show how to calculate g and K in the above corollary. The vertices νπ all belong
to Extc and have degree −m. It follows that the vertices of Ext(L) = Extc + (1, . . . , 1)
have all degree −m + n + 1, and so by the definition of genus, we obtain gmin = gmax =
m − n. In particular g coincides with the graphical genus of G (which is the number of
vertices minus the number of edges plus one). Since the points of Ext(LG) are of the form
νπ + (1 . . . , 1), and as we saw in the proofs of Theorem 1.3 and Theorem 5.4, we have
K = −(νπ + (1, . . . , 1))− (ν π̄ + (1, . . . , 1)) = (δ0 − 2, δ1 − 2, . . . , δn − 2).

6.1.2 Proofs of Theorem 6.9 and Theorem 6.1

It is easy to see that the point νπ =
⊕n

i=0 bπ
i has the following explicit form:

νπ = (−
∑
j<π0

bj0,−
∑
j<π1

bj1, . . . ,−
∑
j<πn

bnj). (11)

It follows that

νπ = (−δ0 +
∑
j>π0

bj0,−δ1 +
∑
j>π1

bj1, . . . ,−δn +
∑
j>πn

bnj)

= (−δ0, . . . ,−δn)− (−
∑
j<π̄0

bj0,−
∑
j<π̄1

bj1, . . . ,−
∑
j<π̄n

bnj)

= (−δ0, . . . ,−δn)− ν π̄.

And we infer that

Lemma 6.10 For every π ∈ Sn+1, we have νπ + ν π̄ = (−δ0, . . . ,−δn).

Second, we calculate the degree of the point νπ. It is easy to see that

deg(νπ) = −
∑

i,j : j<πi

bij = −m,

where m denotes the number of edges of G, or equivalently in terms of the matrix Q,
m = 1

2

∑
i δi = trace(Q)/2. It follows that

Lemma 6.11 All the points νπ have the same degree.

We now show that νπ ∈ Σc(L) for every π ∈ Sn+1. Assume for the sake of contradiction
that there exists a point p ∈ L such that p > νπ. By the definition of the Laplacian lattice
L, we know that there are integers α0, . . . , αn such that p = α0b0 + . . . , αnbn, and so we
can write

p = (
n∑

j=0

(α0 − αj)bj0, . . . ,
n∑

j=0

(αn − αj)bjn).

for some αi ∈ Z. Among the integer numbers αi, consider the set of indices Sp consisting
of the indices i for which αi is minimum. Remark that as p is certainly non zero (since
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there is a coordinate of νπ which is zero, we cannot have 0 > νπ), we cannot have
Sp = {0, . . . , n}. Now in the set Sp consider the index k which is the minimum in the
total order <π. By construction of k, we have αk−αj 6 −1 for all j <π k and αk−αj 6 0
for all j >π k. It follows that pk, the k−th coordinate of p, is bounded above by

pk =
n∑

j=0

(αk − αj)bjk 6
∑
j<πk

−bjk = νπ
k .

And this contradicts our assumption p > νπ.
Next, we need to show that νπ is a local minimum of the degree function. We already

now that deg(νπ) = −m. We will prove that for every point x ∈ Σc(L), we have deg(x) >
−m. By Lemma 4.8, it will be enough to prove that h4,L(x) 6 m

n+1
for every point x ∈ L.

By the definition of the simplicial distance function h4,L, this is equivalent to proving
that the simplex x + m

n+1
4 contains a lattice point p ∈ L, i.e.,

∀x ∈ H0, (x +
m

n + 1
4) ∩ L 6= ∅. (12)

Here we use the following trick to reduce the problem to the case when all the entries
of Q are non-zero. We add a rational number ε = s

t
, s, t ∈ N, to each bij, i 6= j, to obtain

bε
ij. We also define δε

i in such a way that
∑

i b
ε
ij = δε

i . Remark that
∑

j δε
j = tr(Qε)

2
. The

new matrix Qε is not integral anymore (but if we want to work with integral lattices,
we can multiply every coordinate by a large integer t to obtain an integral matrix tQε).
If we know that our claim is true for all Laplacians with non-zero coordinates, then the
function h associated to tQε satisfies the property

h4,Lt,ε 6
tr(tQε)

2(n + 1)
. (13)

Where Lt,ε denotes the lattice generated by the matrix tQε. Let Lε be the (non
necessarily integral ) lattice generated by the matrix Qε. It is easy to see that t.h4,Lε =
h4,Lt,ε . Equation 13 implies then

h4,Lε 6
tr(Qε)

2(n + 1)
=

m

n + 1
+

nε

2(n + 1)
. (14)

Using characterisation of Equation 12, one can see that, varying ε, the above property
for all sufficiently small rational ε > 0 will imply that h4,L 6 m

n+1
, and that is what we

wanted to prove. Indeed one can easily show that the distance function h4,Lε(p) is a
continuous function in ε and p.

So at present, we have shown that we can assume that all the bij’s are strictly positive.
This is the assumption we will make for a while. In this case, using the explicit calculation
of νπ, we can quite easily show that

Lemma 6.12 The point νπ has the following properties:
1. νπ

i = bπ
ii for 0 6 i 6 n.

2. νπ
j < bπ

ij for i 6= j and 0 6 i, j 6 n.
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As a corollary we obtain:

Corollary 6.13 Let {e0, . . . , en} be the standard orthonormal basis of Rn, i.e., e0 = (1, 0,
. . . , 0) , . . . , en = (0, . . . , 0, 1). Let ej be a fixed vector. For every δ > 0, νπ − δej < bπ

j .

Lemma 6.14 For every non-zero vector w in H−
O and for every δ > 0, there exists a

point p in L such that νπ − δw < p.

Proof Follows easily from the above discussion. 2

It follows now easily that

Corollary 6.15 The point νπ is an extremal point of Σc(L).

Proof Follows by combining Lemmas 6.14 and 3.6. 2

We will now prove the following: every extremal point of Σc(L) can be written as the
tropical sum of the vertices of a simplex of the form 4π + q, for some π ∈ Sn and some
q in L. Again we will first assume a stronger condition that bij > 0 for all i, j such that
i 6= j and 1 6 i, j 6 n − 1. And then we do a limiting argument similar to the one we
did above to obtain the general statement. Let π ∈ Sn a fixed permutation. Using the
assumption bij > 0 for i 6= j, it is easy to show that

Lemma 6.16 For any total ordering <π, π ∈ Sn+1, we have bπ
ij 6= 0 for all 0 6 i, j 6 n

and i 6= π(n). (Remark that bπ
π(n) = 0.) Here bπ

ij is the j−th coordinate of the vector bπ
i .

In addition, if bπ
ij > 0 (resp. bπ

ij < 0 ), then j 6π i (resp. i <π j <π π(n)).

