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Abstract

The counting problem is investigated for the permutation triples of the first n
natural numbers with exactly k£ occurrences of simultaneous “rises”. Their recur-
rence relations and bivariate generating functions are established.

1 Introduction and Motivation

Let [n] stand for the first n natural numbers {1,2,--- ,n} and &, for the permutations
of [n]. Given a permutation m = (a1, az,- - ,a,) € &,, a rise (shortly as “R”) at the kth
position refers to ar < a1, while a fall (shortly as “F”) at the same position refers to
ap > aky1, where the position index k runs from 1 to n — 1. It is classically well-known
(cf. Comtet [2, §6.5]) that the number of the permutations of [n] with exactly k — 1 rises
is equal to the Eulerian number A(n, k), which admits the following bivariate generating

function . |
Y —Z
1+ > Aln, B) et = (1)
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When [n] is replaced by multiset, the corresponding counting question is called “the
problem of Simon Newcomb”, which can be found in Riordan [3, Chapter §].

Carlitz [1] examined permutation pairs {m, o} of &,, with ¢ = (by,ba,--- ,b,). Then
at the kth position, there are four possibilities “RR”, “FF”, “RF” and “FR”. Denote by
B(n, k) the number of the permutations pairs of [n] with exactly k occurrences of “RR”.
Then Carlitz found the following beautiful result

n 1—1 X o\
Z B(n, k) (g!)2xk = =2y = where f(y) = Z ((n?'J))z . (2)

0<k<n n=0

In the last double sum, the summation indices n and k£ run over the triangular domain

0 < k < n < oo, even though B(n,n) = 0 for all the natural numbers n = 1,2, - - -, except
for B(0,0) = 1. The same fact will be assumed also for other two sequences C(n, k) and
D(n, k).

In particular, letting x = 0 in this equality leads to the generating function for the
number of permutation pairs of [n] with “RR” forbidden

y" 1
B,—— = —— where B, := B(n,0). 3
2 BTl ~ ) 0 9
Reading carefully Carlitz” article [1], we notice that Carlitz’ approach can further be
employed to investigate permutation triples {m, o, 7} of &, with 7 = (¢1,¢9,--+,¢,). In

this case, there are eight possibilities “RRR”, “RRF” “RFR”, “FRR”, “FFR”, “FRF”,
“RFF” and “FFF” at the kth position. Let C(n, k) be the number of the permutations
triples of [n] with exactly k& occurrences of “RRR”. Then we shall prove the following
analogous formula.

Theorem 1 (Bivariate generating function).

Yok 1-z where = - ()"
2 W = g = M 2 G

0<k<n n=0

When z = 0, the last expression becomes the generating function for the number €,
of permutation triples of &,, with “RRR” forbidden.

Corollary 2 (Univariate generating function).
" 1
ZG"% = —— where C,:=C(n,0).
Applying the inverse transformation to a given 6 = (dy,ds,--- ,d,) € G,
dy=n—d,+1 with k=1,2,---,n

we get another permutation ¢ = (d},d,,--- ,d!) € &,. Then “R” (rise) or “F” (fall) in
each position in # will be inverted in 6. Thus the preceding results about permutation
triples {m, 0,7} with “RRR” forbidden hold also for each of the other seven cases.
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2 Proof of the Theorem

In general, a permutation triple {m, o, 7} of &,, can be represented by

™ = (a17a27"' 7an)7
g = (617627"' >bn)>
T = (c1,¢0,0 0 ,Cn).

Following Carlitz’ approach, denote by C,p.(n,k) the number of permutation triples
{m, o, 7} with exactly k occurrences of “RRR” and the initials a; = a, by = b and ¢; = c.
The classification according to the initial letters yields the equation

= Z Ca,b,C(,nw k) (4)

a,b,c=1

For § = (dy,ds, -+ ,d,) € &, define the map ¢ from &,, onto &,,_; by

dg, dy, < di;

9 :91/: d”,d”,"',d” . /l_ —
¢() (1 2 nl) k—1 {dk—l, dk>d1.

