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Abstract

An (n, d)-permutation code of size s is a subset C of Sn with s elements such
that the Hamming distance dH between any two distinct elements of C is at least
equal to d. In this paper, we give new upper bounds for the maximal size µ(n, d) of
an (n, d)-permutation code of degree n with 11 6 n 6 14. In order to obtain these
bounds, we use the structure of association scheme of the permutation group Sn

and the irreducible characters of Sn. The upper bounds for µ(n, d) are determined
solving an optimization problem with linear inequalities.

1 Permutation arrays and permutation codes

An (n, d)-permutation code of distance d, size s and degree n is a non-empty subset C
of the symmetric group Sn acting on the set {1, . . . , n} such that the Hamming distance
between any two distinct elements of C is at least equal to d. The Hamming distance be-
tween two permutations φ, ψ ∈ Sn is defined as dH(φ, ψ) = |{i ∈ {1, . . . , n} : φ(i) 6= ψ(i)}|.
The weight of a permutation φ ∈ Sn if the number of non fixed points of φ.
The s× n array A associated to a (n, d)-permutation code C = {φ1, . . . , φs} of size s by
Aij = φi(j) has the following properties: every symbol 1 to n occurs exactly in one cell
of any row and any two rows disagree in at least d columns. Such an array is called a
permutation array (PA) of distance d, size s and degree n.
Permutation codes have first been proposed by Ian Blake in 1974 as error-correcting
codes for powerline communications [3]. This application motivates the study of the
largest possible size that a permutation code can have. Upper bounds for the maximal
size µ(n, d) of a permutation code with fixed parameters n and d have been studied by
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many authors, see e.g. Deza and Frankl [10], Cameron [6], and more intensively since Chu,
Colbourn and Dukes [8], Tarnanen [15], and Han Vinck [2, 16]. An (n, d)− permutation
code C of weight w is an (n, d)− permutation code such that all permutations have weight
w. The maximal size of such a permutation code is denoted by µ(n, d, w).
An (n, d)-permutation code C of size s is maximal if C is not contained in an (n, d)-
permutation code of larger size s′ > s. Note that an (n, d)-permutation code reaching
the maximal size µ(n, d) is necessarily maximal while the converse is not true. The most
basic upper bounds on µ(n, d) appears in Deza and Frankl [10]:

Theorem 1. For n > 3 and d 6 n,

µ(n, d) 6 n µ(n− 1, d)

and therefore

µ(n, d) 6
n!

(d− 1)!

In this paper, we will establish new bounds for µ(n, d) for small values of the param-
eters n and d. In [15], H. Tarnanen uses the conjugacy scheme of the group Sn in order
to obtain new upper bounds for the size of a permutation code. We use this method to
obtain new upper bounds for µ(n, d).

2 Isometries

A distance D on Sn is called left-invariant (resp. right-invariant) if D(φ, ψ) = D(αφ, αψ)
(resp. D(φ, ψ) = D(φα, ψα) ) for all α, φ, ψ ∈ Sn. A distance that is both left- and right-
invariant is said to be bi-invariant. For any bi-invariant distance, the left multiplications
lα : φ 7→ αφ and the right multiplications rα : φ 7→ φα−1 are isometries. As noticed by
Deza and Huang [11], any bi-invariant distance is invertible: D(φ, ψ) = D(φ−1, ψ−1), or
equivalently, the inversion i, mapping each permutation onto its inverse, is an isometry.
Let R (resp. L) denote the group of all right (resp. left-) multiplications and I denote
the group generated by the inversion i. We will say that the distance D distinguishes the
transpositions if there exists a constant c such thatD(φ, ψ) = c⇔ φψ−1 is a transposition.
In 1960, Farahat characterized the isometry group Iso(n) of the metric space (Sn, dH)
[12]. Since the Hamming distance is bi-invariant and distinguishes the transpositions, the
following result appears in [4] and generalizes the characterisation given by Farahat:

Theorem 2. Let D be a bi-invariant distance distinguishing the transpositions on Sn

(n > 3), then the group IsoD of isometries of (Sn, D) is (L×R)⋊I, isomorphic to Sn ≀2.