As we saw in Lemma 6.8, the set of simplices ∆π, π ∈ Sn+1, coincides with SimO,
the set of all simplices of the triangulation which are adjacent to O. The simplices of
SimO naturally define a fan F , the maximal elements of which are the set of all cones Cπ

generated by ∆π for π ∈ Sn+1. In other words if Bπ denoted the affine basis {bπ
i }n

i=0, the
cone Cπ is the cone generated by Bπ. In particular every element of H0 is in some Cπ for
some π ∈ Sn+1. We have

Lemma 6.17 Let q be a point in L, and q 6= bπ
i for all π ∈ Sn+1 and 0 6 i 6 n. Let

Cπ be a cone in F which contains q. There exists a vector bπ
i in Bπ such that p < bπ

i for
every point p in H−

O ∩H−
q . In particular, no point in H−

O ∩H−
q is contained in Σc(L).

Proof Since q is a point in L∩Cπ, there exists non-negative integers αi > 0, 0 6 k 6 n−1,
such that we can write q =

∑n−1
k=0 αkb

π
π(k). In addition, since q /∈ Bπ, we have

∑
l αl > 2.

Let j = min{ k |αk 6= 0 }, i.e., the minimum index such that αk 6= 0, and let i = π(j). We
show that the point bπ

i satisfies the condition of the lemma. For this, it will be enough to
prove that bπ

i > O⊕ q. Indeed p ∈ H−
O ∩H−

q implies that p 6 O⊕ q, and so if bπ
i > O⊕ q,

then we have p < bπ
i , which is the required claim.

We should prove that bπ
ik > (O ⊕ q)k for all k. As i = π(j) 6= π(n), by Lemma 6.16

we know that bπ
ik 6= 0 for all k. There are two cases: if bπ

ik > 0, then easily we have
bπ
ik > 0 > (O⊕ q)k. If bπ

ik < 0, then by Lemma 6.16, we have bπ
lk < 0 for all l >π i. By the

choice of i, we have αl = 0 for all l <π i. We infer that bπ
jk >

∑
l αlb

π
lk = (O ⊕ q)k, and

the lemma follows. 2

the electronic journal of combinatorics 17 (2010), #R124 34



We obtain the following corollary: the simplices of our simplicial decomposition form
the dual of the Voronoi diagram. More precisely

Corollary 6.18 Let q be a point in L that is not a vertex of a simplex in SimO, i.e.,
q 6= bπ

i for all π ∈ Sn+1 and 0 6 i 6 n. Then V (O) ∩ V (q) = ∅. Hence, for every two
points p and q in L, we have V (p) ∩ V (q) 6= ∅ if and only if p and q are adjacent in the
simplicial decomposition of H0 defined by {4π + p | π ∈ Sn & p ∈ L} i.e., V (p)∩V (q) 6= ∅
if and only if there exists π ∈ Sn+1 such that q is a vertex of ∆π + p.

Proof We prove the first statement by contradiction. So for the sake of a contradiction,
assume the contrary and let p ∈ V (O)∩V (q). By definition, we have h4,L(p) = d4(p, O) =
d4(p, q) 6 d4(p, q′) for all points q′ ∈ L. By Lemma 4.10 this implies that the point
y = fO(p) = fq(p) is a point in ∂Σc(L) (c.f. Section 4 for the definition of fp). By the
definition of fp, the point y is in H−

O ∩H−
q . On the other hand, Lemma 6.17 implies that

no point in H−(O) ∩ H−(q) can be contained in Σc(L). We obtain a contradiction. To
see the second part, by translation invariance we can assume p = O. And in this case,
the results follows by observing that for q ∈ ∆π, π0(ν

π) ∈ V (O) ∩ V (q). 2

We can now present the proof of Theorem 6.9 in the case where all the bij’s are strictly
positive. It will be enough to prove that CritV (O) = π0({νπ | π ∈ Sn+1}). As vπ ∈ H−

O

and we showed that vπ is in Extc(L), we have π0({νπ | π ∈ Sn+1}) ⊆ CritV (O). We
show now CritV (O) ⊆ π0({νπ | π ∈ Sn+1}). Let v ∈ CritV (O) and x be the point in
Extc(L) with π0(x) = v. By Lemma 4.13, there exist points p0, . . . , pn ∈ L such that
v ∈ V (p0) ∩ · · · ∩ V (pn). By Corollary 6.18, points p0, . . . , pn should be adjacent in the
simplicial decomposition of H0 defined by {4π+p|π ∈ Sn&p ∈ L}. As v is also in Vor(O),
it follows that one of the pi is O, and so there exists π ∈ Sn+1 such that v ∈ ∩p∈BπVor(p).
By the proof of Lemma 4.13, we also have x =

⊕
i pi. But

⊕
p∈Bπ p = νπ. It follows that

x = νπ. We infer that v ∈ π0({νπ | π ∈ Sn+1}) and the theorem follows.

The proof of Theorem 6.1 is a simple consequence of Lemma 6.10, and what we just
proved, namely, Extc(L) = {νπ + q |π ∈ Sn & q ∈ L} and CritV (O) = π0({νπ |π ∈ Sn+1}).

To prove the general case, it will be enough to show that CritV (O) = π0({νπ | π ∈
Sn+1}) still holds. Indeed the rest of the arguments remain unchanged.

We consider again the ε-perturbed Laplacian Qε and do a limiting argument similar
to the one we did before. Let Lε to be the lattice generated by Qε. By Vor(Lε) and
CritVε(p), we denote the Voronoi diagram of Lε under the distance function d4 and the
Voronoi cell of a point p ∈ Lε. We also define Bπ

ε , ∆π
ε , and νπ

ε similarly.
Theorem 6.9 in the case where all the coordinates are strictly positive implies that

CritVε(O) = π0({vπ
ε | π ∈ Sn+1}). We can naturally define limits of the sets CritVε(O) as

ε tends to zero as limits of the points π0(v
π
ε ). Indeed this limit exists and coincides with

the set π0({νπ | π ∈ Sn+1}), as can be easily verified. We show now

Lemma 6.19 We have limε→0 CritVε(O) = CritV (O).
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Remark 6.20 Unfortunately this is not true in general for non graphical lattices. How-
ever, we always have CritV (O) ⊆ limε→0 CritVε(O).

