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Abstract

We present a purely combinatorial proof of Alon and Tarsi’s Theorem about

list colorings and orientations of graphs. More precisely, we describe a winning

strategy for Mrs. Correct in the corresponding coloring game of Mr. Paint and Mrs.

Correct. This strategy produces correct vertex colorings, even if the colors are taken

from lists that are not completely fixed before the coloration process starts. The

resulting strengthening of Alon and Tarsi’s Theorem leads also to strengthening of

its numerous repercussions. For example we study upper bounds for list chromatic

numbers of bipartite graphs and list chromatic indices of complete graphs. As

real life application, we examine a chess tournament time scheduling problem with

unreliable participants.

Introduction

Alon and Tarsi’s Theorem [AlTa] from 1992, about list colorings and orientations of

graphs, has many applications in the theory of graph colorings. We will resume and

extend most of them in this article. However, Alon and Tarsi’s Theorem not only has

many applications, it also opened a door to a new very successful algebraic method. This,

so called Polynomial Method, was explicitly worked out in Alon’s paper [Al2], where Alon

suggested the name Combinatorial Nullstellensatz for the main algebraic tool behind it.

We strengthened this Nullstellensatz in [Scha2] with a quantitative formula, and presented

some easy-to-apply corollaries and new applications. Our formula led in particular to a

quantitative version of Alon and Tarsi’s Theorem [Scha2, Corollary 5.5].
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Apart from this very successful study of the algebraic method behind Alon and Tarsi’s

Theorem, combinatorialists always search for purely combinatorial proofs, since this usu-

ally helps to understand the situation in more detail. Indeed, Alon and Tarsi asked in their

original paper [AlTa] for such a proof. The first main purpose of this article is to present

one. Our proof actually gives some insight into the connection between orientations and

colorings, but also leads to a new strengthening. Even more, the work on this proof led

us to a new coloring game which provides an adequate game-theoretic approach to list

coloring problems and time scheduling problems with flexible lists of available time slots.

See [Al], [Tu] and [KTV] in order to get an overview of list colorings. We have already

presented this game of Mr. Paint and Mrs. Correct in [Scha3]. In this article we have

demonstrated that, even though the resulting notion of ℓ-paintability (Definition 1.2) is

stronger than ℓ-list colorability (ℓ-choosability), many deep theorems about list colorabil-

ity remain true in the context of paintability. In the present article we continue by giving

a combinatorial proof of a paintability strengthening of Alon and Tarsi’s Theorem. After-

wards, we show that most applications of Alon and Tarsi’s Theorem can be strengthened

as well.

In Section 1, we present a reformulated version of the game of Mr. Paint and Mrs.

Correct, and define ℓ-paintability as a strengthening of ℓ-list colorability.

In Section 2, we use this to give a purely combinatorial proof of a strengthening of

Alon and Tarsi’s Theorem (Theorem2.1).

Section 3 is concerned with classical applications of Alon and Tarsi’s Theorem. We

use our strengthening to provide paintability versions of Alon and Tarsi’s bound of the

list chromatic number of bipartite and planar bipartite graphs (Theorem3.3 and the

Corollaries 3.4 and 3.6). We even could refine their techniques, and improved their upper

bounds, in particular with respect to the maximal degrees of the vertices inside the two

parties (as we call the partition parts) of the graph. Theorem3.8 is another improvement

in this direction.

Furthermore, we present strengthened versions of Fleischner and Stiebitz’ Theo-

rem3.9 about certain 4-regular Hamiltonian graphs, Häggkvist and Janssen’s bound

(Theorem3.10) for the list chromatic index of the complete graph Kn , and Elling-

ham and Goddyn’s confirmation of the list coloring conjecture for planar r-regular edge

r-colorable multigraphs (Theorem3.12). Example 3.11 describes a time scheduling prob-

lem that demonstrates the advantage of the new painting concept against the list coloring

approach with fixed list of available time slots.

We also mention, that in [HKS] we worked out a strengthening of Brooks’ Theorem,

based on our improved Alon-Tarsi-Theorem. Our result is even stronger than the version

by Borodin, Erdős, Rubin and Taylor. Its proof uses the existence of an induced even

cycle with at most one chord, and almost acyclic orientation.
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1 Mr. Paint and Mrs. Correct

In this short section we lay the game-theoretic foundation for the proof of Alon and Tarsi’s

Theorem. We introduced the game of Mr. Paint and Mrs. Correct in [Scha3]. It is a game

with complete information, played on a fixed given graph G = (V, E) . Here we use the G = (V, E)

following equivalent reformulation of the original game (which was first defined in [Scha3,

Game 1.6 & Definition 1.8]) :

Game 1.1 (Paint-Correct-Game). In this reformulation Mr. Paint has just one marker.

Mrs. Correct has a finite stack Sv of erasers for each vertex v in G1 := G . They are

lying on the corresponding vertices, ready for use.

The reformulated game of Mr. Paint and Mrs. Correct works as follows:

1P : Mr. Paint starts, choosing a nonempty set of vertices V1P ⊆ V (G1) and marking

them with his marker.