Every isometry t ∈ Iso(n) can be uniquely written as lαrβi
k with k = 0 or 1, α, β ∈ Sn.

The action of a left multiplication lα on a given code corresponds to the permutation under
α of the symbols appearing in the PA associated to the code, and the action of a right-
multiplication rβ is equivalent to the permutation under β of the columns of the PA. In
other words, classifying permutation codes up to isometry is equivalent to classifying PA’s
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up to permutation of their rows, their columns, their symbols and up to the inversion. It
immediately follows from this theorem that the autormorphism group of the conjugacy
scheme of Sn is precisely the isometry group of the metric space (Sn, dH).

3 Linear programming bound

A symmetric association scheme with m classes is a finite set X with m + 1 relations
R0, R1, . . . Rm on X such that:

• {R0, R1, . . . Rm} is a partition of X ×X

• R0 = {(x, x)|x ∈ X}

• If (x, y) ∈ Ri, then (y, x) ∈ Ri for all x, y ∈ X and for all i = 0, . . . , m

• For each pair (x, y) ∈ Rk , the number pk
ij of elements z ∈ X such that (x, z) ∈ Ri

and (y, z) ∈ Rj only depends on i, j and k

The numbers pk
ij are called intersection numbers of the association scheme. Let n denote

the size of the set X and ni := p0
ii i = 0, . . . , m. The intersection matrices L0, . . . , Lm

are defined by: (Li)jk = pk
ij . The relations Ri can be described by their adjacency matrix

Ai: The adjacency matrix Ai of the relation Ri is the n× n-matrix such that:

(Ai)xy =

{

1 if (x, y) ∈ Ri

0 otherwise

In terms of adjacency matrices the conditions defining the association scheme become:

•
m

∑

i=0

Ai = J where J is the full one matrix, i.e. Jij = 1 for all i, j.

• A0 = I where I is the identity matrix,

• Ai = AT
i for all i ∈ {0, . . . , m}

• AiAj =

m
∑

k=0

pk
ijAk for all i, j ∈ {0, . . . , m}

The adjacency matrices commute and generate the commutative Bose Mesner algebra
A of dimension m+ 1. The algebra A has a basis E0, . . . , Em such that:

1. EiEj = δijEi

2.

m
∑

i=0

Ei = I
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The matrix E0 can be taken as to be J
n

where J is the full one matrix, i.e. Jij = 1 for all
i, j. Let P and 1

n
Q be the basis transition matrices in A:

Aj =
m

∑

i=0

PijEj

Ej =
1

n

m
∑

i=0

QijAj

We then obtain PQ = QP = nI and AjEi = PijEi The numbers Pij are the eigenvalues
of Aj with the columns of Ei as corresponding eigenvectors.
Let Y be a subset of X and denote by χ the characteristic vector of Y : χi = 1 if i ∈ Y
and χi = 0 if i /∈ Y . The inner distribution of a subset Y of an association scheme is the
vector

ā = (a0, . . . am)

where ai = 1
|Y |
χTAiχ. It is obvious that a0 = 1 (because A0 = I) and

m
∑

i=0

ai = |Y |. For

all i = 0, . . . , m, ai corresponds to the number of ordered pairs (x, y) ∈ Y× such that
(x, y) ∈ Ri, divided by |Y |.

Theorem 3 (Delsarte [9],Th. 3.3, p. 26). The inner distribution ā of a non empty set Y
of an association scheme satisfies āQ > 0.

Let Y be a subset of an association scheme such that ∀x, y ∈ Y, (x, y) /∈ Ri for all
i ∈ {1, . . . δ−1}, or equivalently (x, y) ∈ Ri ⇒ i = 0 or δ 6 i 6 m. The inner distribution
vector ā of Y satisfies:











































a0 = 1

ak = 0 if 1 6 k 6 δ − 1
ak > 0 if δ 6 k 6 m
āQ > 0

a0 +

m
∑

i=δ

ai = |Y |

Theorem 4 (Delsarte [9], Th. 3.8,p.31).

