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Abstract

J.H. Koolen and J. Park proved a lower bound for the intersection number cy
of a distance-regular graph I'. Moreover, they showed that a graph I', for which
equality is attained in this bound, is a Terwilliger graph. We prove that I' is the
icosahedron, the Doro graph or the Conway—Smith graph if equality is attained and
Cco = 2.

1 Introduction

Let I' be a distance-regular graph with degree k£ and diameter at least 2. Let ¢ be maximal
such that, for each vertex x € I' and every pair of nonadjacent vertices y, z of I';(x), there
exists a c-coclique in I';(z) containing y, z. In [1], J.H. Koolen and J. Park showed that
the following bound holds:

cp—1> max{w
(5)

and equality implies that I' is a Terwilliger graph. (For definitions see Sections 2 and 3.)

A similar inequality for a distance-regular graph with a c-claw was proved by C.D.
Godsil, see [2]. J.H. Koolen and J. Park [1] noted that the bound (1) is met for the three
known examples of Terwilliger graphs with c; > 2. We recall that only three examples
of distance-regular Terwilliger graphs with ¢, > 2 are known: the icosahedron, the Doro
graph and the Conway—-Smith graph.

In this paper, we will show that a distance-regular graph I" with ¢, > 2, for which
equality is attained in (1), is a known Terwilliger graph.

|[2<d < e} (1)
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2 Definitions and preliminaries

We consider only finite undirected graphs without loops or multiple edges. Let I" be a
connected graph. The distance d(u,w) between any two vertices u and w of I' is the
length of a shortest path from u to w in I'. The diameter diam(T") of T' is the maximal
distance occurring in I'.

For a subset A of the vertex set of I', we will also write A for the subgraph of I" induced
by A. For a vertex u of I', define I';(u) to be the set of vertices that are at distance ¢ from
u (0 < i < diam(I")). The subgraph I';(u) is called the local graph of a vertex u and the
degree of u is the number of neighbors of w, i.e., |I'1(u)|.

For two vertices u, w € I' with d(u,w) = 2, the subgraph I'y (u) NI’y (w) is called the p-
subgraph of vertices u,w. We say that the number p(I") is well-defined if each p-subgraph
occurring in I' contains the same number of vertices and this number is equal to u(T).

Let A be a graph. A graph I' is locally A if, for all v € T', the subgraph I';(u) is
isomorphic to A. A graph is reqular with degree k if the degree of each of its vertices is
k.

A connected graph I'' with diameter d = diam(I") is distance-regular if there are integers
bi, ¢; (0 < i < d) such that, for any two vertices u,w € I'" with d(u,w) = i, there are
exactly ¢; neighbors of w in I';_;(u) and b; neighbors of w in I';11(u) (we assume that
I'_1(u) and Tyyq(u) are empty sets). In particular, a distance-regular graph I' is regular
with degree by, ¢; = 1 and ¢g = pu(I"). For each vertex u € I' and 0 < @ < d, the subgraph
[;(u) is regular with degree a; = by — b; — ¢;. The numbers a;, b;, ¢; (0 < i < d) are
called the intersection numbers and the array {bg,b1,...,bg_1;¢1, ¢, ..., Cq}, is called the
intersection array of the distance-regular graph T'.

A graph I' is amply reqular with parameters (v, k, A, u) if I' has v vertices, is regular
with degree k and satisfies the following two conditions:
i) for each pair of adjacent vertices u,w € I', the subgraph I'y(u) N I’y (w) contains
exactly A\ vertices;
1) = p(I') is well-defined.

An amply regular graph with diameter 2 is called a strongly reqular graph and is a
distance-regular graph. A distance-regular graph is an amply regular graph with param-
eters k = by, A =by — by — 1 and p = cs.

A c-cliqgue C of T' is a complete subgraph (i.e., every two vertices of C' are adjacent)
of I with exactly ¢ vertices. We say that C' is a clique if it is a c-clique for certain c¢. A
coclique C' of T" is an induced subgraph of I' with empty edge set. We say a coclique is a
c-coclique if it has exactly c¢ vertices.

