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Abstract

In this paper we examine the problem of decomposing the lexicographic product
of a cycle with an empty graph into cycles of uniform length. We determine nec-
essary and sufficient conditions for a solution to this problem when the cycles are
of odd length. We apply this result to find necessary and sufficient conditions to
decompose a complete equipartite graph into cycles of uniform length, in the case
that the length is both odd and short relative to the number of parts.

1 Introduction

Before we venture further, we remind the reader of some definitions. A complete equipartite
graph Kn(m) has its nm vertices partitioned into n parts, often referred to as partite sets,
each of size m, and there is an edge between any two vertices in different partite sets,
but no edge between any two vertices in the same partite set. The lexicographic product
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G ∗ H of graphs G and H is the graph with vertex set V (G) × V (H), and with an edge
joining (g1, h1) to (g2, h2) if and only if: g1 is adjacent to g2 in G; or g1 = g2 and h1 is
adjacent to h2 in H . Observe that Kn(m) is isomorphic to Kn ∗ Km.

We frequently exploit the following elementary facts abouts the lexicographic product.
For any graph G, (G ∗ Km) ∗ Kℓ

∼= G ∗ Kmℓ. Also, if G has an edge-disjoint decomposi-
tion into subgraphs G1, G2, . . . , Gt, then G ∗ Km has an edge-disjoint decomposition into
subgraphs G1 ∗ Km, G2 ∗ Km, . . . , Gt ∗ Km.

With the above observations, it should come as no surprise that results on decom-
positions of lexicographic products can be very useful tools in finding decompositions of
complete equipartite graphs. This is the key approach in many papers, including: [2, 3, 6]
and indeed this paper.

Much work on cycle decompositions of Kn ∗Km focuses on small values of m, n or on
small fixed cycle lengths. The problem of determining necessary and sufficient conditions
for existence of an edge-disjoint decomposition of a complete graph Kn (n odd) into k-
cycles was finally completed in [1] and [11]. This graph can be regarded as a complete
equipartite graph in which all the parts have size 1. The same cycle decomposition
problem for the graph Kn − F where F is a 1-factor and n is even, was also solved in
these papers. This latter graph can be regarded as a complete equipartite graph with n/2
parts of size 2. These results are summarized in Theorem 7 in the next section.

As part of a more general result, Sotteau [14] showed that when n = 2, Kn ∗ Km

decomposes into cycles of length k if and only if k is even (as odd cycles are tripartite),
m is even, k < 2m and k divides m2. The equivalent problem for n = 3 has also been
solved ([6]), and recently all the cases n 6 5 were completed ([2, 3]).

Some work has also been done on cycle decompositions of Kn ∗ Km when the cycle
length is small and specified (see [7] for small even length and arbitrary part sizes), of
prime length ([10]), and of length twice or thrice a prime [12, 13]. Liu ([8, 9]) deals with
resolvable cycle decompositions of complete equipartite graphs with any number of parts;
the resolvability of course means a greater restriction on possible cycle lengths.

The results from this paper allow us to solve a significant chunk of the general problem
of determining necessary and sufficient conditions for existence of an edge-disjoint decom-
position of a complete equipartite graph into cycles of uniform length. In particular we
solve all cases where the cycle length is odd and small relative to the number of parts.

Our main results are the following:

Theorem 1. The graph Cn ∗ Km decomposes into cycles of odd length k if and only if:

• n is odd,

• n 6 k 6 mn and

• k divides nm2.

Theorem 2. Let n, m and k be positive integers such that m is odd, k is odd and
3 6 k 6 n. Then the complete equipartite graph Kn ∗ Km admits a decomposition into
cycles of length k if and only if n is odd and k divides m2

(

n
2

)

.
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Theorem 3. Let n, m and k be positive integers such that m is even, k is odd and
3 6 k 6 2n. Then the complete equipartite graph Kn ∗ Km admits a decomposition into
cycles of length k if and only if k divides m2

(

n
2

)

.

In Section 3 we show that Theorem 1, together with some known results from the
literature given in Section 2, implies Theorems 2 and 3. This motivates the proof of
Theorem 1 in Section 5, using preliminary lemmas from Section 4.

2 Known Results

The following known results should not be regarded as a comprehensive survey of results
in the area (see the previous section); we list only the results relied upon in this paper.

A proof of the following result may be found in [6]:

Theorem 4. [Cavenagh] For k > 3 and m > 1, the graph Ck ∗ Km

(i) has a decomposition into cycles of length k;

(ii) has a decomposition into cycles of length km.

We sometimes need a more explicit version of Theorem 4 (ii).

Theorem 5. [Cavenagh] For k > 3, m > 1 and m 6∈ {2, 6}, the graph Ck∗Km decomposes
into cycles of length km in such a way that each cycle consists of a perfect matching
between each pair of consecutive partite sets in Ck ∗ Km.

The proof of Theorem 5 follows from the existence of a pair of MOLS of order not
equal to 2 or 6; see, for example, the detail of Theorem 2.4 in [6].

It is also possible, under certain conditions, to take lexicographic products of closed
trails (connected, even graphs) with empty graphs, and decompose such graphs into cycles.
Some of these sufficient conditions are outlined in the following theorem, a special case of
Theorem 1.1 from [13].

Theorem 6. [Smith] Let CT be a tripartite closed trail on k edges having maximum
degree ∆. Then for all m > ∆/2, the graph CT ∗ Km can be decomposed into cycles of
length k.

For the sake of brevity we define, for each positive integer n, the graph Gn to be the
complete graph Kn when n is odd, and the complete graph minus a 1-factor Kn−F when
n is even. Hence Gn is an even graph and |E(Gn)| = n⌊n−1

2
⌋.

Necessary and sufficient conditions for decomposing Gn into cycles of uniform length
have been completely determined ([1, 11]):

Theorem 7. [Alspach, Gavlas, Šajna] For each k, n > 3, the graph Gn decomposes into
cycles of length k if and only if k 6 n and k divides n⌊n−1

2
⌋.
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Necessary and sufficient conditions for decomposing Gn into cycles of non-uniform
length (the so-called Alspach Conjecture) have not been found in generality. However the
following results from [4] and [5] will be particularly useful in this paper.

Theorem 8. [Bryant, Horsley] Let n be a positive integer and let k1, k2, . . . , kx be a list
of integers such that

• ⌈n
2
⌉ > k1 > k2 > · · · > kx > 3;

• k1 + k2 + · · ·+ kx = n⌊n−1
2
⌋; and

• 2k2 > k1.