Proof of Lemma 6.19 By Corollary 6.15, we already know that every point of π0({νπ|π ∈
Sn+1}) is critical. So we should only prove that these are the only critical points, namely
CritV (O) ⊆ limε→0 CritVε(O) = π0({νπ | π ∈ Sn+1}). Let c be a critical point of L.
By Lemma 4.13, we know that there exists a set of points p0, . . . , pn such for each i, the
facet Fi of 4̄h4,L(c)(c) contains pi and none of the other points pj 6= pi. We will show the
following: for all sufficiently small ε, there exists a point cε ∈ Lε and hε = h4,Lε(cε) ∈ R+

such that 4̄hε(cε) has the same property for the lattice Lε, namely, for each i, the facet
Fε,i of 4̄hε(cε) contains a point pε,i ∈ Lε which is not in any other facet Fε,j of 4̄hε(cε), for
j 6= i. In addition 4̄hε(cε) → 4̄h4,L(c)(c), and so hε → h4,L(c) and cε → c (hε and cε being
the radius and the centre of these balls 4̄hε(cε)). As each of the point cε will be critical for
Lε, we conclude that c ∈ limε→0 Crit(Lε) which is easily seen to be enough for the proof
of the lemma. To show this last statement, we argue as follows: for small enough ε, there
exist points qε,0 and pε,1, . . . , pε,n ∈ Lε such that qε,0 → p0 and for all n > i > 1, pε,i → pi

when ε goes to zero. These points naturally define a ball for the metric d4̄, i.e., a simplex
of the form 4̄rε(c̄ε). This is the bounded simplex defined by the set of hyperplanes Ei,ε,
where Ei,ε is the hyperplane parallel to the facet Fi of 4̄h4,L(c)(c) which contains pε,i (qε,0

for i = 0). We define the ball 4̄hε(cε) as follows. For each ε, if the interior of 4̄rε(c̄ε)
does not contain any other lattice point (a point of Lε), we let 4̄hε(cε) := 4̄rε(c̄ε). If the
interior of 4̄rε(c̄ε) contains another point of Lε, let pε,0 be the furthest point from the
hyperplane E0,ε and E ′

0,ε the hyperplane parallel to E0,ε which contains this point. The
simplex (ball) 4̄hε(cε) is the simplex defined by the hyperplanes E0,ε and E1,ε, . . . , En,ε.
These simplices have the following properties:

• For all small ε, 4̄hε(cε) does not contain any point of Lε in its interior. As a
consequence, hε = h4,Lε(cε).

• When ε → 0, the simplices 4̄hε(cε) converge to 4̄h4,L(c)(c) (in Gromov-Haussdorf
distance for example).

• The point pε,0 is in the interior of the facet Fε,0 of the simplex 4hε(cε). In addition
for sufficiently small ε, each point pε,i is in the interior of the facet Fε,i of the simplex
4hε(cε). This is true because 4̄hε(cε) → 4̄h4,L(c)(c), pε,i → pi, and each point pi is
in the interior of the facet Fi of 4̄h4,L(c)(c).

These properties show that the point cε is critical for Lε and limε→0 cε = c, which
completes the proof. 2

The proofs of Theorem 6.9 and Theorem 6.1 are now complete.
We note that this representation of c as a limit of cε is not in general unique. Indeed

it is quite straightforward to check the following two theorems which show together that:
Different non-equivalent classes of critical points, up to linear equivalence, can converge
in the limit to the same class.
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Theorem 6.21 In the case where all bij > 0, none of the points νπ for π ∈ Sn is linearly
equivalent to another one, i.e., they define different classes in Rn+1/L. In particular, the
number of different critical points up to linear equivalence is exactly n!.

However for general graphs this number is usually strictly smaller than n!. We state here
without proof the following result about the number of non-equivalent classes of critical
points. Two permutations π and σ ∈ Sn ⊂ Sn+1 are elementary equivalent if π is obtained
from σ by switching two consecutive vertices in the order defined by σ which are not
adjacent in G (π(n) = σ(n) = n). Two elements π and σ ∈ Sn are equivalent if there is
a sequence of elementary equivalences which relate π to σ. Each equivalent class for this
equivalence relation is called a cyclic order of G.

Theorem 6.22 Let G be a given connected graph on n + 1 vertices. The number of
different critical points up to linear equivalence for the Laplacian lattice L is exactly the
number of different cyclic orders of G.

Remark 6.23 We note that the number in the above theorem is exactly the number of
acyclic orientations of G with a unique fixed source v0, which is also the evaluation of the
Tutte polynomial at the point (1, 0) [26].

6.2 Lattices Generated by Laplacian of Connected Regular Di-
graphs

In this section, we briefly describe how to extend partially the results of the previous
section to connected regular digraphs. A digraph D is regular if the in-degree and out-
degree of each vertex are the same. This allows to define a Laplacian matrix for D, almost
similar as in the graphic case: if the vertices of D are enumerated by {v0, . . . , vn}, the
matrix representation of the Laplacian D is of the form Equation 10 but we do not have
symmetry any more. Namely

Q =


δ0 −b01 −b02 . . . −b0n

−b10 δ1 −b12 . . . −b1n
...

...
. . .

−bn0 bn1 −bn2 . . . δn

 (15)

has the following properties:

(C1) bij’s are integers and bij > 0 for all 0 6 i 6= j 6 n.

(C2) δi =
∑n

j=1,j 6=i bij =
∑n

j=1,j 6=i bji (and is the in-degree (= out-degree) of the vertex
vi).

We obtain the simplicial decomposition of H0 defined by {4π+p|π ∈ Snandp ∈ L}, similar
to the case of unoriented graphs. In the case where all the coordinates bij are strictly
positive, we can similarly prove the following results (the proofs remain unchanged):
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• For all π ∈ Sn and p ∈ L, the point νπ + p is extremal (c.f. Corollary 6.15).

• For every two points p and q in L, we have V (p)∩V (q) 6= ∅ if and only if p and q are
adjacent in the simplicial decomposition of H0 defined by {4π +p |π ∈ Sn &p ∈ L}.
In other words, V (p) ∩ V (q) 6= ∅ if and only if there exists π ∈ Sn+1 such that q is
a vertex of ∆π + p (c.f. Corollary 6.18).

• The set of extremal points of Σc(LG) consists of all the points νπ + p for π ∈ Sn+1

and p ∈ LG, i.e., Extc(LG) = { νπ + p | π ∈ Sn+1 and p ∈ LG }. As a consequence,
we have Ext(LG) = { νπ + p + (1, . . . , 1) | π ∈ Sn+1 and p ∈ LG }. More precisely, we
have CritV4(O) = π0({ νπ | π ∈ Sn+1 }). (c.f. Theorem 6.9).

• We have gmin = −maxπ∈Sn deg(νπ)− n and gmax = −minπ∈Sn deg(νπ)− n.

• Riemann-Roch Inequality. Remark 5.2 can be applied: for K = (δ0− 2, . . . , δn− 2),
we have for all D,

gmin − deg(D)− 1 6 r(K −D)− r(D) 6 gmax − deg(D)− 1.