1C: Mrs. Correct chooses an independent subset V1C ⊆ V1P of marked vertices in G1 ,

i.e., uv /∈ E(G1) for all u, v ∈ V1C . She cuts off the vertices in V1C , so that the

graph G2 := G1 \V1C remains. The still marked vertices v ∈ V1P \V1C of G2 have

to be cleared. For each such v ∈ V1P \ V1C Mrs. Correct has to use (and use up)

one eraser from the corresponding stack Sv . She loses if she runs out of erasers

and cannot do that, i.e., if already Sv = ∅ for a still marked vertex v ∈ V1P \ V1C .

2P : Mr. Paint again chooses a nonempty set of vertices V2P ⊆ V (G2) and marks them

with his marker.

2C: Mrs. Correct again cuts off an independent set V2C ⊆ V2P , so that a graph G3 :=

G2 \ V2C remains. She also uses (and uses up) some erasers to clear the remaining

marked vertices v ∈ V2P \ V2C .

...
...

End: The game ends when one player cannot move anymore, and hence loses.

Mrs. Correct cannot move if she does not have enough erasers left to clear the

vertices she was not able to cut off.

Mr. Paint loses if there are no more vertices left.

We may imagine that after each round the newly cut off vertices are colored with a

so far unused color. In this way a win for Mrs. Correct results in a proper coloring of the

underlying graph G . Whether this is possible or not possible depends on the sizes of the

stacks of erasers Sv at the vertices v of G . We define:
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Definition 1.2 (Paintability). Let ℓ = (ℓv)v∈V be defined by ℓv := |Sv| + 1 . If there is ℓ, ℓv

a winning strategy for Mrs. Correct, then we say that G is ℓ-paintable.

We write n-“something” instead of (n1)-“something”, where 1 = (1)v∈V and n ∈ N . 1

It is not hard to see that ℓ-paintability is stronger (and in fact strictly stronger)

then ℓ-list colorability. The ℓ-paintability may be viewed as a dynamic version of list

colorability, where the color lists Lv of sice ℓv at the vertices v are not completely fixed

before the coloration process starts (see [Scha3] for details). We note down:

G is ℓ-paintable. =⇒ G is ℓ-list colorable. (1)

Many people ask if it really makes sense for Mr. Paint to choose in his ith move a

proper subset ViP ⊂ V (Gi) instead of taking the whole set V (Gi) . Well, the point

is that Mrs. Correct may have a big or somehow advantageous independent set ViC in

V (Gi) , and that Mr. Paint has to prevent her from cutting off this set by not marking

some vertices in it. The not marked and not cut off vertices may become the decisive

battlefield of the future. Sometimes patience succeeds. A partial attack ViP ⊂ V (Gi)

may cost less erasers, but can save vantage ground, ground that should be attacked only

if the surrounding vertices vertices already have lost more erasers. One example where

Paint’s winning strategy is like this is K3,3 with one eraser at each vertex.

2 Alon and Tarsi’s Theorem

In this section we discus a surprising connection between colorings and orientations of

graphs. Let
�����

G = (V, E, �����) be an oriented graph, i.e., a graph G = (V, E) together with �����

G, e�����

an orientation ����� : E ∋ e 7−→ e����� ∈ e . Suppose that we have a cartesian product →

L

L :=
∏

v∈V

Lv (2)

of lists Lv of sizes ℓ

ℓv := |Lv| > d
+

(v) , (3)

where d
+

(v) is the outdegree of v in
�����

G . We view the elements λ ∈ L as vertex labellings, d
+

(v)

λ : v 7→ λv ∈ Lv , and ask: Is there a proper coloring λ ∈ L of G ?

One could conjecture that there is one, since each list Lv (to each fixed vertex v ∈ V )

contains so many colors that – if all “successors” u of v ( v�����u in
�����

G ) are already v→u

colored – there is at least one color in Lv that differs from the colors of the successors

of v . If we now use this “evasion color” to color the vertex v , and do the same for all

other vertices of V , then we obtain a proper coloring of G , since in each edge uv one

end “takes care” of the other end (either v�����u or u�����v ).

However, this train of thought runs on nonexisting rails. We cannot just assume

that for each vertex v “all successors u of v are already colored”. An example which
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shows the validity of the desired conclusion is the directed cycle of length 3, which is not

colorable with 2 colors. Nevertheless, our consideration contains some plausibility, and

one could ask for an additional condition that makes it work. Alon and Tarsi found such

a condition in [AlTa]. They proved that ℓ-list colorings exist, if the sets of even and odd

Eulerian (spanning) subgraphs EE and EO of
�����

G do not have the same size, i.e., EE, EO

|EE| 6= |EO| ; (4)

where a directed graph is even/odd Eulerian if it has even/odd many edges, and if the

indegree of each single vertex v ∈ V equals its outdegree. In their paper they work

with the set Dα = Dα(G) = Dα(
�����

G) of all orientations ϕ with outdegree sequence Dα, d
+

ϕ

d
+

ϕ = (d
+

ϕ(v))v∈V equal to α ∈ ZV. They split this set into the sets DEα = DEα(
�����

G) DEα, DOα

and DOα = DOα(
�����

G) , of even resp. odd orientations ϕ ∈ Dα , i.e., those which differ

from the fixed given reference orientation ����� ( eϕ 6= e����� ) on even resp. odd many edges

e ∈ E . At the end they used the fact that, with d
+

:= d
+

�����
= (d

+

(v))v∈V , d
+

|DEd+| = |EE| and |DOd+| = |EO| . (5)