Then there exists a decomposition of Gn into x cycles of lengths k1, k2, . . . , kx.

Theorem 9. [Bryant, Horsley] Let n be a positive integer and let k1, k2, . . . , kx be a list
of integers such that

• n > k1 > k2 > · · · > kx > ⌈n+4
2
⌉; and

• k1 + k2 + · · ·+ kx = n⌊n−1
2
⌋.

Then there exists a decomposition of Gn into x cycles of lengths k1, k2, . . . , kx.

The following is shown in [6].

Theorem 10. [Cavenagh] The graph K3 ∗ Km decomposes into cycles of length k if and
only if k 6 3m and k divides 3m2.

Theorem 11. Let k be odd and suppose that k divides mn, m(n − 1) is even and n > 3.
Then the graph Kn ∗ Km decomposes into cycles of length k.

Proof. When n = 3, the result follows from Theorem 10. The graph K6 ∗ K2
∼= G12

decomposes into 3-cycles by Theorem 7. The remaining cases follow from Liu [9].

3 Decompositions of equipartite graphs

In this section we show that Theorem 1, together with some known results from the
literature, implies Theorems 2 and 3. The remainder of the paper is then devoted to
proving Theorem 1. We first use Theorems 8 and 9 to prove the following preliminary
lemma.

Lemma 1. Let n, a and s be positive integers such that s is odd, s > 3, n > as2 and
a | n⌊n−1

2
⌋. Then, for some integer x, there exists a decomposition of Gn into x cycles of

lengths ac1, ac2, . . . , acx where each ci is odd and in the range s 6 ci 6 s2.
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Proof. Let n′ = n⌊n−1
2
⌋/a. We write n′ = sd + r where d and r are positive integers with

0 6 r < s. We now split the problem according to the parity of r.

Case 1. Suppose r is even. If a(s + r) 6 ⌈n
2
⌉ we set x = d and define

ci =

{

s + r, for i = 1;

s, for 2 6 i 6 x.

Hence ac1 + ac2 + · · ·+ acx = n⌊n−1
2
⌋ and 2ac2 > ac1 > ac2 > · · · > acx. The result then

follows by Theorem 8. Suppose then that a(s + r) > ⌈n
2
⌉.

Since a(s + r) 6 2as 6
2n
s

we must have s = 3 and hence r = 0 or 2. In fact, since
as 6

n
s

< ⌈n
2
⌉ we must have r = 2. Moreover, since n > 9 and a(s + r) = 5a > ⌈n

2
⌉ we

have a 6= 1. Hence n > as2 > 18 and n′ = n⌊n−1
2
⌋/a > s2⌊n−1

2
⌋ > 9(8). Thus it is clear

that there exist nonnegative integers α and β such that n′ = 9α + 7β. We set x = α + β
and define

ci =

{

9, for 1 6 i 6 α;

7, for α + 1 6 i 6 x.

Hence ac1 +ac2 + · · ·+acx = n⌊n−1
2
⌋ and ac1 > ac2 > · · · > acx > ⌈n+4

2
⌉. The result then

follows by Theorem 9.

Case 2. Suppose r is odd. We split the problem according to whether r and s are
congruent modulo 4.

Case 2A. Suppose r 6≡ s (mod 4). If a(3s+r)
2

6 ⌈n
2
⌉ we set x = d − 1 and define

ci =

{

3s+r
2

, for 1 6 i 6 2;

s, for 3 6 i 6 x.

Hence ac1 + ac2 + · · ·+ acx = n⌊n−1
2
⌋ and ac1 = ac2 > · · · > acx. The result then follows

by Theorem 8. Suppose then that a(3s+r)
2

> ⌈n
2
⌉.

Since a(3s+r)
2

< 2as 6
2n
s

we must have s = 3 and hence r = 1. Moreover, since
a(3s+r)

2
= 5a > ⌈n

2
⌉ and n > 9 we must have a 6= 1. Hence n > as2 > 18 and n′ =

n⌊n−1
2
⌋/a > s2⌊n−1

2
⌋ > 9(8). Thus it is clear that there exist nonnegative integers α and

β such that n′ = 9α + 7β. We set x = α + β and define

ci =

{

9, for 1 6 i 6 α;

7, for α + 1 6 i 6 x.

Hence ac1 +ac2 + · · ·+acx = n⌊n−1
2
⌋ and ac1 > ac2 > · · · > acx > ⌈n+4

2
⌉. The result then

follows by Theorem 9.
Case 2B. Suppose r ≡ s (mod 4). Hence s > 5 and a(3s+r+2)

2
< a(2s+1) < as2

2
6 ⌈n

2
⌉.

We set x = d − 1 and define

ci =











3s+r+2
2

, for i = 1;
3s+r−2

2
, for i = 2;

s, for 3 6 i 6 x.

the electronic journal of combinatorics 17 (2010), #R130 5



Hence ac1 + ac2 + · · ·+ acx = n⌊n−1
2
⌋ and 2ac2 > ac1 > ac2 > · · · > acx. The result then

follows by Theorem 8.

We are now ready to show that Theorem 1 implies Theorems 2 and 3.

Proof of Theorem 2.

The necessity of the conditions is obvious and hence we need only prove the sufficiency.
We write k = as2t where a|

(

n
2

)

, st|m and t is square free. Note that each of a, s and
t are odd. If s = a = 1 the result follows by Theorem 11, while if s = 1 and a > 3 the
result follows by applying Theorem 4 to an a-cycle decomposition of Kn (Theorem 7).
Hence we may assume that s > 3.

We need only show that Kn ∗Ks admits a decomposition into cycles of length as2 and
the result then follows by Theorem 4. Since Cac ∗ Ks admits a decomposition into cycles
of length as2 for each odd c in the range s 6 c 6 s2 (see Theorem 1), it suffices to show
that, for some integer x, Kn can be decomposed into x cycles of lengths ac1, ac2, . . . , acx,
where each ci is odd and in the range s 6 ci 6 s2. This follows from Lemma 1.

Proof of Theorem 3.

The necessity of the conditions is obvious and hence we need only prove the sufficiency.
We write k = as2t where a|4

(

n
2

)

, 2st|m and t is square free. Note that each of a, s and
t are odd. If s = a = 1 the result follows by Theorem 11, while if s = 1 and a > 3 the
result follows by applying Theorem 4 to an a-cycle decomposition of Kn ∗ K2 (Theorem
7). Hence we may assume that s > 3.