In the general case, where some of the bij’s could be zero, unfortunately the limiting
argument does not behave quite well. Indeed, there are examples of regular digraphs for
which a point νπ is not a critical point for L for some π ∈ Sn. However as the proof of
Lemma 6.19 shows, we always have Crit(L) ⊆ limε→0 Crit(Lε). So it could happen that we
lose (strong) reflection invariance. Although we do not know in general if such lattices have
any sort of reflection invariance, it is still possible to prove a Riemann-Roch inequality
for these lattices by taking the limit of the Riemann-Roch inequalities for the lattices Lε.
One point in doing this limiting argument is to extend the definition of the rank function
to all the points of Rn+1 (and not only for integral points), which we briefly defined in
the beginning of this paper. This new rank-function will have image in {−1} ∪R+ and is
continuous on the points where it is strictly positive.

In the general case we have the following results:

• Every point of degree −minπ∈Sn deg(νπ) among the points νπ is extremal (by a simi-
lar limiting argument as in the graphic case). So we have gmax = −minπ∈Sn deg(νπ)−
n. In addition, gmin > −maxπ∈Sn deg(νπ)− n. Let ḡmin = −maxπ∈Sn deg(νπ)− n.

• (Riemann-Roch Inequality.) Taking the limit of the family of inequalities gε
min −

deg(D)− 1 6 rε(Kε−D)− rε(D) 6 gε
max−deg(D)− 1, where ε goes to zero, we get

ḡmin − deg(D)− 3 6 r(K −D)− r(D) 6 gmax − deg(D) + 1.

Here rε is the rank function for the lattice Lε. This is because limε→0 gε
min = ḡmin;

limε→0 gε
max = gmax; and r(D) + 1 > limε→0 rε(D) > r(D)− 1 for all D ∈ Rn+1.

the electronic journal of combinatorics 17 (2010), #R124 38



6.3 Two Dimensional Sub-lattices of A2

In this section, we consider full-rank sub-lattices of A2. First, we show that all these
sub-lattices are reflection invariant. This is indeed an easy consequence of Theorem 8.1
by which a sub-lattice of A2 of rank two has at most two different classes of critical points.
It follows that:

Theorem 6.24 Every sub-lattice L of A2 of dimension two is reflection invariant.

Indeed something quite strong holds in dimension two: every two dimensional sub-
lattice L of A2 is a Laplacian lattice of some regular digraph on three vertices.

Lemma 6.25 Every full dimensional sub-lattice of A2 is the Laplacian lattice of a regular
digraph on three vertices.

Let {e0, e1, e2} be the standard basis of H0 where e0 = (2,−1,−1), e1 = (−1, 2,−1)
and e2 = (−1,−1, 2). Let the linear functional g0, g1 and g2 be defined by taking the
scaler product with e0, e1, e2 respectively. So for example for u = (u0, u1, u2), g0(u) =
2u0 − u1 − u2. Let b0, b1 be a basis of L and b2 = −b0 − b1. Let Q be the matrix having
b0, b1 and b2 as its first, second and third row, respectively. For i = 0, 1, 2, define the cone
Ci to be the set of vectors v such that gi(v) > 0 and gj(v) 6 0 for j 6= i. We have

Lemma 6.26 For a sub-lattice of A2, the basis b0, b1, b2 is the basis defined by a regular
digraph if and only if the following holds: for each i, bi is in the cone Ci.

Proof Let bij denote the j-th coordinate of bi. It will be enough to show that bij 6 0
for i 6= j. Let j′ ∈ {0, 1, 2} be different from i and j. We have gj(bi) 6 0. But
gj(bi) = 2bij − bii − bij′ = 3bij. It follows that bij 6 0. 2

Proof of Lemma 6.25 We should show the existence of lattice points {b0, b1, b2} such
that:

(i) {b0, b1} is a basis of L;

(ii) b0 + b1 + b2 = O;

(iii) bi is contained in the cone Ci.

First consider a shortest vector b0 of the lattice and a shortest vector of the lattice b1

that is linearly independent of b0. Using for example Pick’s formula, one can show that
{b0, b1} forms a basis of the lattice L. We may now assume that b0 is contained in one of
the cones C0, C1 or C2, and without loss of generality C0. Indeed if b0 does not belong to
any of these cones then −b0 will belong to one of these cones, and we may replace b0 by
−b0. So we assume that b0 belongs to C0. It is well known that b1 can be chosen such that
the angle between b0 and b1 is in the interval [π

3
, 2π

3
]. Since the maximum angle between

any two points in Ci is π
3
, b1 is contained in a cone different from C0 and −C0. Now, if

b1 is not contained in C1 or C2 then −b2 will be in C1 or C2, and we can replace b1 by
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−b1. Remark that {b0,−b1} will remain a basis. Hence, we may assume without loss of
generality that B = {b0, b1} is a basis of the lattice such that b0 is contained in cone C0

and b1 is contained in cone C1.
This means that b0 = (b00, b01, b02) and b1 = (b10, b11, b12), where b01, b02, b10, b12 6 0 and
b00 = −b01 − b02 > 0 and b11 = −b10 − b12 > 0. First, we observe that −b3 = b0 + b1 is
contained in C0 ∪ C1 ∪ −C2, and if it is in −C2, then we have our set of lattice points
{b0, b1, b2}. We now define a procedure which, by updating the set of vectors b0, b1,
provides at the end the set of lattice points {b0, b1, b2} with properties (i), (ii) and (iii)
above. The procedure is defined as follows:

(a) If b0 + b1 ∈ −C2 then stop.

(b) Otherwise, if b0 + b1 ∈ C0 replace b0 by b0 + b1 and iterate.

(c) Otherwise, if b0 + b1 ∈ C1 replace b1 by b0 + b1 and iterate.

(d) Output {b0, b1, b2}, where b2 = −b0 − b1.

We will show that the number of iterations is finite. And this shows that the final output
has the desired properties. Indeed, at each iteration {b0, b1} form a basis of L (if {b0, b1}
is a basis of L then {b0 + b1, b1} and {b0, b0 + b1} will also be a basis of L), and so by the
definition of the procedure, the finiteness of the number of steps shows that at the end we
should have b0 + b1 ∈ −C3. To show that the procedure terminates after a finite number
of iterations, consider a step of the algorithm: if the step (b) in the procedure happens,
then b0 + b1 should be in C0 and not in −C2. This means that 0 > b01 + b11, which implies
that |g1(b0 + b1)| < |g1(b0)|. Indeed g1(b0 + b1) = 3b01 + 3b11 < 0 and so |g1(b0 + b1)| =
−3b01 − 3b11 < −3b01 = |g1(b0)|. Furthermore, we have, 0 6 g0(b0 + b1) 6 g0(b0), since
g0(b1) 6 0.