This is not hard to see (see also [Scha1, Lemma2.6]). In this paper we state our theorems

using DEα and DOα instead of EO and EE . Of course,

DEα = DOα = ∅ (6)

if there are no ϕ ∈ D(G) with d
+

ϕ = α , i.e., no realizations of α . This is for example

the case if αv < 0 for one v ∈ V , or if
∑

v∈V

αv 6= |E| , (7)

since
∑

v∈V

d
+

ϕ = |E| for all orientations ϕ ∈ D(G) . (8)

Alon and Tarsi’s work preceded the Combinatorial Nullstellensatz [Al2], which has

many applications. In [Scha2] we proved a quantitative strengthening of this Nullstel-

lensatz, which also led to a (weighted) qualitative version of the Alon-Tarsi Theorem.

The difference |DEα| − |DOα| (which can also be written as permanent of an incidence

matrix, as in [Scha2, Corrolary 5.5]) equals a weighted sum over certain colorings. Here,

we present a paintability strengthening of the result of Alon and Tarsi. Our proof can

be generalized to polynomials, as described in [Scha4], and leads to a paintability version

of the Combinatorial Nullstellensatz. This version of the Nullstellensatz is more general

than the following strengthening of Alon and Tarsi’s Theorem. However, Alon and Tarsi

have already asked in the original paper [AlTa] for a combinatorial proof of their result.

Therefore, we work here in the purely combinatorial frame of orientations of graphs, in

order to shed some light on the surprising connection between colorings and orientations

of graphs. We have:
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Theorem 2.1. Let
�����

G be a directed graph and α ∈ NV , then

|DEα(
�����

G)| 6= |DOα(
�����

G)| =⇒
�����

G is (α + 1)-paintable.

The proof of this theorem contains an explicit winning strategy. It is a proof by

induction, and uses the notations in Game1.1. We will examine the orientation sets DEα+NU

DS :=
⊎

α′∈S

Dα′ , DES :=
⊎

α′∈S

DEα′ and DOS :=
⊎

α′∈S

DOα′ (9)

where ⊎ stands for disjoint union. Always S will be a set of the form ⊎

α + N
U

α + NU := {α′
> α � α′

v = αv for all v /∈ U } (10)

with α ∈ ZV and U ⊆ V ( α′ > α means α′
v > αv for all v ∈ V ). Note that α does >

not necessarily has to be a degree sequences, it plays a more general role here.

One single induction step in the aspirated proof will be partitioned into four parts. In

the first part we have to modify the induction hypothesis a little bit. The second part

describes the winning strategy of Mrs. Correct; it is mainly contained in the following

lemma. In the third part we have to understand why this strategy singles out an inde-

pendent set. This is also contained in the following lemma (in its very last sentence).

The final step is contained in the second lemma below, and will show that the induction

hypothesis remains true when we cut off the independent set. Figure 1 illustrates our

first lemma, in which we use the standard basis vectors 1u = (δu,v)v∈V ∈ {0, 1}V to the 1u

indices u ∈ V with just one nonzero entry at v = u :

Lemma 2.2. Let
�����

G = (V, E, �����) be a directed graph, α ∈ NV , VP ⊆ V nonempty and

u ∈ VP , then:

(i) (α − 1u) + NVP = α + NVP ⊎ (α − 1u) + NVP \u .

(ii) DE(α−1u)+N
VP = DEα+N

VP ⊎ DE(α−1u)+N
VP \u and

DO(α−1u)+N
VP = DOα+N

VP ⊎ DO(α−1u)+N
VP \u .

(iii) |DEα+N
VP | 6= |DOα+N

VP | implies that

|DE(α−1u)+N
VP | 6= |DO(α−1u)+N

VP | or

|DE(α−1u)+N
VP \u| 6= |DO(α−1u)+N

VP \u| .

(iv) |DEα+N
VP | 6= |DOα+N

VP | implies that there is a VC ⊆ VP and an 0 6 α′
6 α s.t.

|DEα′+N
VC | 6= |DOα′+N

VC | , α′|VC
≡ 0 and α′

v < αv for all v ∈ VP \ VC .

Each such set VC is independent in
�����

G .
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Figure 1: v 7−→ αv and α + NVP in Lemma2.2.
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Proof. The elements σ of the set (α − 1u) + NVP on the left side of Equation (i) fulfill

σu > αu − 1 . On the right side we simply distinguish between those with σu > αu − 1

and those with σu = αu − 1 .