We need only show that Kn ∗ K2s admits a decomposition into cycles of length as2

and the result then follows by Theorem 4. Since Cac ∗ Ks admits a decomposition into
cycles of length as2 for each odd c in the range s 6 c 6 s2 (see Theorem 1), it suffices
to show that, for some integer x, Kn ∗ K2 can be decomposed into x cycles of lengths
ac1, ac2, . . . , acx, where each ci is odd and in the range s 6 ci 6 s2. This follows from
Lemma 1, noting that Kn ∗ K2

∼= G2n and 4
(

n
2

)

= 2n⌊2n−1
2

⌋.

4 Notation and preliminary lemmas

In this section we introduce some notation, including the idea of weak and strong paths.
These are the building blocks for our constructions in the next section.

In this section, s and ℓ are positive integers. For u > 1, let Vu = {u0, u1, . . . , us−1}.
Let Lℓ be the path of length ℓ (that is, with ℓ edges). We label the vertices of Lℓ ∗ Ks

with the elements of
⋃

u∈Zℓ+1
Vu, with an edge joining ui and vj if and only if u and v

differ by 1. We label the vertices of Cℓ ∗ Ks with the elements of
⋃

u∈Zℓ
Vu, with an edge

joining ui and vj if and only if u and v differ by 1 (mod ℓ). In general, we calculate the
subscripts of vertex labels mod s. For Cℓ ∗ Ks we calculate vertex labels mod ℓ.

For a particular graph G in Lℓ ∗ Ks and integer i, we let G ⊕ i be the graph created
from G by adding i to each vertex label of G, keeping subscripts fixed. We note that G⊕ i
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is a subgraph of Lℓ+j ∗ Ks for any j > i. We also define Gi to be the graph created from
G by adding i (mod s) to each subscript of each vertex of G. We similarly define graphs
G ⊕ i and Gi when G is a particular subgraph in Cℓ ∗ Ks, this time calculating vertex
labels mod ℓ.

We consider an edge of the form {ji, (j + 1)i+d} to have difference d and type (i, d).
For any set D ⊆ {0, 1, . . . , s−1} we define a weak (ℓ, s, D)−path to be any path in Lℓ ∗Ks

with end vertices 00 and ℓ0 which contains exactly one edge of each difference d ∈ D. We
note that if P is a weak (ℓ, s, D)−path then P has length |D|.

For any set D ⊆ {0, 1, . . . , s − 1} we define a strong (ℓ, s, D)−path to be any path
in Lℓ ∗ Ks with end vertices 00 and ℓ0 which contains, for each d ∈ D and each i ∈
{0, 1, . . . , s−1}, exactly one edge of type (i, d). We note that if P is a strong (ℓ, s, D)−path
then P has length s|D|.

Furthermore, we define a weak (respectively, strong) (ℓ, s, D)∗−path to be a weak
(respectively, strong) (ℓ, s, D)−path such that for each i ∈ {1, 2, . . . , s − 1}, at most one
of the vertices in the set {0i, ℓi} is included in the path.

Lemma 2. Let ℓ, s and a be positive integers. If there exists a weak (ℓ, s, Zs)
∗−path then

there exists a decomposition of Caℓ ∗ Ks into cycles of length as.

Proof. Let P be a weak (ℓ, s, Zs)
∗−path. Let P ′ be the path, in Laℓ ∗ Ks, obtained by

concatenating the paths P, P ⊕ ℓ, P ⊕ 2ℓ, . . . , P ⊕ (a− 1)ℓ. Thus P ′ is a path of length as
with end vertices 00 and (aℓ)0. Moreover, for each d ∈ Zs and each j ∈ {0, 1, . . . , a−1}, P ′

contains exactly one edge of the form {(v+jℓ)i, (v+jℓ+1)i+d} for some v ∈ {0, 1, . . . , ℓ−1}
and some i ∈ {0, 1, . . . , s − 1}.

Let Caℓ ∗ Ks be the graph formed by identifying, for each i ∈ Zs, the vertices 0i and
(aℓ)i in the graph Laℓ ∗ Ks, and C be the subgraph of Caℓ ∗ Ks obtained by the same
identification of vertices in P ′. Then C is a cycle of length as. Moreover, the cycles of the
form Cx ⊕ y, where 0 6 x 6 s−1 and 0 6 y 6 ℓ−1, decompose Caℓ ∗Ks as required.

Lemma 3. Let ℓ, s and a be positive integers. If there exists a strong (ℓ, s, Zs)
∗−path

then there exists a decomposition of Caℓ ∗ Ks into cycles of length as2.

Proof. Let P be a strong (ℓ, s, Zs)
∗−path. Let P ′ be the path, in Laℓ ∗ Ks, obtained by

concatenating the paths P, P ⊕ ℓ, P ⊕ 2ℓ, . . . , P ⊕ (a − 1)ℓ. Thus P ′ is a path of length
as2 with end vertices 00 and (aℓ)0. Moreover, for each d ∈ Zs, each i ∈ Zs and each
j ∈ {0, 1, . . . , a− 1}, P ′ contains exactly one edge of the form {(v + jℓ)i, (v + jℓ + 1)i+d}
for some v ∈ {0, 1, . . . , ℓ − 1}.

Let Caℓ ∗ Ks be the graph formed by identifying, for each i ∈ Zs, the vertices 0i and
(aℓ)i in the graph Laℓ ∗ Ks, and C be the subgraph of Caℓ ∗ Ks obtained by the same
identification of vertices in P ′. Then P ′ is a cycle of length as2. Moreover, the cycles
C, C ⊕ 1, C ⊕ 2, . . . , C ⊕ (ℓ − 1) decompose Caℓ ∗ Ks as required.

Lemma 4. There exists a weak (ℓ, t, Zt)
∗−path for any odd integers t and ℓ such that

3 6 ℓ 6 t. Moreover, there is such a path which uses no vertices of the form 0i where
(t + 1)/2 6 i 6 t − 1.
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Proof. Let u = t + 1 − ℓ. Note that 1 6 u. Also, since ℓ and t are odd, u is also
odd. Let u = 2U + 1. We will form the required path by concatenating two paths:
P1 (of length u) and P2 (of length t − u). Note that t − u > 1 and t − u is even. If
u = 1, then P1 = [00, 10]. Otherwise, P1 = [00, 1U , 01, 1U−1, . . . , 0U , 10]. Next, P2 =
[10, 2U+1, 30, 4U+2, 50, . . . , (t − u − 1)0, (t − u)(t−1)/2, (t − u + 1)0].