Similarly, if the step (c) in the above procedure happens, then b0 + b1 should be in
C1 and not in −C2. Hence, we should have |g0(b0 + b1)| < |g0(b1)| and 0 6 g1(b0 + b1) 6
g1(b1). We infer that, starting form b0 and b1, at each iteration one of the two inequalities
|g1(p)| < |g1(b0)| or |g0(p)| < |g0(b1)| for p = b0 + b1 should be satisfied. Furthermore, at
every iteration we have |g0(p)| 6 |g0(b0)| and |g0(p)| 6 |g0(b1)|. Hence, an upper bound
on the number of iterations is the number of lattice points p in C0 with |g0(p)| 6 |g0(b0)|
plus the number of lattice points q in C1 with |g1(q)| 6 |g1(b1)| and this is indeed finite.

2

Remark 6.27 In higher dimensions, the analogue of Lemma 6.25 is unlikely to be true
since a simple calculation shows that the minimum angle between cones Ci and Cj is at
least π/3 (here, as in dimension two e0, . . . , en is the corresponding basis of H0 where
e0 = (n,−1, . . . ,−1), . . . , en = (−1, . . . ,−1, n), and gi is the linear form defined by taking
the scaler product with ei). Indeed, let p = (

∑
i6=0 pi,−p1, . . . ,−pn) ∈ C0 − {O} and
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q = (−q0,
∑

i6=1 qi,−q2, . . . ,−qn) ∈ C1 − {O}. We have

p · q
|p|`2|q|`2

=
−

∑
i6=0 piq0 −

∑
i6=1 qip1 + p2q2 + · · ·+ pnqn

|p|`2|q|`2
6

p2q2 + · · ·+ pnqn

|p|`2|q|`2
6

p2q2 + · · ·+ pnqn

2
√

p2
2 + · · ·+ p2

n

√
q2
2 + · · ·+ q2

n

6
1

2
.

The two inequalities of the last line follow from the set of inequalities

|p|`2 =
√

(p1 + · · ·+ pn)2 + p2
1 + · · ·+ p2

n >
√

2(p2
1 + · · ·+ p2

n) >
√

2(p2
2 + · · ·+ p2

n)

|q|`2 >
√

q2
2 + · · ·+ q2

n (similarly as above),

and the Cauchy-Schwartz inequality. Hence, if the lattice L is generated by a regular
digraph, then there exists a basis such that the pairwise angles between the elements of
the basis is at least π

3
. But, it is known that there exist lattices that are not weakly

orthogonal, see [22]. However, note that the notion of a weakly-orthogonal lattice seems
to be slightly different from the notion of a digraphical lattice.

We now characterise all the sub-lattices of A2 which are strongly reflection invariant.

Theorem 6.28 A sub-lattice L of A2 is strongly reflection invariant if and only if there
are two different classes of critical points up to linear equivalence or L is defined by a
multi-tree on three vertices (i.e., a graph obtained from a tree by replacing each edge by
multiple parallel edges).

Proof Let {b0, b1} be the regular digraph basis of L and b2 = −b0 − b1. We consider the
triangulation {4π + p} of H0 defined by this basis. Let T be the triangle defined by the
convex hull of {0, b0, b0 + b1} (= 4π) and let T̄ be the opposite of T , the triangle defined
by the convex hull of {0, b2, b1 + b2} (= 4π̄), and let cT and cT̄ be π0(ν

π) and π0(ν
π̄). At

least one of the points cT or cT̄ is critical. And in addition the set of critical points of
CritV (O) is a subset of {cT , cT − b0, cT + b2, cT̄ , cT̄ + b0, cT̄ − b2}.

(⇒) If cT and cT̄ are both critical points and they are different, we have CritV (O) =
{cT , cT − b0, cT + b2, cT̄ , cT̄ + b0, cT̄ − b2} and we can directly see that −CritV (O) =
CritV (O) + t where t = cT + cT̄ . It is easy to check directly that the only case when cT

and cT̄ are equivalent is when b0 = (a, 0,−a) and b1 = (0, b,−b) for a, b > 0 (in which case
cT = π0((0, 0,−a− b) and cT̄ = π0((−a,−b, 0)), and so cT̄ − cT = b2 and the lattice is also
uniform). In this case, we also have CritV (O) = {cT , cT − b0, cT + b2, cT̄ , cT̄ + b0, cT̄ − b2}
and so again −CritV (O) = CritV (O) + t where t = cT + cT̄ .

(⇐) If there is just one critical point up to linear equivalence, let us assume without
loss of generality that the critical point is cT . In this case, CritV (O) = {cT , cT −b0, c+b2}.
It is now easy to check that for any bijection φ of CritV (O) onto itself, x + φ(x) cannot
be the same over all x in CritV (O). 2

the electronic journal of combinatorics 17 (2010), #R124 41



We end this section by providing an example of a sub-lattice L of A2 which is not
strongly reflection invariant. By the previous theorem, L should contain only one critical
point up to linear equivalence and should not be a multi-tree. (In particular, since we only
have one class of critical points, L is uniform and satisfies the Riemann-Roch theorem.)

Consider the two dimensional sub-lattice of A2 defined by the vectors b0 = (7,−7, 0)
and b1 = (−3, 11,−8), and let b2 = −b0 − b1 = (−4,−4, 8). These vectors form the rows
of the 3× 3 matrix Q (which is the Laplacian matrix of a regular digraph).

Q =

 7 −7 0
−3 11 −8
−4 −4 8

 (16)

Let π and π̄ be the permutation corresponding to the order 0 <π 1 <π 2 and its opposite
1 <π̄ 0 <π̄ 2 as in the proof of Theorem 6.28. We have νπ =

⊕
{b0, b0 + b + 1, O} =

(0,−7,−8) and ν π̄ =
⊕
{b1, b1 + b0, O} = (−3, 0,−8). We claim that ν π̄ is not an

extremal point of Σc(L) and so π0(ν
π̄) is not critical. This is true because ν π̄ +(7,−7, 0) =

(4, 0,−8) > νπ, and so ν π̄ cannot be extremal.
Indeed the above example can be turned into a generic class of examples, that we

now explain. Consider a lattice defined by generators of the form b0 = (α,−α, 0) and
b1 = (−γ, γ + η,−η):

Q =

 α −α 0
−γ γ + η −η

γ − α −γ + α− η η

 (17)

Here we suppose in addition that α, γ, η > 0 and γ < α 6 η + γ such that the above
matrix is the Laplacian of a regular digraph. The two permutations π and π̄ are defined
as above, so for these permutations we have νπ = (0,−α,−η) and ν π̄ = (−γ, 0,−η). It is
clear that deg(νπ) < deg(ν π̄). We infer that νπ is extremal. But ν π̄ is not extremal since
ν π̄ > νπ − b0. It is also easy to see that L cannot have a multi-tree basis.