In order to obtain part (ii), we just have to take the preimages of the sets in (i) under

the mapping ϕ 7−→ d
+

ϕ , which we viewed either as a mapping defined on the set DE of DE

all even orientations, or as a mapping defined on the set DO of all odd orientations. DO

Now, we consider the cardinalities of the sets in part (ii) and obtain

|DE(α−1u)+N
VP | = |DEα+N

VP | + |DE(α−1u)+N
VP \u| and (11)

|DO(α−1u)+N
VP | = |DOα+N

VP | + |DO(α−1u)+N
VP \u| . (12)

If we extend this system of linear equations with

|DE(α−1u)+N
VP | = |DO(α−1u)+N

VP | and (13)

|DE(α−1u)+N
VP \u| = |DO(α−1u)+N

VP \u| , (14)

it follows that

|DEα+N
VP | = |DOα+N

VP | . (15)

Part (iii) is the contraposition to this conclusion.
In order to prove part (iv), we may use part (iii), as illustrated in Figure 1, to produce

sequences

α =: α0 
 α1 
 · · · 
 αt
> 0 and VP =: V 0

C ⊇ V 1
C ⊇ · · · ⊇ V t

C (16)
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with the property

|DE
αi+N

V i
C
| 6= |DO

αi+N
V i

C
| for i = 0, 1, . . . , t . (17)

Note that
αt|V t

C
≡ 0 (18)

if and only if the sequence of componentwise nonnegative αi in (16) can no longer be
extended through application of part (iii); hence, in this case part (iv) holds, if we set

α′ := αt and VC := V t
C . (19)

It remains to show that the existence of an edge uv with both ends in VC would lead to
a contradiction: Suppose there is one. Then turning this edge uv around gives rise to a
fixpoint free involution

Θuv : DNV (G)
∼=

−−−−→ DNV (G) . (20)

This involution can be restricted to an involution

Dα′+N
VC

∼=
−−−−→ Dα′+N

VC , (21)

since – if we apply Θuv to an orientation ϕ ∈ Dα′+N
VC – the two changing outdegrees

d
+

ϕ(u) and d
+

ϕ(v) are irrelevant for its membership to Dα′+N
VC . That is because

α′
u = 0 and α′

v = 0 , (22)

by Equation (18), and because if σ := d
+

ϕ belongs to α′ + NVC then each σ′ > 0 , which
differs from σ only on vertices w ∈ VC with α′

w = 0 , belongs to α′ + NVC as well.
Altogether, as Θuv maps even orientations to odd orientations and vice versa, we see
that

|DEα′+N
VC | = |DOα′+N

VC | , (23)

a contradiction.

Now we come to our second lemma which allows us to cut off independent sets VC ⊆ V .

For our main theorem we will need only the case VP = VC :

Lemma 2.3. Let
�����

G = (V, E, �����) be a directed graph, α ∈ NV , VP ⊆ V , uv ∈ E , u�����v ,

E ′ ⊆ E and let VC ⊆ V be an independent set in
�����

G , then:

(i) |DEα+N
VP (

�����

G)| = |DE(α−1u)+N
VP (

�����

G\uv)| + |DO(α−1v)+N
VP (

�����

G\uv)| and

|DOα+N
VP (

�����

G)| = |DO(α−1u)+N
VP (

�����

G\uv)| + |DE(α−1v)+N
VP (

�����

G\uv)| .

(ii) |DEα+N
VP (

�����

G)| 6= |DOα+N
VP (

�����

G)| implies that

|DE(α−1u)+N
VP (

�����

G\uv)| 6= |DO(α−1u)+N
VP (

�����

G\uv)| or

|DE(α−1v)+N
VP (

�����

G\uv)| 6= |DO(α−1v)+N
VP (

�����

G\uv)| .
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(iii) |DEα+N
VP (

�����

G)| 6= |DOα+N
VP (

�����

G)| implies that there is an 0 6 α′
6 α such that

|DEα′+N
VP (

�����

G \ E ′ )| 6= |DOα′+N
VP (

�����

G \ E ′ )| .

(iv) |DEα+N
VP (

�����

G)| 6= |DOα+N
VP (

�����

G)| implies that there is an 0 6 α′′
6 α|V \VC

s.t.

|DEα′′+N
VP \VC (

�����

G \ VC )| 6= |DOα′′+N
VP \VC (

�����

G \ VC )| .

Proof. When we restrict an orientation ϕ of G to E\uv , we obtain an orientation of

the smaller graph G\uv . This restricted orientation ϕ|E\uv has the same parity (either

even or odd) as ϕ if u
ϕ
����� v , and the opposite parity in the other case. Conversely, each

orientation ϕ′ of the smaller graph G\uv extends to one orientation of G with the same

parity as ϕ′, and to one orientation with the opposite orientation as ϕ′. The restriction

of the orientations leads to bijections

DEα+N
VP (

�����

G)
∼=

−−−−→ DE(α−1u)+N
VP (

�����

G\uv) ⊎ DO(α−1v)+N
VP (

�����

G\uv) and (24)

DOα+N
VP (

�����

G)
∼=

−−−−→ DO(α−1u)+N
VP (

�����

G\uv) ⊎ DE(α−1v)+N
VP (

�����

G\uv) , (25)

and part (i) follows.
As in the proof of Lemma2.2(iii), we deduce part (ii) from part (i). Likewise, iteration

of part (ii) yields part (iii), we just have to use that in inequalities of the form

|DEα+N
VP (

�����

G)| 6= |DOα+N
VP (

�����

G)| (26)

negative values of α may be replaced by zeros, as

DEα(
�����

G) = ∅ = DOα(
�����

G) for α � 0 . (27)