Before we prove Lemma 8, we need the following preliminary lemmas.

Lemma 5. There exists a strong (2s, s, {d, d′})∗−path for any integers s, d and d′ such
that 1 6 d, d′ 6 s and gcd(d, d′) = 1.

Proof. Let gcd(d, s) = g and gcd(d′, s) = h. Since gcd(d, d′) = 1, we have that gcd(g, h) =
1 and consequently gh 6 s. Let s = hh′ = gg′. Note that h 6 s/g = g′ and similarly
g 6 h′.

To describe our strong (2s, s, {d, d′})∗−path, we list the subscripts of the vertices
(calculated mod s as usual) in a sequence S, so that a is the ith element of S if and only
if (i − 1)a is the ith vertex in our path.

Firstly, suppose that h′ = 1. Then s = h which implies that d′ = s, so that
g =gcd(d, s) =gcd(d, d′) = 1 and g′ = s. In this case, our sequence S is given by:

0, 0, d, d, 2d, 2d, . . . , (s − 1)d, (s − 1)d, 0.

The case g′ = 1 is similar.
Henceforth we may assume that h′ > 1 and g′ > 1. For each a such that 1 6 a 6 h−1

we define Pa to be the sequence

ad, ad + d′, ad + 2d′, . . . ad + (h′ − 1)d′, ad.

For each b such that 1 6 b 6 g − 1 we define Qb to be the sequence

bd′, bd′ + d, bd′ + 2d, . . . bd′ + (g′ − 1)d, bd′.

If h = g = 1, the sequence S is given by:

0, d, 2d, . . . , (s − 1)d, 0, d′, 2d′, . . . , (s − 1)d′, 0.

If h = 1 and g > 1, our sequence S is:

0, d, 2d, . . . , (g′ − 1)d, 0, Q1, Q2, . . . , Qg−1, gd′, (g + 1)d′, (s − 1)d′, 0.

If h > 1 and g = 1, S is given by

0, P1, P2, . . . , Ph−1, hd, (h + 1)d, . . . , (s − 1)d, 0, d′, 2d′, . . . , (h′ − 1)d′, 0.

Finally, we are left with the case h > 1 and g > 1. We then use the sequence S:

0, P1, P2, . . . , Ph−1, hd, (h + 1)d, . . . , (g′ − 1)d, 0, Q1, Q2, . . .
. . . , Qg−1, gd′, (g + 1)d′, . . . , (h′ − 1)d′, 0.
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Lemma 6. There exists a strong (s, s, {1, 2, . . . , a})∗-path for any odd integers a and s
such that 1 6 a 6 s − 2.

Proof. Our aim is to construct a path P of length a, in L1 ∗ Ks, with the following
properties:

(i) P has end vertices 00 and 1x where 1 6 x 6 s − 1 and gcd(x, s) = 1;

(ii) P contains exactly one edge of each difference d ∈ {1, 2, . . . , a};

(iii) the graph formed by concatenating P and P x ⊕ 1 is a path.

It is easy to see that the required strong (s, s, {1, 2, . . . , a})∗-path can then be obtained
by concatenating the paths P, P x⊕1, P 2x⊕2, . . . , P (s−1)x⊕ (s−1). We form P as follows.

If a = 1 or a = 3, then P = [00, 11] or P = [00, 12, 01, 14] (respectively). Henceforth
a > 5. If a = 4A + 1,

P = [00, 11, 0s−1, 12, 0s−2, . . . , 1A, 0s−A−1, 1A+1, 0s−A−2, . . . , 0s−2A−1, 1s−1].

If a = 4A + 3 = s − 2, then

P = [00, 11, 0s−1, 12, 0s−2, . . . , 1A, 0s−A−1, 1A+1, 0s−A−2, . . . , 12A+1, 01, 1s−1].

Otherwise a = 4A + 3 < s − 2 and

P = [00, 11, 0s−1, 12, 0s−2, . . . , 1A, 0s−A−1, 1A+1, 0s−A−2, . . . , 0s−2A−2, 1s−2].

In each case it is an easy exercise to check that P satisfies conditions (i), (ii) and (iii)
above. The result follows.

Lemma 7. Let b be even, s be odd and 2 6 b 6 2s. Then there exists a strong
(b, s, {0, s − 1})-path which includes the edge [00, 10] but does not contain any of the ver-
tices 01, 02, . . . , 0s−1. Furthermore, if b > 4 there is such a path which does not contain
any of the vertices b1, b2, . . . , bs−1.

Proof. The path

P = [00, 10, 2s−1, 1s−1, 2s−2, . . . , 2b/2−1, 3b/2−1, 4b/2−2, 5b/2−2, . . . , b0]

has the required properties.

Lemma 8. Let c and s be odd, s > 3 and s + 4 6 c 6 s2. Then there exists a strong
(c, s, Zs)

∗-path which includes the edge [00, 10].
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Proof. Write c = as+b where a is odd, b is even and 2 6 b 6 2s. Note that 1 6 a 6 s−2,
and if a = 1 then b > 4.

We set x = (a − 1)/2 and A = s − 1 − a. Partition Zs into the sets D = {0, s − 1},
D′ = {1, 2, . . . , A} and, in the case x > 1, Di = {A + 2i − 1, A + 2i}, i = 1, 2, . . . , x.

Then there exists a strong (b, s, D)-path, P say, which includes the edge [00, 10], by
Lemma 7, and a strong (s, s, D′)∗-path, P ′ say, by Lemma 6. Furthermore, if x > 1 there
exists a strong (2s, s, Di)-path, Pi say, for each i = 1, 2, . . . , x, by Lemma 5. The required
strong (c, s, Zs)

∗-path is then obtained by concatenating the paths

P, P1 ⊕ b, P2 ⊕ (b + 2s), . . . , Px ⊕ (b + (x − 1)2s), P ′ ⊕ (b + 2xs)

(omitting the paths P1 ⊕ b, P2 ⊕ (b + 2s), . . . , Px ⊕ (b + (x − 1)2s) in the case x = 0). It
is easy to see that this does indeed form a strong (c, s, Zs)

∗-path since none of the paths
P, P1, P2, . . . , Px contain any of the vertices 01, 02, . . . , 0s−1, and furthermore, the path
Px (respectively, P in the case x = 0 and b > 4) does not contain any of the vertices
(2s)1, (2s)2, . . . , (2s)s−1 (respectively, b1, b2, . . . , bs−1).