Let T be a strongly regular graph with parameters (v,k, A\, 1). There are integers r
and s such that the local graph of each vertex of I' is the disjoint union of r copies of the
s-clique. Furthermore, v = 1 +rs+ s?r(r — 1), k =rs and A = s — 1. The set of strongly
regular graph with parameters (1 + rs + s?r(r — 1),rs,s — 1,1) is denoted by F(s, 7).
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Any graph of F(1,r), i.e., a strongly regular graph with A = 0 and p = 1, is called a
Moore strongly regular graph. It is well known (see Ch. 1 [3]) that any Moore strongly
regular graph has degree 2, 3, 7 or possibly 57. The graphs with degree 2, 3 and 7 are the
pentagon, the Petersen graph and the Hoffman—Singleton graph, respectively. It is still
unknown whether there exists a Moore graph with degree 57.

Lemma 2.1 If F(s,r) is a nonempty set of graphs, then s +1 < r.

Proof. Let I' be a graph of F(s,r). We can choose vertices v and w from I'' with d(u, w) = 2.
Let x be a vertex of I';(u) N I';(w). Then the subgraph I'y(w) — (I'y(z) U {z}) contains
a coclique of size at most r — 1. Let us consider an s-clique of I'y(u) — I'; (w) on vertices
Y1, Y2, ., Ys. The subgraph I'y(w) NT';(y;) (1 < i < s) contains a single vertex z;. The
vertices z1, 29, .., 2, are mutually nonadjacent and distinct. Hence, s < r — 1. The lemma
is proved. .

3 Terwilliger graphs

In this section we give a definition of Terwilliger graphs and some useful facts concerning
them.

A Terwilliger graph is a connected non-complete graph I" such that u(I") is well-defined
and each p-subgraph occurring in I' is a complete graph (hence, there are no induced
quadrangles in T"). If u(I") > 1, then, for each vertex u € T', the local graph of u is also a
Terwilliger graph with diameter 2 and p(I';(u)) = u(T') — 1.

For an integer a > 1, the a-clique extension of a graph I is the graph I' obtained from
I’ by replacing each vertex @ € I' by a clique U with a vertices, where, for any @,w € T,
u € U and w € W, u and w are adjacent if and only if v and w are adjacent.

Lemma 3.1 Let I be an amply reqular Terwilliger graph with parameters (v, k, \, u),
where > 1. Then there is a number o such that the local graph of each vertex of T' is
the a-clique extension of a strongly reqular Terwilliger graph with parameters (v, k, A\, i),
where

v=kja, k=\—-a+1)/a, i=(u—1)/a,
and o < A+ 1. In particular, if X\ =0, then o = 1.

Proof. The result follows from [3, Theorem 1.16.3]. .

There are only three amply regular Terwilliger graphs known with p > 2. All of
them are distance-regular and are characterized by theirs intersection arrays. The three
examples are:

(1) the icosahedron with intersection array {5,2,1;1,2,5} is locally pentagon graph;

(2) the Doro graph with intersection array {10,6,4;1,2,5} is locally Petersen graph;

(3) the Conway—Smith graph with intersection array {10,6,4,1;1,2,6,10} is locally
Petersen graph.

THE ELECTRONIC JOURNAL OF COMBINATORICS 17 (2010), #R125 3



In [4], A. Gavrilyuk and A. Makhnev showed that a distance-regular locally Hoffman—
Singleton graph has intersection array {50,42,9;1,2,42} or {50,42,1;1,2,50} and hence
it is a Terwilliger graph. Whether there exist graphs with these intersection arrays is an
open question.

Lemma 3.2 Let I' be a Terwilliger graph. Suppose that, for an integer o > 1, the local
graph of each vertex of I is the a-clique extension of a Moore strongly reqular graph A.
Then o = 1 and one of the following holds:

(1) A is the pentagon and I' is the icosahedron;

(2) A is the Petersen graph and T is the Doro graph or the Conway—Smith graph,;

(3) A is the Hoffman—Singleton graph or a Moore graph with degree 57; in both cases,
the diameter of I' is at least 3.

Proof. Tt is easy to see that the graph I' is amply regular. By Lemma 3.1, we have
a = 1. Statements (1) and (2) follow from [3, Proposition 1.1.4] and [3, Theorem 1.16.5],
respectively.

If the graph A is the Hoffman—-Singleton graph and the diameter of I' is 2, then I’
is strongly regular with parameters (v, k, A\, 1), where & = 50, A = 7 and p = 2. By
[3, Theorem 1.3.1], the eigenvalues of I' are k£ and the roots of the quadratic equation
22+ (u— Nz + (u—k) = 0. The roots of the equation z* —5x — 48 = 0 are not integers, a
contradiction. In the remaining case, when A is regular with degree 57, we get the same
contradiction. The lemma is proved. .