In order to prove part (iv), at first, we remove the set E(U, W )

E′ := E(VC , V \VC ) (28)

of all edges between VC and V \VC . Let 0 6 α′ 6 α be as in part (iii). As VC

is independent, the vertices of VC are isolated in
�����

G \ E ′ , so that, for all orientations
ϕ : E \ E ′ → V and all v ∈ VC ,

d
+

ϕ(v) = 0 (29)

and
d

+

ϕ(v) ∈ α′
v + N ⇐⇒ 0 = α′

v ⇐⇒ d
+

ϕ(v) = α′
v . (30)

It follows that
Dα′+N

VP (
�����

G \ E′ ) = Dα′+N
VP \VC

(
�����

G \ E′ ) , (31)

and if we set
α′′ := α′|V \VC

, (32)
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this extends to

Dα′+N
VP (

�����

G \ E′ ) = Dα′+N
VP \VC (

�����

G \ E′ ) = Dα′′+N
VP \VC (

�����

G \ VC ) , (33)

where we have used that
E(

�����

G \ E′ ) = E(
�����

G \ VC ) . (34)

Moreover, these equalities also hold when we replace D with DE or DO, so that the

inequality in part (iv) follows from those in part (iii).

With this we are prepared to describe the winning strategy required in the main proof:

Proof of Theorem2.1. We present a winning strategy for Mrs. Correct, described in
the terms of Game 1.1. We suppose that, when the game has reached the ith round, Mrs.
Correct has (at least) αi

v erasers left at each vertex v of
�����

Gi , and that she has managed
to ensure

|DEαi(
�����

Gi)| 6= |DOαi(
�����

Gi)| , (35)

where αi = (αi
v)v∈V (

�����

Gi)
∈ NV (

�����

Gi) . (For i = 1 ,
�����

G1 :=
�����

G and α1 := α this holds.)

Now Mr. Paint makes his ith move:

iP: Mr. Paint chooses a nonempty subset ViP ⊆ V (
�����

Gi) , and marks the vertices in ViP

with his marker. If already V (
�����

Gi) = ∅ , then the game ends here, Mr. Paint is

defeated and Mrs. Correct wins.

Now, after Mr. Paint’s preselection, Mrs. Correct makes her ith move in the following

way, which is always possible, so that the game does not stop when it is her turn and she

indeed does not lose:

iC: Mrs. Correct knows from the induction hypothesis (35) that

Dαi(
�����

Gi) 6= ∅ , (36)

and, using double counting, she concludes that
∑

v∈V (
�����

Gi)

αi
v = |E(

�����

Gi)| (37)

With the same reasoning she then sees, that

Dαi(
�����

Gi) = Dαi+N
ViP (

�����

Gi) (38)

so that the induction hypothesis (35) can be rewritten as

|DEαi+N
ViP (

�����

Gi)| 6= |DOαi+N
ViP (

�����

Gi)| . (39)

Now, she applies the algorithm used in the proof of Lemma2.2 (iv) to
�����

Gi , αi and

ViP in place of
�����

G , α and VP , and obtains an independent set ViC := VC and a

tuple α′i := α′ .
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Mrs. Correct knows from Lemma2.2 (iv) that ViC is independent, and she cuts it
off. She further knows that for all still marked vertices v ∈ ViP \ ViC :

αi
v > α′i

v > 0 , (40)

so that there are enough erasers to clear the remaining markings. Moreover, at least
α′i

v erasers remain at each vertex v of
�����

Gi , and this will be enough to establish the
induction hypothesis for

�����

Gi+1 :=
�����

Gi \ VC : (41)

As Mrs. Correct knows from Lemma2.2 (iv),

|DEα′i+N
ViC (

�����

Gi)| 6= |DOα′i+N
ViC (

�����

Gi)| . (42)

Therefore, she can apply the algorithm behind Lemma2.3 (iv) using the input

(
�����

G, VP , VC , α) := (
�����

Gi, ViC, ViC , α′i) . She obtains a tuple αi+1 := α′′ ∈ NV (
�����

Gi+1)

such that
|DEαi+1(

�����

Gi+1)| 6= |DOαi+1(
�����

Gi+1)| . (43)

This is exactly the induction hypothesis required for the next round, and since

αi+1
v 6 α′i

v for all v ∈ V (
�����

Gi+1) , (44)

the values αi+1
v in this hypothesis are actually covered by the numbers of erasers

in the remaining stacks Sv .

The graph
�����

Gi+1 and the reduced stacks Sv of size (at least) αi+1
v will be passed to the

next round. After some finite time t ∈ N , the graph
�����

Gt will be empty, Mr. Paint cannot

move any more, and Mrs. Correct’s strategy succeeds.

3 Applications of Alon and Tarsi’s Theorem

There are several “classical” applications of Alon and Tarsi’s Theorem. The proofs in

these applications lead to paintability statements, if we use our Theorem2.1 instead of

the original version from Alon and Tarsi. In the first examples below, we also could

refine the originally used techniques, and obtain slightly better upper bounds and new

corollaries. These examples are based on the following definition, where, as in this whole

section, we always assume that our graph G has edges, E(G) 6= ∅ :
L(G), Ľ(G)

Definition 3.1.