We refer the reader to Figure 1 for a concrete example of this construction.

00

01

02

03

04

05

06

07

08

09

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V15V14

010

Figure 1: A strong (15, 11, Z11)
∗-path, constructed as in Lemma 8.

Unfortunately the techniques in the previous lemma fail if we try to construct a (s +
2, s, Zs)

∗-path in the same manner. To see this, P ′ and P ⊕ (2) defined as in the proof of
the previous lemma do not combine to make a proper path. Instead we take a different
approach. Admittedly some of the detail in the following lemma is fiddly. We encourage
the reader to refer to Figures 2, 3, 4 and 5, which exhibit concrete examples.

Lemma 9. Let s be odd and s > 3. Then there exists a strong (s + 2, s, Zs)
∗-path.

Proof. We split the proof into four cases, depending on the congruency of s (mod 8).

the electronic journal of combinatorics 17 (2010), #R130 10



Case 1: s ≡ 3 (mod 8). For s = 3 a suitable P is given by:

[00, 12, 02, 11, 21, 32, 40, 30, 41, 50].

Otherwise assume that s > 11.
For each i, 0 6 i 6 (s − 7)/4, define the following path Pi of length 4s:

Pi = [(4i)i, (4i + 1)(s−3)/2−i, (4i)i−1, (4i + 1)(s−5)/2−i, . . . , (4i)i+1, (4i + 1)(s−1)/2−i,

(4i + 2)(s−1)/2−i, (4i + 3)i, (4i + 2)(s−3)/2−i, (4i + 3)i−1, . . . , (4i + 2)(s+1)/2−i,

(4i + 3)i+1, (4i + 4)i+1].

Note that Pi includes an edge of type (j, d) for each j such that 0 6 j 6 s − 1 and
d ∈ {±((s − 1)/2 − 2i),±((s − 3)/2 − 2i)}, except for (j, d) ∈ {(i, (s − 1)/2 − 2i), ((s −
1)/2− i, 2i− (s− 3)/2}. (Edges of the excluded types are later used in R(s−19)/8−⌊i/2⌋ for
0 6 i 6 (s − 15)/4, or in Q when i ∈ {(s − 11)/4, (s − 7)/4}.)

Let P ′ be the path of length s2 − 3s formed by concatenating P0, P1, . . . , P(s−7)/4.
Observe that P includes edges of type (j, 0), where

j ∈ {1, 2, . . . , (s − 3)/4} ∪ {(s + 5)/4, (s + 9)/4, . . . , (s − 1)/2}.

Next, let Q be the following path of length 15:

Q = [(s − 3)(s−3)/4, (s − 2)(s+1)/4, (s − 3)(s+1)/4, (s − 2)(s+5)/4, (s − 1)(s+1)/4,

s(s−3)/4, (s − 1)(s+5)/4, s(s+9)/4, (s + 1)(s+5)/4, s(s−7)/4, (s − 1)(s−3)/4,

(s − 2)(s−7)/4, (s − 3)(s+9)/4, (s − 2)(s+13)/4, (s − 1)(s+9)/4, (s − 2)(s−11)/4].

Next, for each i, 0 6 i 6 (s − 19)/8, we define paths of length 12:

Ri = [(s − 2)(s−11)/4−2i, (s − 1)(s−7)/4−2i, (s)(s−11)/4−2i, (s − 1)(s+13)/4+2i,

(s)(s+17)/4+2i, (s + 1)(s+13)/4+2i, (s)(s−15)/4−2i, (s − 1)(s−11)/4−2i,

(s − 2)(s−15)/4−2i, (s − 3)(s+17)/4+2i, (s − 2)(s+21)/4+2i, (s − 1)(s+17)/4+2i,

(s − 2)(s−19)/4−2i].

(For s = 11, no such paths are included in the final concatenation.)
Next, for each i, 0 6 i 6 (s − 7)/4, we define paths:

Hi = [(s − 1)s−2i−1, (s − 2)s−2i−1, (s − 3)s−2i−2, (s − 2)s−2i−2, (s − 1)s−2i−3]

and

Ji = [ss−2i−3, (s + 1)s−2i−2, ss−2i−1].

Finally, we form the path P of length s2 by concatenating, in order: P ′, Q, R0,
R1, . . .R(s−19)/8, [(s − 2)0, (s − 1)s−1], H0, H1, . . .H(s−7)/4, [(s − 1)(s+1)/2, s(s+1)/2],
J(s−7)/4, J(s−11)/4, . . . , J0, [ss−1, (s + 1)0, s0, (s + 1)1, (s + 2)0].

the electronic journal of combinatorics 17 (2010), #R130 11
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Figure 2: A strong (13, 11, Z11)
∗-path, constructed as in Case 1 of Lemma 9.

For visual simplicty, we have used the following convention. A dashed line of
type (i, d) between partite sets of the form V2x and V2x+1 means that we use all
edges of difference d and d−1 between those partite sets except for the dashed
edge.

Case 2: s ≡ 7 (mod 8).
For each i, 0 6 i 6 (s − 7)/4, define paths Pi as in the previous case. Let P ′ be the

path of length s2 − 3s formed by concatenating P0, P1, . . . , P(s−7)/4.
Next, let Q be the following path:

Q = [(s − 3)(s−3)/4, (s − 2)(s+1)/4, (s − 3)(s+1)/4, (s − 2)(s+5)/4, (s − 1)(s+1)/4,

s(s−3)/4, (s − 1)(s+5)/4, s(s+9)/4, (s + 1)(s+5)/4, s(s−7)/4, (s − 1)(s−3)/4,

(s − 2)(s−7)/4]

Next, for each i, 0 6 i 6 (s − 15)/8, we define paths:

Ri = [(s − 2)(s−7)/4−2i, (s − 3)(s+9)/4+2i, (s − 2)(s+13)/4+2i, (s − 1)(s+9)/4+2i,

(s − 2)(s−11)/4−2i, (s − 1)(s−7)/4−2i, s(s−11)/4−2i, (s − 1)(s+13)/4+2i,

s(s+17)/4+2i, (s + 1)(s+13)/4+2i, s(s−15)/4−2i, (s − 1)(s−11)/4−2i,

(s − 2)(s−15)/4−2i].
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Next, for each i, 0 6 i 6 (s − 11)/4, we define paths:

Hi = [ss−2i−3, (s − 1)s−2i−3, ss−2i−2, (s + 1)s−2i−2, ss−2i−1]

and

Ji = [(s − 2)s−2i−1, (s − 3)s−2i−2, (s − 2)s−2i−3].