6.4 Examples of sub-lattices with Riemann-Roch property which
are not graphical.

In this subsection, we show that there exist an infinite family of sub-lattices {Ln}∞n=2,
where Ln is a full rank sub-lattice of An, each Ln satisfies the Riemann-Roch theorem (we
say that it has the Riemann-Roch property), and such that none of Ln is graphical. By
not being graphical, we mean that there does not exist any basis of L which comes from
a connected unoriented multi-graph, i.e. Ln 6= LG for any connected multi-graph G on
n + 1 vertices. Indeed, we have already provided in the previous section such an example
(and even an infinite number of them) in dimension two: the family of sub-lattices of A2

defined by b0 = (α,−α, 0) and b1 = (−γ, γ + η,−η) (we will prove this shortly below).
The construction of Ln for larger values of n is then recursive. Suppose we have already
constructed an infinite family of full rank sub-lattices of An which are not graphical and
have the Riemann-Roch property, and let Ln be an element of this family. Then we
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construct a full rank sub-lattice of An+1 as follows. By taking the natural embedding
An ⊂ An+1, (x0, . . . , xn) → (x0, . . . , xn, 0), we embed Ln in An+1. The lattice Ln+1 is
obtained by adding bn = (0, 0, . . . , 0,−1, 1) to the image of Ln. Remark that if Ln comes
from a regular digraph G with vertices v0, . . . , vn, then Ln+1 is the lattice of the digraph
G′ consisting of G and a new vertex vn+1 which is connected to vn by two arcs, one in
each direction. We will see that Ln+1 will not be graphical, and in addition it will have
the Riemann-Roch property. Here we provide the details of the construction.

6.4.1 The Lattices L2

Let L2 be a sub-lattice of A2 defined by b0 = (α,−α, 0) and b1 = (−γ, γ + η,−η), where
α, γ, η > 0 and γ < α 6 η + γ.

Proposition 6.29 The sub-lattice L2 has Riemann-Roch property and L2 is not graphical.

Proof We saw in the previous section that L2 has only one class of critical points, up
to linear equivalence, is not strongly reflection invariant, and in addition |CritV (O)| = 3.
This shows that L2 cannot be graphical. However, L2 is uniform and reflection invariant,
and so it has the Riemann-Roch property. 2

6.4.2 The Lattices Ln

Let Ln be a full rank sub-lattice of An that we regard as an n-dimensional sub-lattice of
An+1 by taking the embedding An ⊂ An+1 described above. Define Ln+1 to be the lattice
generated by Ln and bn+1 = (0, . . . , 0,−1, 1). We first provide two correspondences: one
between the rank function rn of Ln and the rank function rn+1 of Ln+1, and the other
one, between the extremal points of Ln and the extremal points of Ln+1.
Let D be an element of Zn+2. By D|n we denote the projection of D to Zn+1 obtained by
eliminating the last coordinate. So if D = (D0, . . . , Dn+1), then D|n = (D0, . . . , Dn).

Lemma 6.30 Let D = (D0, . . . , Dn+1) be a point in Zn+2 and let D′ = (D−Dn+1bn+1)|n+1.
We have rn+1(D) = rn(D′).

Proof We first prove that rn(D′) > rn+1(D). Let E ′ ∈ Zn+1 be effective. We should
prove that if deg(E ′) 6 rn+1(D), then D′ − E ′ > q′ for at least one q′ ∈ Ln. Let
E = (E ′, 0). As deg(E) 6 rn+1(D), there exists a q ∈ Ln+1 such that D −E > q. By the
definition of Ln+1, there exists q′ ∈ L and α ∈ Z such that q = (q′, 0) + αbn+1. It follows
that Dn+1 > α, and so D′ − E ′ = (D −Dn+1bn+1 − E)|n > (D − αbn+1 − E)|n > q′. So
D′ − E ′ > q′ and we are done.

We now show that rn+1(D) > rn(D′). Let E = (E0, . . . , En+1) ∈ Zn+2 be effective
of degree at most rn(D′). We have to prove the existence of a point q ∈ Ln+1 such that
D−E > q. Let O 6 E ′ ∈ Zn+1 be defined by E−En+1bn+1 = (E ′, 0). In other words E ′ =
(E0, . . . , En−1, En + En+1). It is clear that E ′ > O and deg(E ′) 6 rn(D′). So there exists
a point q′ ∈ Ln such that D′−E ′ > q′. We infer that D−E > (q′, 0)+(Dn+1 +En+1)bn+1.
So for q = (q′, 0) + (Dn+1 + En+1)bn+1 ∈ Ln+1, we have D − E > q, and we are done.

2
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Lemma 6.31 The extremal points of Σ(Ln+1) are of the form (v, 0) + q where v is an
extremal point Σ(Ln) and q is a point in Ln+1. Similarly, the elements of Extc(Ln+1) are
of the form (u,−1) + q where u is a point of Extc(Ln) and q ∈ Ln+1.

Proof The proof is similar to the proof of the previous lemma and we only prove one
direction, namely Ext(Ln+1) ⊆ Ext(Ln)×{0}+Ln+1. The other inclusions Ext(Ln)×{0}+
Ln+1 ⊆ Ext(Ln+1), Extc(Ln+1) ⊆ Extc(Ln)×{−1}+Ln+1, and Extc(Ln)×{−1}+Ln+1 ⊆
Extc(Ln+1) follows similarly.

Let v̄ = (v̄0, . . . , v̄n+1) be an extremal point of Ln+1, i.e., v̄ ∈ Ext(Ln+1). Let v ∈ Zn+1

be defined as follows: (v, 0) = v̄ − v̄n+1bn+1. The claim follows once we have shown that
v is an extremal point of Ln. To prove that v is an extremal point, we need to show that
for all q ∈ Ln, v � q and that v is a local minimum for the degree function. Suppose that
this is not the case and let q ∈ Ln be such that v 6 q. We have v̄ 6 (q, 0) + v̄n+1bn+1 and
(q, 0) + v̄n+1bn+1 ∈ Ln+1, which is a contradiction to the assumption that v̄ ∈ Ext(Ln+1).
The proof that v is a local minimum follows similarly. 2

As a corollary to the above lemmas, we obtain

Corollary 6.32 If Ln has the Riemann-Roch property (resp. is uniform and reflection-
invariant), then Ln+1 also has the Riemann-Roch property (resp. is uniform and reflection-
invariant). Furthermore, we have Kn+1 = (Kn, 0), where Ki is canonical for Li, i =
n, n + 1.

We now show that if L2 is the family of lattices that we described above, then Ln is not
graphical. Indeed, by applying Lemma 6.31 and by induction on n, it is easy to show
that Ln is not strongly reflection invariant, provided that L2 is not strongly reflection
invariant, and we know that this is the case.