L(G) := max
H6G

|E(H)|
|V (H)|

and Ľ(G) := max
H6G

|E(H)|−1
|V (H)|

6 (1− 1
|E(G)|

)L(G) .
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This definition means that, if G is oriented, so that

|E(H)| =
∑

v∈V (H)

d
+

H(v) , (45)

then L(G) is simply the maximum value of the average outdegrees of the subgraphs

H 6= ∅ of G . Since average outdegrees are bounded by maximal outdegrees, this means

that we never will find an orientation ϕ : E −→ V of G with maximal outdegree ∆
+

(ϕ) ∆
+

(ϕ)

strictly smaller than L(G) , i.e.,

∆
+

(ϕ) > L(G) (46)

for all orientations ϕ : E −→ V of G . However, the rounded up number ⌈L(G)⌉ > L(G) ⌈...⌉

is exactly the lowest possible maximal outdegree, as, e.g., shown in [AlTa, Lemma3.1].

We extend this a little bit using the notation ⌊x⌋ 6 x for rounded down numbers x ∈ R : ⌊...⌋

Lemma 3.2. Any graph G = (V, E) has an orientation ϕ : E −→ V with

∆
+

(ϕ) = ⌈L(G)⌉ =
⌊

Ľ(G) + 1
⌋

.

Proof. Subdividing each edge e ∈ E with a new vertex ē yields a bipartite graph B
with vertex set

V (B) = V ⊎ Ē . (47)

Replacing the original vertices v ∈ V ⊆ V (B) with

m :=
⌊

Ľ(G) + 1
⌋

> Ľ(G) (48)

copies (v, 1) , (v, 2) , . . . , (v, m) of v we obtain a bipartite graph Bm, where the inserted
vertices ē ∈ Ē have degree 2m . Now, it is sufficient to find a matching of Ē in Bm.
Such a matching ē 7−→ (vē, iē) would induce an orientation ϕ̄ : E −→ V of G via

e 7−→ ē 7−→ (vē, iē) 7−→ vē =: ϕ̄(e) . (49)

Then the indegrees of ϕ̄ wold not exceed m , so that the opposite orientation ϕ would
fulfill

⌈L(G)⌉
(46)

6 ∆
+

(ϕ) 6 m =
⌊

Ľ(G) + 1
⌋

6 ⌈L(G)⌉ , (50)

and the lemma would follow.
However, the existence of such a matching follows from Hall’s Theorem. We only have

to show that each nonempty vertex set F̄ ⊆ Ē has more than |F̄ | − 1 neighbors in Bm.
To this end, let F ⊆ E be the set of edges in G corresponding to F̄ ⊆ Ē . Let G[F ] 6 G
be its induced subgraph, and let

⋃

F = V (G[F ]) ⊆ V be the set of all end-vertices of
edges in F . Then, indeed, the number of neighbors of F̄ in Bm is

m |
⋃

F | > Ľ(G) |
⋃

F | >
|E(G[F ])| − 1

|V (G[F ])|
|
⋃

F | = |F̄ | − 1 . (51)
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Note that it can be advantageous to use the second expression
⌊

Ľ(G) + 1
⌋

, instead

of ⌈L(G)⌉ , when one wants to utilize an upper bound for L(G) . We will see this below.

At first, we combine our results in the following theorem, similar to [AlTa, Theorem3.4]:

Theorem 3.3. Bipartite graphs G are k-paintable for

k := ⌈L(G) + 1⌉ =
⌊

Ľ(G) + 2
⌋

.

Proof. Bipartite directed graphs
�����

G do not contain odd Eulerian subgraphs, so that

|DOd+(
�����

G)|
(5)
= |EO(

�����

G)| = 0 < |{∅}| 6 |EE(
�����

G)|
(5)
= |DEd+(

�����

G)| , (52)

and Theorem2.1 applies. We just have to choose the orientation ����� of
�����

G in accordance

with Lemma3.2.

As in [AlTa, Corollary 3.4] we obtain as corollary:

Corollary 3.4. Bipartite planar graphs are 3-paintable.

Proof. Every planar graph G is contained in a triangulation with 3|V | − 6 edges, and

we have to remove at least one third of the edges (at least one edge from each triangular

face) to obtain the original bipartite graph G . Hence, G contains at most 2|V | − 4

edges, and it follows that L(G) < 2 (since each subgraph H 6 G is bipartite and planar

as well).

As it can be difficult to calculate L(G) or Ľ(G) 6 (1− 1
|E(G)|

)L(G) in Theorem3.3,

we provide the following upper bounds:

Lemma 3.5. Let G = (V1 ⊎ V2, E) be a bipartite graph with parties V1 and V2 , and let

∆i(G) := max
v∈Vi

d(v) be the maximal degree inside Vi ( i = 1, 2 ), then ∆i(G)

L(G) 6
1

1/∆1(G) + 1/∆2(G)
6

1
2
∆(G) .