Comparing the first two initial letters of permutation triples and then taking into account
of the map ¢, we have

Capemk) = D 3N Copr(n—=1E)+ D D> Copsln—1k)

a<a B<b v<c a<a B<b v=c

+ DY Caprln—1E)+ > 3N Capaln—1,k)
a<a (2b v<c a<a (2b v=c

+ 33N Caprtn—1E)+ D> YN Cupaln—1,k)
aza B<b y<c aza B<b yzc

+ Z Z Z Capqy(n—1,k)+ Z Z Z Capy(n—1k—1)
a>a B2b v<c a>a B2b y>c

which can further be simplified into the following interesting relation
Coneln k) =Cln—1,k) =3 3% { (= 1K) — Cogo(n— 1,k — 1)}. (5)
aza B2b y>c
Summing over a, b, ¢ from 1 to n across this equation, we get the equality

Cln,k) = n*Cln—1,k) — 3 aﬁ'y{ Copr(n—1,k) — Cg(nn — 1,k — 1)}. (6)

B,y

Similarly, multiplying across (5) by abc and then summing over a, b, ¢, we have another
equality

> abe Cope(n, k) = (n ; 1>30(n —Lk) = (a ;r 1) (6 ; 1) (7 ; 1> (7)

CL,b,C a7577

% {Copnn = 1,k) = Ca(n — 1k~ 1)}
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For ¢ € Ny, define the triple sum
CO(n, k) = ;}C(ajtﬁ— 1) <b+i— 1) <c+i— 1>Ca,b,c(n> k)

which reduces, for £ = 0, to

C(n.k) =COn,k) = Capeln, k).

a,b,c
Then (6) and (7) can be restated respectively as
Cln, k) =n*C(n—1,k) —CY(n—1,k)+CY(n—1,k-1),
1
CY(n, k) = (”; ) Cln—1,k)—CPOn—-1,k)+CP(n -1,k —1).

Recall the binomial identity
Z(b—l—f—l) (/3—|—€)
= l 147

Multiplying across (5) further by (“+§_1) (b+§_1) (C+§_1) and then summing over a, b, ¢, we
find the following general relation

3
CO(n, k) = (Zif) Cn—1,k) =0V -1,k)+CDn-1,k-1). (8)

By introducing further the polynomials

CO(x ZC’“ n, k)" and  Cy(z) = C(n,k)z*

k
we can translate (8) into the relation
(0) n -+ £ 3 (£+1)
0@ = () 11) @ + - e ) )

In particular for the first few values of ¢, this reads as
Culr) = n*Coa(@) + (2 = DCYy (2),

che) = () Cuslo) + (o= DO, ).

3

chie) = () Cuoalo) + (o= DO
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[terating (9) n-times and keeping in mind the initial condition
Co(z) = Ci(z) =

we get the equation

Co(z) = zn:(x _ )kl (Z)3C’n_k(1’)

k=1
which is equivalent to the recurrence relation

1Colz) =Y (a — 1)k<Z) Co_ir(z) for n>0. (10)

k=0

Finally, we are now ready to compute the bivariate generating function

Zan :)3—1+Z v Tl
0<k<n
I 1S
—1- 4 ; ygzx—l ()c s(@)
_ 1 1¢ $_1kykooynkcnk
—1—;+;k220 Z '}3

which simplifies into the relation

] |

Qz,y) =1- % + ég((l —2)y)Qz, y).

By resolving this equation, we get an expression of €2 in terms of g, which turns to be the
generating function displayed in the theorem.

Furthermore, letting = 0 in (10), we deduce that the number of permutation triples
of G,, with “RRR” forbidden satisfies the following binomial relation

i(—n’f( . )3ek —0 with n>0. (11)

k=0

3 Enumeration of m-tuples of Permutations

More generally, we may consider the m-tuples of permutations of &,, with exactly &
occurrences of “R™”. Denote by D(n,k) the number of such multiple permutations.
Then the same approach can further be carried out to establish the following bivariate
generating function

n

Y k— L-z where = N (=
2 D(”’k)(n!)mx ICEDDEE: here h(y) = (n))

0<k<n n=0

3

(12)
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When z = 0, it gives rise to the generating function for the number D,, of m-tuples of &,,

with “R™” forbidden

Z@n(jw = @ where D, := D(n,0)
n>0 ’

which is equivalent to the following recurrence relation

i(—l)’“(?{f)m@k —0 with n>0.

k=0

The details are not produced and left to the interested reader.
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