Remark that the family of all Ln constructed above is infinite (for each fixed n).
Indeed, by using the fact that Pic(Ln) = Pic(Ln+1), and by observing that the set |Pic(L2)|
contains an infinite number of values, we conclude that |Pic(Ln)| takes an infinite number
of values and so the family of all Ln is infinite.

7 Algorithmic Issues

Let L be a full-rank sub-lattice of An. While it is not well known whether calculating
the rank of a given point for a Laplacian lattice can be done in polynomial time or not,
calculating the rank function for general L becomes more complicated. In this section,
we show that this problem is NP-hard. Actually we prove that deciding if r(D) > 0 is
already NP-hard for general D and L. Remark that for the case of graphs, deciding if
r(D) > 0 can be done in polynomial time [17, 24].

By the results of Section 2, deciding if r(D) = −1 is equivalent to deciding whether
−D ∈ Σ(D) or not. So we will instead consider this membership problem. We will
show below that this problem is equivalent to the problem of deciding whether a rational
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simplex contains an integral point. We then use this to show that it is generally NP-hard
to decide if a given integral point D is contained in Σ(L). As every point of positive
degree is in Σ(L), we may only consider the points of negative degree.

We first state the following simple lemma.

Lemma 7.1 Let D be a point in Zn+1 of negative degree. We have D ∈ Σ(L) if and only
if the simplex 4̄− deg(D)

n+1

(π0(D)) contains no lattice point (a point in L) in its interior.

Proof We saw in Section 4 that ∂Σc(L) is the lower graph of the function h4,L. It

follows that D ∈ Σ(L) if and only if −deg(D)
n+1

< h4,L(π0(D)). By the definition of h4,L,

this means that D ∈ Σ(L) is equivalent to d4̄(p, π0(D)) = d4(π0(D), p) > −deg(D)
n+1

for all

p ∈ L, which is to say, 4̄− deg(D)
n+1

(π0(D)) contains no lattice point. 2

Hence, the question of deciding whether if D ∈ Σ(L) is equivalent to the following
question:

Given a simplex of the form 4̄r(x) with centre at x and radius r > 0, can we decide if
there is a lattice point in the simplex?

A simple calculation shows that the vertices of 4̄−deg(D)
n+1

(π0(D)) are all integral. This

shows that with respect to the lattice L, the simplex 4̄−deg(D)
n+1

(π0(D)) is rational, i.e.,

there exists a large integer N such that N4̄−deg(D)
n+1

(π0(D)) is a polytope with vertices all

in L. (This is because L is full dimensional and itself integral.)
We now recall that the complexity of deciding if an arbitrary rational n-dimensional

simplex in Rn contains a point of Zn is NP-hard when the dimension n is not fixed, and
it is polynomial time solvable when the dimension is fixed [3]. In our case, we are fixing
the rational simplex, and L is an arbitrary sub-lattice of An. However, it is quite easy to
reduce the original problem to our case and to obtain the same complexity results in our
setting. A polynomial-time reduction is described below:
Given the vertices V (S) = {v1, . . . , vn} of a rational simplex S in Rn, we do the following.

1. Compute the centroid c(S) =
P

i vi

n+1
of S and let S ′ = S − c(S).

2. Define the linear map f from Rn to H0 by sending V (S ′) bijectively to V (4̄) =
{e0, . . . , en}. Let 4̄(x) be the image of S, where x = f(c(S)).

3. Let L0 = f(Zn) and N be a large integer such that NL ⊂ An (such N exists since
f and S are rational, and so L is rational). Remark that we have NL∩N4̄(x) 6= ∅
if and only if S ∩ Zn 6= ∅. Remark also that N4̄(x) = 4̄N(Nx).

4. Let D be the integral point in Zn+1 defined by D = Nx−N(n + 1)(1, . . . , 1). Then
π0(D) = Nx, deg(D) = −N(n + 1), and N4̄(x) = 4̄−deg(D)

n+1

(π0(D)).)
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For L defined as above, we infer that 4̄−deg(D)
n+1

(π0(D))∩L 6= ∅ if and only S ∩Zd 6= ∅. So

we have

Theorem 7.2 For an arbitrary full rank sub-lattice L of An, the problem of deciding if
r(D) = −1 given a point D ∈ Zn+1 and a basis of L is NP-hard.

As a consequence, we also note that the decision version of the problem of computing
the rank is NP-hard.

Theorem 7.3 Given an integer k > −1, a point D ∈ Zn+1 and a basis of L of a sub-
lattice of An. The problem of deciding if r(D) > k is NP-hard.

It is interesting to note that for the case of Laplacian lattices of graphs on n + 1
vertices, with a given basis formed by the n rows of the Laplacian matrix, the problem
of deciding if an integral point belongs to the Sigma-Region can be done in polynomial
time [17]. So we are naturally led to the following questions:

Question 1 Given a full rank sub-lattice L of An, does there exist a special basis B of L
such that if L is given with B, then the membership problem for the Sigma-Region of L
can be solved in polynomial time ?

Question 2 Given a Laplacian sub-lattice of An, is it possible to find the special basis
of L in time polynomial in n ? Given a sub-lattice of An, is it possible to decide if L is
Laplacian in time polynomial in n ?

8 Concluding Remarks

In this section, we provide some concluding remarks on the results of the previous sections.

8.1 Extension to Non-Integral Sub-Lattices

It is possible to extend the results of the previous sections to an arbitrary sub-lattice L
of H0 of dimension n. However, since Σ(L) does not make sense in the general case, one
needs to work directly with ΣR(L) and its closure Σc(L). Thus, in this setting and for
integral sub-lattices, min- and max-genus, rank-function, canonical point, etc change but
the new theory is easily related to what we considered in the previous sections (through
the relation between Σc(L) and Σ(L)).

In the general setting, the definition of the rank-function is inspired by the character-
ization given in Lemma 2.2. Namely, for a point D in Rn+1, r̄(D) = −1 if and only if −D
is a point in Σc(L). More generally, r̄(D) + 1 is the distance of −D to Σc(L) in the `1

norm, i.e.,

r̄(D) = dist`1(−D, Σc(L))− 1 := inf{||p + D||`1 | p ∈ Σc(L)} − 1.
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In the case of integral sub-lattices of An, the previous rank-function r(.) is related to
the new rank function by r(D) = r̄(D + (1, . . . , 1)). The structural theorem of Sigma-
Region remains valid, and the definitions of the max- and min-genus and the distance
function extend without change to this case. A Riemann-Roch theorem can be proved for
uniform and reflection invariant real sub-lattices of H0. Note that for integral sub-lattices
of An, the ∗−genus with respect to Σc is ḡ∗ = g∗ + n + 1 where ∗ ∈ {min, max}, and the
new canonical point K̄ associated to r̄, if exists, is nothing but K + (2, . . . , 2), where K
is the canonical point described in the previous sections.