Proof. Since E 6= ∅ , we may alow in the definition of L(G) , and in the minima below,
only subgraphs H with E(H) 6= ∅ , and can conclude:

1

L(G)
= min

H6G

|V (H)|

|E(H)|
> min

H6G

|V (H) ∩ V1|

|E(H)|
+ min

H6G

|V (H) ∩ V2|

|E(H)|

=
1

∆1(G)
+

1

∆2(G)
>

2

∆(G)
.

(53)

the electronic journal of combinatorics 17 (2010), #R13 13



With the “partite” maximal degrees ∆1(G) , ∆2(G) from Lemma3.5, we obtain the

following corollary to Theorem3.3. Note that the upper bound in this corollary about

bipartite graphs is significantly better than those in Brooks’ Theorem (namely ∆(G) ),

even if we replace ∆1(G) and ∆2(G) with ∆(G) :

Corollary 3.6. Bipartite graphs G are

⌊

1 − 1/|E|

1/∆1(G) + 1/∆2(G)
+ 2

⌋

-paintable.

If we apply this corollary to K2,3\e (K2,3 minus one edge), it tells us that this graph

is 2-paintable, which would not follow if we would have based our corollary only on the

expression ⌈L(G)+1⌉ in Theorem3.3. The small improvement Ľ(G) 6 (1− 1
|E(G)|

)L(G)

makes a difference, even though ⌈L(G) + 1⌉ =
⌊

Ľ(G) + 2
⌋

.

We want to go a little bit more into detail, and examine the possible orientations

in the bipartite case again. With the “partite” maximal degrees ∆1(G) , ∆2(G) from

Lemma3.5 we obtain, in analogy to Lemma3.2:

Lemma 3.7. Let G = (V1 ⊎ V2, E) be a bipartite graph with the two parties V1 and V2 .

For numbers L1, L2 ∈ N with L1

∆1(G)
+ L2

∆2(G)
> 1− 1

|E|
holds:

There exists an orientation ϕ : E −→ V1 ⊎ V2 with d
+

ϕ(v) 6

{

L1 for all v ∈ V1 ,

L2 for all v ∈ V2 .

Proof. The proof works exactly as those of Lemma3.2. We just have to construct a
graph BL1,L2 with Li copies of the vertices in Vi ( i = 1, 2 ), instead of the graph Bm.
Hall’s theorem is applicable in the modified proof, as each subset F ⊆ E of edges in G
“meets” at least |F |/∆i(G) vertices in Vi , and this means that each subset F̄ ⊆ Ē of
new vertices has at least

L1 |F̄ |

∆1(G)
+

L2 |F̄ |

∆2(G)
> (1−

1

|E|
)|F̄ | > |F̄ | − 1 (54)

neighbors in BL1,L2 .

It follows, exactly as in the more special case Theorem3.3:

Theorem 3.8. Let G = (V1 ⊎ V2, E) be a bipartite graph with the parties V1 and V2 .

For numbers L1, L2 ∈ N with L1

∆1(G)
+ L2

∆2(G)
> 1− 1

|E|
holds:

G is ℓ-paintable for ℓ = (ℓv)v∈V1⊎V2
defined by ℓv :=

{

L1 + 1 if v ∈ V1 ,

L2 + 1 if v ∈ V2 .

If we apply this theorem to L1 = L2 :=
⌊

1−1/|E|
1/∆1(G) + 1/∆2(G)

+ 1
⌋

> 1−1/|E|
1/∆1(G) +1/∆2(G)

, it

leads to the same upper bound as in Corollary 3.6.
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Fleischner and Stiebitz examined in [FlSt] 4-regular Hamiltonian graphs, and solved

a coloring problem of Erdős (see also [Tu]). They made the following observation about

Eulerian subgraphs, which implies 3-paintability by Theorem2.1 and (5):

Theorem 3.9. If a directed graph
�����

G is the edge-disjoint union of a directed Hamiltonian

cycle and some mutually vertex-disjoint, cyclically oriented triangles, then

|EE(
�����

G)| − |EO(
�����

G)| ≡ 2 (mod 4) ,

and, consequently,
�����

G is 3-paintable.

Häggkvist and Janssen found in [HäJa, Theorem3.1] a bound for the list chromatic

index of the complete graph Kn . This bound is best possible for odd n . Using The-

orem2.1 instead of Alon and Tarsi’s classical version (which they use at the end of the

proof of [HäJa, Preposition 2.4]) we get:

Theorem 3.10. The complete graph Kn is edge n-paintable.

Sketch of the proof. The line graph LKn of Kn consists of n cliques Qv = Kn−1 , one

for each vertex v ∈ V (Kn) . Häggkvist and Janssen extend each Qv to a Kn by adding

a new vertex v̄ to it. Afterwards, they define a tuple α 6 n − 1 such that the extended

line graph LKn has exactly one orientation ϕ with outdegree sequence d
+

ϕ = α and with

no directed cycle inside one of the cliques Qv . Therefore, |Dα(G)| is odd, the Alon-Tarsi

Condition in Theorem2.1 applies, and the (α + 1)-paintability of LKn follows. Hence,

LKn is n-paintable and Kn is edge n-paintable. Häggkvist and Janssen just use a

different notation and say αv̄ is blocked out in Qv . In this way they come back to the

examination of orientations of the original line graph LKn .