Finally, we form the path P by concatenating, in order: P ′, Q, R0, R1, . . . R(s−15)/8,
[(s − 2)0, (s − 1)s−1, (s − 2)s−1], J0, J1, . . . J(s−11)/4,
[(s − 2)(s+5)/2, (s − 3)(s+3)/2, (s − 2)(s+1)/2, (s − 1)(s+1)/2, s(s+3)/2, (s + 1)(s+3)/2, s(s+5)/2],
H(s−11)/4, H(s−15)/4, . . . , H0, [ss−1, (s + 1)0, (s + 2)0]. (For the case s = 7, all paths of the
form Ri, Ji and Hi are omitted, in any case they are undefined.)
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Figure 3: strong (17, 15, Z15)
∗-path, constructed as in Case 2 of Lemma 9. See

Figure 2 for the meaning of dashed lines.

Case 3: s ≡ 5 (mod 8). For s = 5 a suitable P is given by:

[00, 12, 04, 11, 03, 10, 24, 14, 20, 33, 21, 34, 22, 30, 40, 51, 41, 32, 42, 53, 43, 54, 63, 72, 61, 70].
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Otherwise assume that s > 13.
For each i, 0 6 i 6 (s − 9)/4, define paths Pi of length 4s, as in the previous cases.

Next, we define the following path P ′ of length 2s − 1:

P ′ = [(s − 5)(s−5)/4, (s − 4)(s−13)/4, (s − 5)(s−21)/4,

(s − 4)(s−29)/4, . . . , (s − 4)(s+3)/4].

Let P ′′ be the path of length s2 − 3s − 1 which is a concatenation of P0,P1, . . . , P(s−9)/4

and P ′. We next define Q:

Q = [(s − 4)(s+3)/4, (s − 3)(s+7)/4, (s − 2)(s+3)/4, (s − 3)(s+3)/4, (s − 2)(s−1)/4,

(s − 3)(s−1)/4, (s − 2)(s−5)/4, (s − 1)(s−1)/4, s(s+3)/4,

(s − 1)(s−5)/4, s(s−9)/4, (s + 1)(s−5)/4, s(s+7)/4,

(s − 1)(s+11)/4, (s − 2)(s+7)/4, (s − 3)(s−9)/4, (s − 2)(s−13)/4, (s − 1)(s−9)/4].

Next, for each i, 0 6 i 6 (s − 21)/8, define:

Ri = [(s − 1)(s−9)/4−2i, (s − 2)(s+11)/4+2i, (s − 1)(s+15)/4+2i, s(s+11)/4+2i,

(s − 1)(s−13)/4−2i, s(s−17)/4−2i, (s + 1)(s−13)/4−2i, s(s+15)/4+2i,

(s − 1)(s+19)/4+2i, (s − 2)(s+15)/4+2i, (s − 3)(s−17)/4−2i, (s − 2)(s−21)/4−2i,

(s − 1)(s−17)/4−2i].

(For s = 13, no such paths are included in the final concatenation.)
Next, for each i, 0 6 i 6 (s − 9)/4, we define paths:

Hi = [(s − 2)s−2i−1, (s − 1)s−2i−2, (s − 2)s−2i−2, (s − 3)s−2i−3, (s − 2)s−2i−3]

and

Ji = [(s + 1)s−2i−3, ss−2i−2, (s + 1)s−2i−1].

Finally, we form the path P by concatenating, in order: P ′′, Q, R0, R1, . . . R(s−21)/8,
[(s− 1)1,(s− 2)(s−1)/2,(s− 3)0,(s− 2)s−1], H0, H1, . . .H(s−9)/4, [(s− 2)(s+3)/2,(s− 1)(s+1)/2,
s(s−1)/2, (s+1)(s+1)/2, s(s+1)/2, (s+1)(s+3)/2], J(s−9)/4, J(s−13)/4, . . . , J0, [(s+1)s−1, ss−1,(s+
1)0, (s + 2)0].

Case 4: s ≡ 1 (mod 8).
The path P ′′ is defined exactly as in the previous case.
Next, we define the following path Q:

Q = [(s − 4)(s+3)/4, (s − 3)(s+3)/4, (s − 2)(s−1)/4, (s − 3)(s−1)/4,

(s − 2)(s−5)/4, (s − 1)(s−1)/4, s(s+3)/4, (s − 1)(s−5)/4,

s(s−9)/4, (s + 1)(s−5)/4, s(s+7)/4, (s − 1)(s+3)/4,

(s − 2)(s+7)/4, (s − 3)(s−9)/4].
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Figure 4: A strong (15, 13, Z13)
∗-path, constructed as in Case 3 of Lemma 9.

See Figure 2 for the meaning of dashed lines.

Next, for each i, 0 6 i 6 (s − 17)/8, define:

Ri = [(s − 3)(s−9)/4−2i, (s − 2)(s−13)/4−2i, (s − 1)(s−9)/4−2i, (s − 2)(s+11)/4+2i,

(s − 1)(s+7)/4+2i, s(s+11)/4+2i, (s − 1)(s−13)/4−2i, s(s−17)/4−2i,

(s + 1)(s−13)/4−2i, s(s+15)/4+2i, (s − 1)(s+11)/4+2i, (s − 2)(s+15)/4+2i,

(s − 3)(s−17)/4−2i].

(For s = 9, no such paths are included in the final concatenation.)
Next, for each i, 0 6 i 6 (s − 9)/4, we define paths:

Hi = [(s − 2)s−2i−2, (s − 3)s−2i−3, (s − 2)s−2i−3, (s − 1)s−2i−4, (s − 2)s−2i−4]

and

Ji = [ss−2i−4, (s + 1)s−2i−3, ss−2i−2].

Finally, we form P by concatenating, in order: P ′′, Q, R0, R1, . . . R(s−17)/8, [(s−3)0, (s−
2)s−1, (s − 3)s−1, (s − 2)s−2], H0, H1, . . . , H(s−9)/4, [(s − 2)(s+1)/2, (s − 1)(s−1)/2, s(s+1)/2],
J(s−9)/4, J(s−13)/4, . . . , J0, [ss−2, (s − 1)s−2, ss−1, (s + 1)0, (s + 2)0].