The next lemma will be used in the proof of Theorem 4.2 (see Section 4).

Lemma 3.3 Let T' be a strongly reqular Terwilliger graph with parameters (v, k, X\, p).
Suppose that, for an integer o > 1, the local graph of each vertex of I' is the a-clique
extension of a strongly regular graph with parameters (v,k,\,i). Then the inequality
kE—X— 7> 1 implies that k — X\ — 1 > 1.

Proof. We have k = a(1+k+k(k—A=1)/p), A = ak+a—1and p = ai+1. Ifk—A—p > 1,
then k(k — A — 1)/ > k and this implies that k — A — pu = a(k(k — A = 1)/p — i) >
alk—p)>aA+1) > 1. "

4 The Koolen—Park inequality

In this section, we consider bound (1) and classify distance-regular graphs with ¢y > 2,
for which this bound is attained.

The next statement is a slight generalization of Proposition 3 from [1], which was
formulated by J.H. Koolen and J. Park for distance-regular graphs. We generalize it to
amply regular graphs. (Our proof is similar to the proof in [1], but we give it for the
convenience of the reader.)
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Proposition 4.1 Let I be an amply reqular graph with parameters (v, k, A\, 1), and let
¢ = 2 be mazimal such that, for each vertexr x € I' and every pair of nonadjacent vertices
y,z of I'1(z), there exists a c-coclique in I'1(x) containing y,z. Then

j— a{%\mc’@},

and, if equality is attained, then T is a Terwilliger graph.

Proof. Let T'(x) contain a coclique C” on vertices y1, o, . . ., Yo, ¢ = 2. Since d(y;,y;) = 2,
it follows that |I'y(x) NT'1(y;) NT'1(y;)| < o —1 holds for all ¢ # j. Then, by the inclusion-
exclusion principle,

k=Ti(2)] = | U, (Ti(2) N (T1(ys) U{wi})]

Z ITa(@) N (Tay) Uwhl = D IT@) N Ta(y) N Ta(y,)]

1<i<j<e!

dA+1)— (‘;) (1 —1).

/ 1 _
(A %(—c/)) k. ©)
2
Note that equality in (2) implies that the inclusion I'y(x) € US_, (T'; (1) U {y;}) holds
and we have [I'1(x) N T (y;) N1 (y;)| = p — 1 for all ¢ # j.
Let ¢ be the maximal number satisfying the condition of Proposition 4.1. Then

COA+1)—k
(2)
We may assume that for an integer ¢, where 2 < ¢ < ¢, (3) turns into equality, i.e.,

_1:M:m{%mgd
2

(%)
We will show that ¢ = ¢’. For a vertex x € I and nonadjacent vertices y, z € I'1(z),
there exists a c-coclique C' in I';(x) containing y, z. Equality (4) implies that, for any
subset of vertices {y1,vs, ...,y } C C, we have I';(x) C US, (T (1) U {y;}). However, if
¢’ < ¢, then C' ¢ U (T (y;) U {y:}), a contradiction.
Hence, ¢ = ¢ and we have |I'1(x) NT'1(y)NT'1(z)| = p—1 for every pair of nonadjacent
vertices y, z € ['1(z) and for all x € I'. This implies that each p-subgraph in I is a clique
of size  and I is a Terwilliger graph. n

So,
p—1z

p—1 > max{ |2 < <} (3)

<} (4)

We call inequality (3) the p-bound.

It is easy to check that the three known Terwillger graphs with p > 2 (see Section 3)
have equality in the p-bound.

Our main theorem is to show that the only Terwilliger graphs with p > 2 and equality
in the p-bound are the three known examples (of Section 3).
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Theorem 4.2 Let I be an amply regular graph with parameters (v, k, X\, 1), and let pp > 1.
If the p-bound is attained, then p = 2 and I' is the icosahedron, the Doro graph or the
Conway—Smith graph.

Proof. By Proposition 4.1, the graph I' is a Terwilliger graph and, by Lemma 3.1, there is
an integer o > 1 such that the local graph of each vertex of I' is the a-clique extension of
a strongly regular Terwilliger graph with parameters (7, k, A, fi). By Lemma 3.1, we have
k=av, \=ak+ (a—1)and g = aj+ 1.