Based on this theorem we give an example that demonstrates the advantage of the

new painting concept against the list coloring approach:

Example 3.11 (Chess Tournaments). Five chess players are organizing a round robin

chess tournament. Each player shall play against each other exactly one time. In each

round at most ⌊5
2
⌋ = 2 games can be played, as no player should play more then one

game at a time. Therefore, the
(

5
2

)

= 10 chess parties have to be played in at least 5

rounds, say on the five working days of a week. Indeed, König’s Theorem tells us that

the chromatic index of K5 is 5 so that 5 rounds are enough. Our five friends only have

to figure out how to do it in detail.

Now, Häggkvist and Janssen’s Theorem tells us that the list chromatic index of K5

is 5 as well. What does this mean for our chess tournament? For example, it means that

the tournament can be scheduled in seven rounds/days, in such a way, that each player is

allowed to be unavailable on one day. Each player has to announce the day of his absence

in advance. If player A is not available on Sunday and player B does not have time
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on Wednesday, then still five days are left for their game to take place. In other words,

we have a list of at least five available time slots at each edge of K5 , and Häggkvist and

Janssen’s Theorem guarantees that appropriate appointments can be made.

Now, our strengthening of Häggkvist and Janssen’s Theorem tells us that even the

paintability index of K5 is 5 . In other words, Mrs. Correct has a winning strategy in the

corresponding edge coloring game if there are 5−1 = 4 erasers at each edge of K5 (only

3 erasers per edge would not be enough). What dose this mean? Again, it means that

our tournament can be organized on seven days, in such a way, that each player is allowed

to miss one day. The new thing is that the players do not have to announce their absence

in advance. On each particular day of the tournament, it is the job of Mr. Paint to look

around and see who shows up. He then suggests that each present player should play

against all those other present players against whom he has not played so far. Since each

player should play only one party at a time, his suggestion might be quite inapplicable,

and our smart Mr. Correct has to correct this proposal by selecting a matching inside

the suggested subgraph. Our Theorem3.10 guarantees that she can do this in such a way

that after seven days all 10 games are played. This is because Mr. Paint will suggest

each edge of K5 at least five times, if it is rejected again and again, and Mrs. Correct

can reject it at most four times.

This example can be generalized to tournaments of arbitrarily many players. However,

it could be that some days/rounds can be saved. For even n König’s Theorem states

that the chromatic index of Kn is n − 1 , so that, e.g., another sixth player can join the

five-day tournament above, the
(

6
2

)

= 15 possible parties can be played on 5 days as

well. In other words, in the even case with always available players one day can be saved.

According to the List Coloring Conjecture, the list chromatic index of any graph equals

its chromatic index. Therefore, n− 1 should also be the list chromatic index of Kn if n

is even, so that we should be able to save one day in the corresponding tournament with

disclosed days of absences. This would be best possible since the so-called total chromatic

number of K2m is ∆(K2m) + 2 = 2m + 1 , see [AlWi]. However, there seems to be no

published proof of the List Coloring Conjecture in the case of even complete graphs.

Beyond this open problems, one could conjecture that the list coloring index of a graph

equals it paintability index, which would extend the List Coloring Conjecture and would

apply to the third case in our example above. In this case n+1 rounds would be enough,

provided that n is even. If n > 2 is odd, our bound of n + 2 rounds is best possible.

That is because the n players may jointly attend the first n − 1 rounds. Afterwards,

there are two players, say A and B , who have not played against each other. Now, if

A does not show up in the nth round, and B does not show up in the (n+1)th round,

their game has to be staged in the remaining (n+2)th round.

A further generalization concerns the allowed number of absences. It seams that 2k

additional rounds are needed if k absences are allowed. Note also that our proof of

Theorem3.10 and its repercussions is based on Häggkvist and Janssen’s proof and the
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proof of Theorem2.1. This leads to a quite tricky strategy for Mrs. Correct, an algorithm

with exponential running time. Brute force calculations might be as good.

We conclude this section with another special case of the List Coloring Conjecture.

Ellingham and Goddyn’s confirmed the List Coloring Conjecture for planar r-regular edge

r-colorable multigraphs G (see [ElGo] or the end of Section 5 in [Scha2]), and this can

be generalized to paintability. In their original proof, they show that the difference

|DEr−1(
−−�����

LG)| − |DOr−1(
−−�����

LG)| , (55)

where
−−�����

LG is the arbitrarily oriented line graph of G , equals the number of edge

r-colorings of G (up to a constant factor). Thus, the existence of an edge r-coloring

implies the assumptions of Theorem2.1, and hence the r-paintability of
−−�����

LG :

Theorem 3.12. Planar r-regular edge r-colorable multigraphs are edge r-paintable.

For arbitrary graphs, the trick behind this theorem does not work. This is because the

corresponding difference of even and odd orientations usually equals just a weighted sum

over certain colorings [Scha2, Corollary 5.5(i)], so that the contributions of the different

colorings may cancel each other.
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