Combining Lemmas 9 and 8, we have the following.
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Figure 5: A strong (19, 17, Z17)
∗-path, constructed as in Case 4 of Lemma 9. See

Figure 2 for the meaning of dashed lines.

Lemma 10. For each odd c and s such that s < c 6 s2, there exists a strong (c, s, Zs)
∗-

path P .

5 Lexicographic products of cycles and empty graphs

In this section we examine the problem of decomposing Ck ∗ Km into cycles of arbitrary
odd length k. The aim of this section is to prove Theorem 1.

Proof of Theorem 1.
We first do the easy part: justifying the necessity of these conditions. If n is even,

Cn ∗Km is a bipartite graph, thus cannot contain any cycles of odd length. Thus n must
be odd. Moreover, any cycle in Cn ∗Km of size less than n must be bipartite, thus n 6 k.
The number of vertices and edges of Cn ∗ Km are nm and nm2, respectively, hence the
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remaining conditions.
The rest of this section is devoted to proving sufficiency of the above necessary con-

ditions. Since k divides nm2, we can write k = n′s2t, where n′, s, t > 1, n′ divides n, st
divides m and t is square-free. Note that since k is odd, we necessarily have that n′, s
and t are odd.

We break our proof into the following cases:

Case 1: s = 1,

Case 2: s > 1.

5.1 The case s = 1

We split the case s = 1 into the following subcases:

Case 1A: t = 1,

Case 1B: t > 1.

Case 1A: t = 1. Since k = n′s2t, we have that k = n′. But as k > n and n′ divides n, we
must have that k = n. A decomposition of Cn ∗Km into copies of Cn follows immediately
from Theorem 4 (i).

Case 1B: t > 1. If n′ = n, we can proceed as in Case 1A. Thus we may assume
that n/n′ > 1. Since n 6 k = n′t, n/n′ 6 t. So from Lemma 4, there exists a weak
(n/n′, t, Zt)

∗-path. We next apply Lemma 2 to obtain a decomposition of Cn ∗ Kt into
cycles of length k = n′t. Next, apply Theorem 4 (i) to obtain a decomposition of Ck∗Km/t

into cycles of length k. Combining these results, we obtain a decomposition of Cn ∗ Km

into cycles of length k, as required.

5.2 The case s > 1

We split the case s > 1 into the following subcases, depending on the value of n/n′:

Case 2A: n/n′ < s,

Case 2B: s 6 n/n′ 6 s2 and

Case 2C: s2 < n/n′.

We first deal with Case 2A. This is the most straight-forward of subcases in this
section, as we are applying theory already developed in other papers.

Case 2A: n/n′ < s. Our goal is to decompose Cn ∗ Ks into closed trails, each of length
n′s2, so that the maximum degree of each vertex in each closed trail is at most 2⌈n′s/n⌉.
Since nm > k = n′s2t, we have that m/(ts) > n′s/n. Theorem 6 then tells us CT ∗
Km/(ts) decomposes into cycles of length n′s2, for each of our closed trails CT . It follows
immediately that Cn∗Km/t decomposes into cycles of length n′s2. We then apply Theorem
4 (ii) to obtain the required decomposition of Cn ∗ Km into cycles of length k = n′s2t.
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Let us now work on our initial goal. Write n′s = an + 2b, where a > 1, a is odd and
0 6 b < n. We start with a decomposition of Cn ∗ Ks into s Hamilton cycles of length
ns, using Theorem 5 as s is odd. Consider the edges of two of these Hamilton cycles
between a pair of adjacent partite sets. From Theorem 5, these edges form a 2-factor on
2s vertices.

We take 2b/n′ of the Hamilton cycles in our decomposition, pairing them to obtain
b/n′ 2-factors between each adjacent pair of partite sets. There are s − (2b/n′) = an/n′

Hamilton cycles remaining.
We have a total of n/n′ closed trails to create, each of length n′s2; we shall label

them CT1, CT2, . . . CTn/n′ . We form CTi by taking a of the Hamilton cycles and b of the
2-factors, making a total of ans + 2bs = n′s2 edges. However we choose the 2-factors in
such a way so the maximum degree of a vertex in the closed trail is as small as possible.
This is done by selecting 2-factors between V2j+2bi and V2j+2bi+1, for each j, 0 6 j 6 b−1.
The subscripts are as usual evaluated modulo n. Note the maximum degree of each closed
trail is 2a+2 if 2b < n, or 2a+4 if 2b > n. In either case the maximum degree is at most
2⌈n′s/n⌉, as required.

Case 2B: s 6 n/n′ 6 s2. The first step is to obtain a decomposition of Cn ∗ Ks into
cycles of length n′s2. If n/n′ = s, then such a decomposition follows from Theorem 4 (ii).
If s < n/n′ 6 s2, we apply Lemma 10 with c = n/n′ to obtain a strong (n/n′, s, Zs)

∗-path
P . We then apply Lemma 3 to obtain a decomposition of Cn ∗ Ks into cycles of length
n′s2.

Since st divides m, we can obtain a decomposition of Cn ∗Km into cycles of length k,
as required, by applications of Theorem 4 similar to previous cases. This completes Case
2B.

Before we commence the final Case 2C, we introduce an alternative way of labelling
vertices. Let s and t be positive integers. We label the vertices of Lℓ ∗ Kst with the
elements of

{v(i,j) | v ∈ Zℓ+1, i ∈ Zs, j ∈ Zt},

with an edge joining u(i,j) and v(i′,j′) if and only if u and v differ by 1. We label the
vertices of Cℓ ∗ Kst similarly.

As in the previous section, vertex labels in Cℓ ∗ Kst are calculated mod ℓ and ⊕ is
defined as before. On the other hand, vertex subscripts are now calculated mod (s, t). We
(re-)define Gi to be the graph created from G by adding i (mod t) to the second subscript
only of each vertex of G. With this new labelling in mind we prove the following useful
result.

Lemma 11. Suppose there exists a path P within Lℓ ∗ Kst with the following properties:

(P1) P begins at vertex 0(0,0) and ends at vertex ℓ(0,0),

(P2) if P contains vertices of the form 0(i,j) and ℓ(i,j) then (i, j) = (0, 0), and

(P3) for each i, j such that 0 6 i, j 6 s − 1 and for each d such that 0 6 d 6 t − 1, there
exists a unique edge of the form {v(i,α), (v + 1)(j,α+d)} within P for some v and α.
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Then, for each a > 1, there exists a decomposition of Caℓ ∗Kst into cycles of length as2t.