By the assumption on I', for a vertex u € I', the local graph of u contains a c-coclique,
for which equality is attained in the u-bound, i.e.,

1) — L -1 1) — av 10—
u—lzaﬂzc()\+) k:c(ak+(a )+ 1) ay:ac(k_|_) 5

) ()

and _
ck+1)—0

po= c
(5)
Hence, ¢ satisfies the following quadratic equation:

i —c(p+2(k+1))+20 =0,

in other words,

(f+2(k + 1)) £ v/(a+2(k + 1)) — 8op
2[i '

CcC =

This implies that B
(i + 2(k 4+ 1))* > 8vj.
Let the subgraph I'1(u) be isomorphic to the a-clique extension of a strongly regular

Terwilliger graph with parameters (v, k,\ i), say A. The cardinality of the vertex set of
Aisv=1+k+k(k—X—1)/q, hence

(m+2(k+1)°>8(n+ ki + k(k—X—1)),
02 +4 > 4+ 4k + 4k* — 8kX — 16k.
Further, B B - B
(/2 + 1> i+ kp + k* — 2k\ — 4k,
((1/2) = (k+1))* > 2k(k — A = 1). (5)

Let us first consider the case i = 1. There are integers s, r such that A € F(s,r) and
k=rs, \=s—1.Ifk—XA—1>k/2+1, then 2k(k — X\ — 1) > 2k(k/2 + 1) = k> + 2k.
It follows from (5) that (k + 1/2)? > k? + 2k and hence 1/4 > k, which is impossible.
Therefore, k — A —1 < k/2+1, i.e., k < 2(A +2). Substituting the expressions for k& and
A into the previous inequality, we get rs < 2(s + 1). By Lemma 2.1, we have s + 1 < r.
Hence, s +1 <7 < 2(s+1)/s and it follows that s = 1, r € {2,3} and A is the pentagon
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or the Petersen graph. As we already checked that the three examples in Lemma 3.2 (7)
and (i7) satisfy equality in the pu-bound, Theorem 4.2 follows in this case from Lemma
3.2.

Now we may assume ji > 1. Since i < k, the left-hand side of (5) is at most k2.
On the other hand, if K — A — 1 > k/2, then the right-hand side of (5) is greater than
2kk/2 = k2, which is impossible. Hence, we have k — XA — 1 < k/2, i.e., k <2(A+ 1).

Since i > 1, there is an integer oy > 1 such that, for a vertex w € A, the subgraph
Ay(w) is the a;-clique extension of a strongly regular Terwilliger graph, say ¥, with
parameters (v, ki, A\, pt1), where vy = ﬁ, ki = Az(=l) 1), = i 1. Then the

_ _ aq a; aq
inequality k& < 2(X + 1) is equivalent to the inequality v; < 2(k; + 1) and the cardinality
of the vertex set of ¥ is

ki — A — 1
U1:1+k1+klw.
M1
Further, v; < 2(k; + 1) implies that
ki(ky — A — 1
1 (K 1 —1) <+ 1,
1
SO
=M —=1<m(1+1/k) <pm+1
and

ki < A+ g+ 2. (6)

If iy = 1, then, for certain s;,71, we have k; = rys; and \; = s; — 1. It follows from
(6) that ris; <s;—1+14+2=s+2,7r <1+2/s; and s; = 1, r; = 2. Hence, the graph
Aq(w) is the aj-clique extension of the pentagon. By Lemma 3.2, the graph A is the
icosahedron and the diameter of I'y(u) is 3, which is impossible because I' is a Terwilliger
graph.

Hence, py > 1. Let us consider a sequence of strongly regular graphs ¥; = 3,
Yo,..., 2%, h > 2, such that, for an integer «;,; > 1, the local graph of a vertex in
}; is the ayyi-clique extension of a strongly regular Terwilliger graph ;. with parame-
ters ('Ui-i-la ki—i—la )\i-i-la qu), 1 < 1 < h and ,U(Zh) = 1, i.e., Eh € f(Sh,Th) for certain Sh, Th.
Such a sequence exists by Lemma 3.1.

Assuming s, > 1, we get kp — A, — i, = mpsp— (s, — 1) —1 = sp(r, —1) > 1. According
to Lemma 3.3, we have k; — \; — u; > 1 for all 1 < ¢ < h — 1, which contradicts (6).
Hence, s, = 1 and X, is a Moore strongly regular graph. By Lemma 3.2, the diameter of
Yn_1 is at least 3, and this contradiction completes the proof. .
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