8.2 On the Number of Different Classes of Critical Points.

Given a full rank sub-lattice L of An, we bound here the number of different critical points
modulo L.

Theorem 8.1 For a given sub-lattice L of An, there are at most n! different critical
points modulo L.

Proof (Sketch of the proof.) Let us consider the gradient flow of the function h and its
corresponding flow complex. i.e., for each critical point v ∈ Crit(L), we have a maximal
open subset Uv ⊂ H0 such that for each point u ∈ Uv, the gradient flow of h starting
at u ends at v. Moreover, H0 \ ∪vUv has measure zero. By translation invariance, the
tiling obtained by Uv is also translation invariant, i.e., Uv+p = Uv + p for all points p ∈ L
and v ∈ Crit(L). Lemma 4.13 implies that for each critical point v, there exist points
p0, . . . , pn ∈ L, such that pi’s are in different facets of 4̄h4,L(v)(v). By the definition of
the distance function h4,L, it is easy to see that the simplex 4̄h4,L(v)(v) containing these
points is in the topological closure of the open set Uv. It follows that Uv has volume at
least the volume of the simplex obtained by taking the convex hull of the points p0, . . . , pn.
This volume is at least the volume of the minimal simplex defined by L, i.e., vol(L)

n!
. We

infer that each open set Uv has volume at least vol(L)
n!

. By taking the quotient modulo L,
we conclude that |Crit(L)/L| 6 n!, i.e., the number of different classes of critical points
modulo L is at most n!. 2

8.3 A Duality Theorem for Arrangements of Simplices

Let L be a sub-lattice of An of dimension n. For a real number t > 0, define the arrange-
ment At as the union of all the simplices 4t(c) for c ∈ Crit(L), i.e.,

At :=
⋃

c∈Crit(LG)

4t(c).

A second arrangement Bt is defined as the union of all the simplices 4̄t(p) for p ∈ L, i.e.,

Bt :=
⋃

p∈LG

4̄t(p).

(Recall that 4̄ = −4.)

the electronic journal of combinatorics 17 (2010), #R124 47



Definition 8.2 The covering number of a lattice L denoted by Cov(L) is the smallest
real k such that Bk = H0.

It is not difficult to show that for a sub-lattice L of An, the Covering Number is given by
Cov(L) = gmax+n

n+1
. (Thus, for a uniform lattice, Cov(L) = g+n

n+1
.)

Let G be an undirected graph on n+1 and with m edges (thus, g = m−n). Let LG be
the Laplacian lattice of G. (In this case, by the results of Section 6.1 (c.f., Equation 12),
the covering number of Cov(LG) is the density of the graph.)

The two arrangements A and B are dual in the following sense.

Theorem 8.3 (Duality between A and B) For any 0 6 t 6 Cov(LG), the arrange-
ment Bt is the closure of the complement of the arrangement ACov(LG)−t in H0, i.e.,

Bt =
(
H0 \ ACov(LG)−t

)c

.

In particular, for any 0 6 t 6 Cov(LG), ∂Bt = ∂ACov(LG)−t.

Proof (Sketch of the proof) Let x ∈ Bt ∩ ACov(LG)−t. By the definition of the two ar-
rangements B and A, there exists a point p ∈ LG and a point c ∈ Crit(LG) such that
x ∈ 4̄t(p)∩4Cov(LG)−t(c). By the triangle inequality for d4 and the results of Section 6.1,
it follows that d4(c, p) = Cov(LG), d4(x, p) = t, and d4(c, x) = Cov(LG) − t. Thus, we
have x ∈ ∂Bt ∩ ∂ACov(LG)−t. It follows that Bt and ACov(LG)−t have disjoint interiors, and

so Bt ⊆
(
H0 \ ACov(LG)−t

)c

. The other inclusion H0 \ ACov(LG)−t ⊂ Bt follows from the

structural theorem of the Sigma-Region, Theorem 2.6 (and Theorem 2.7). Namely, we
claim that for every point x ∈ H0, there exists a point p ∈ LG and a point c ∈ Crit(LG),
such that d4(c, x) + d4(x, p) = d4(c, p) = Cov(LG), and this clearly implies the inclusion
H0 \ ACov(LG)−t ⊂ Bt. Let p be a point of LG such that h4(x) = d4(x, p). By Propo-
sition 4.8, the point x − h4(x)(1, . . . , 1) lies on the boundary of Σc. By Theorem 2.7,
there exists an extremal point ν of Extc(LG) such that ν 6 x− h4(x)(1, . . . , 1). Let c be
the critical point π0(ν) ∈ Crit(LG). Note that h4(c) = Cov(LG). By Proposition 4.8, we
have ν = c−Cov(LG)(1, . . . , 1). Thus, we have c−h4(c)(1, . . . , 1) 6 x−h4(x)(1, . . . , 1),
or equivalently c− (Cov(LG)− h4(x))(1, . . . , 1) 6 x. By the explicit definition of d4, we
have d4(c, x) 6 Cov(LG) − h4(x) = Cov(LG) − d4(x, p). Since d(c, p) > Cov(LG), this
shows that d4(c, x) = Cov(LG)− d4(x, p) and the claim follows. 2
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[18] J. Hladkỳ, D. Král and S. Norine, Rank of divisors on tropical curves, Arxiv preprint
arXiv:0709.4485, (2007).

[19] S. Hoory, N. Linial and A. Wigderson, Expander graphs and their applications, Bul-
letin of the AMS, 43 (2006), 439–561.

the electronic journal of combinatorics 17 (2010), #R124 49



[20] J. A. de Loera, J. Rambau and F. Santos, Triangulations: Structures and Algorithms.

[21] G. Mikhalkin and I. Zharkov, Tropical curves, their Jacobians and Theta functions,
Arxiv preprint arXiv:math/0612267v2, (2007).

[22] R. Nellamani, S. Dash and R. G. Baraniuk, On Nearly Orthogonal Lattice Bases and
Random Lattices, SIAM Journal on Discrete Mathematics, 21(1) (2007), 199–219.

[23] A. Postnikov and B. Shapiro, Trees, parking functions, syzygies, and deformations of
monomial ideals, Transactions of the American Mathematical Society, 356(8) (2004),
3109–3142.

[24] F. Shokrieh, Chip-firing games, G-parking functions, and an efficient bijective proof
of the matrix-tree theorem, Arxiv preprint arXiv:0907.4761v1, (2009).

[25] C. L. Siegel, Lectures on the Geometry of Numbers, Springer (1989).

[26] R. Stanley, Enumerative Combinatorics, Cambridge Studies in Advanced Mathemat-
ics Vol. 62, Cambridge University Press (1999).

the electronic journal of combinatorics 17 (2010), #R124 50