Proof. Concatenate the paths P , P ⊕ (l), P ⊕ (2l), . . . , P ⊕ ((a− 1)ℓ) to obtain a cycle C
of length as2t within Caℓ ∗ Kst. Then the set of graphs

{Cx ⊕ y | 0 6 x 6 t − 1, 0 6 y 6 ℓ − 1}

constitute a decomposition of Caℓ ∗ Kst into as2t-cycles.

We are now ready to proceed with the proof of the final Case 2C.

Case 2C: s2 < n/n′. Let n/n′ = y +
∑s2−1

i=1 xi, where 1 < y 6 t and xi ∈ {1, t} for each
i = 1, 2, . . . , s2 − 1. Note, this is possible since n/n′ > s2 and as k > n, s2t > n/n′. Also,
since n/n′, t and s are odd, we may deduce that y is also odd.

From Lemma 8, there exists a strong (s2, s, Zs)
∗-path including the edge [00, 10] which

we denote by Q. Recall that we consider an edge of the form {ji, (j + 1)i+d} to have
difference d. Observe that within Q there are precisely s edges of each difference. Label
the edges of Q with e1, e2, . . . , es2, so that ei and ei+1 share a common vertex for each i
such that 1 6 i 6 s2 − 1 and e1 = {00, 10}.

We define a relation ∼ on the set of edges of Q as follows. For edges e, e′ ∈ Q, we
say that e ∼ e′ if e = {vα, (v + 1)β}, and e′ = {wβ, (w + 1)α}, for some β, α, v and w.
Thus every edge of difference 0 is related to itself, and excluding edges of difference 0, the
relation ∼ induces equivalence classes of size 2 which we shall call pairs.

We now create a 1 − 1 mapping f between the edges of Q and the set {xi | 1 6 i 6

s2 − 1} ∪ {y}. First, we let f(e1) = y. Recall that each xi is equal to either t or 1.
Let T = |{xi | 1 6 i 6 s2 − 1 and xi = t}|. Let E ′ be a set of min(⌊T/2⌋,(s2 − s)/2)
pairs of edges, as defined in the previous paragraph. For each edge e in a pair from E ′,
we set f(e) = t. If either T is odd or ⌊T/2⌋ > (s2 − s)/2 we repeatedly set f(e) = t
for unassigned edges e of difference 0, until precisely T edges have been set to t. For all
remaining edges e, we set f(e) = 1. For each edge e, we refer to f(e) as the weight of
edge e.

We now use Q and the weighting defined on its edges to create a path P of length s2t
in the graph Ln/n′ ∗ Kst which satisfies the conditions of Lemma 11. Since st divides m,
we can then apply Theorem 4 (i) to obtain our required decomposition of Cn ∗ Km into
k-cycles. So, it remains to show the existence of a path P which satisfies (P1), (P2) and
(P3).

Each edge ei of Q with weight w will be replaced by a path Pi on t edges spanning
w + 1 partite sets. We then concatenate paths P1, P2, . . . , Ps2 to form the required path

P . Since Q has s2 edges and since n/n′ = y +
∑s2−1

i=1 xi, P will have s2t edges and traverse
n/n′ + 1 partite sets, as required.

In general, whenever we replace an edge ei = {vα, (v + 1)β} from Q with a path Pi

of length t, Pi begins at a vertex of the form {w(α,0)} and ends at a vertex of the form
{w′

(β,0)} for some w and w′. Moreover, for each path Pi and for each d ∈ Zt, there will be

a unique edge in Pi of the form {v(α,j), (v + 1)(β,j+d)} for some j. This, together with the
structure of Q, will justify (P3).
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We start with edge e1 from Q. From Lemma 4, there exists a weak (y, t, Zt)
∗−path

P ′. We form path P1 from P ′ by replacing each vertex of the form vi from P ′ with the
vertex v(0,i). Note that from the conditions of Lemma 4, there are no vertices of the form
v(0,i) in P1 for all i such that (t + 1)/2 6 i 6 t − 1.

We next take care of all the paired edges which are weighted with t. Let ei ∼ ej , where
i < j, f(ei) = f(ej) = t, ei = {vα, (v + 1)β} and ej = {wβ, (w + 1)α}, for some v and w.

Now, the idea is to replace ei with 2t− 1 partite sets and ej with just one partite set.
Note that in total ei and ej contribute 2t partite sets so our above analysis on the number
of partite sets used is not altered overall. We define Pi to be the path:

[z(α,0), (z+1)(β,1), (z+2)(α,0), (z+3)(β,2), . . . , (z+2t−3)(β,t−1), (z+2t−2)(α,0), (z+2t−1)(β,0)],

where z(α,0) is the last vertex in the path Pi−1.
On the other hand, we define Pj to be the path:

[(z′)(β,0), (z
′ + 1)(α,0)],

where (z′)(β,0) is the last vertex in the path Pj−1.
Next, consider an edge ei = {vα, (v + 1)α}, of difference 0 weighted with t. Assuming

that z(α,0) is the last vertex in the path Pi−1, we define Pi to be the path:

[z(α,0), (z+1)(α,1), (z+2)(α,0), (z+3)(α,2), . . . , (z+ t−2)(α,(t−1)/2), (z+ t−1)(α,0), (z+ t)(α,0)].

Finally, we must deal with edges weighted with 1. We have to be slightly careful when
two adjacent edges are weighted with 1. We proceed as follows. We describe two different
choices for the path Pi, where ei = {vα, (v + 1)β} is of weight 1. We label the choices for
Pi positive and negative.

For Pi positive:

[z(α,0), (z + 1)(β,(t−1)/2), z(α,1), (z + 1)(β,(t−3)/2), . . . , (z + 1)(β,1), z(α,(t−1)/2), (z + 1)(β,0)],

where z is the final vertex used in path Pi−1. For Pi negative:

[z(α,0), (z + 1)(β,(t+1)/2), z(α,t−1), (z + 1)(β,(t+3)/2), . . . , (z + 1)(β,t−1), z(α,(t+1)/2), (z + 1)(β,0)],

where z is defined as above.
To ensure that P is indeed a path, we must take care that consecutive edges from Q of

weight 1 are not replaced with both positive or both negative paths. Moreover, to validate
(P2) we need to make sure that if f(es2) = 1 then Ps2 is negative. (Since, from above,
there are no vertices in P1 of the form v(0,i), for all i such that (t + 1)/2 6 i 6 t − 1.) It
is clearly possible to satisfy both of these conditions.
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