Consider aδ, . . . , am as real variables and define a∗ = 1 +
m

∑

i=δ

ai as the maximal value of

this sum such that










Q1j +

m
∑

i=δ

aiQij > 0 j = 0, . . . , m

ai > 0, i = δ, . . . ,m

Then |Y | 6 a∗.
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4 Conjugacy scheme

Any groupG defines a symmetric association scheme on its elements with relations defined
by the conjugacy classes Ci of G for φ, ψ ∈ G, (φ, ψ) ∈ Ri ⇔ φψ−1 ∈ Ci. For G = Sn,
denote by p(n) the number of conjugacy classes of G.
Let χ0, . . . , χm be the irreducible characters of Sn , indexed in such a manner that χ0(α) =
1 ∀α ∈ Sn. There are p(n) = m+ 1 irreducible characters, where p(n) is the number of
conjugacy classes of Sn. Recall that the values of χk are integers, that the functions χk are

constant on each conjugacy class and that
m

∑

k=0

χ2
k(Id) = n!. The irreducible characters

form an orthonormal basis of the set Cf(Sn) of class functions of Sn, for the product
< ·, · >n: Cf 2(Sn) → R defined by

< f, g >n=
∑

α∈Sn

f(α)g(α)

n!

Theorem 5 (Tarnanen, [15]). For the conjugacy scheme (Sn, R0, . . . , Rm), the transition
coefficents Qij are given by:

Qij = χj(Id).χj(Ci)

Every (n, d)−permutation code C is a subset of the conjugacy scheme. Suppose that
the permutations of Sn are indexed φ1, . . . , φn!. To avoid confusion, we will denote by
ξC the caracteristic vector of the code C, defined as (ξC)i = 1 if φi ∈ C and (ξC)i = 0
otherwise. For any (n, d)-permutation code C, the numbers ai = ξCAiξ

T
C are invariant

under the action of Iso(n) (see [4] for more information on invariants).

Theorem 6 (LP bound for permutation codes (Tarnanen,[15])). Let D be a subset of
{1, . . . , m} and E any subset of Sn such that for any distinct permutations φ, ψ, (φ, ψ) ∈
Ri with i ∈ D

Considering ak, k ∈ D as real variables and denoting by a∗ the number 1+
∑

i∈D ai,
the maximal value of this sum with







χj(C0) +
∑

i∈D

aiχj(Ck) > 0 ∀j ∈ {0, . . . , m}

ai > 0, i ∈ D

Then |E| 6 a∗.

If D is a subset of indices of conjugacy classes whose elements have less than n − d
fixed points, this bound provides an upper bound for the size of a permutation code of
distance d. The permutation characters of Sn are available on programs as Magma [5] or
GAP [13]. Using the “linprog” routine of Matlab [14], we obtain the bounds in Table 1.
Note that the linear programming provides the values of the coefficients ai, considered as
real variables. On the other hand, if there exists an (n, d)− permutation code C whose
size reaches the upper bound a∗ then the the numbers bi = aia

∗ = ξT
CAiξC are integers.
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The linear inequalities in theorem 6 lead to the following check routine of the feasability
of the upper bound a∗. Let d 6 n be fixed, and suppose that a∗ is the value obtained by
linear programming bound of Theorem 6. Then consider bk, k ∈ D as integer variables

and denote by b∗ the maximal value 1 +max
∑

i∈D

bi, with







a∗χj(C0) +
∑

i∈D

biχj(Ci) > 0 ∀j ∈ {0, . . . , m}

bi > 0, i ∈ D

Then the bound a∗ is feasable if b∗ = a∗2. The integer linear programming problem above
can be solved using appropriate matlab routine [14].

LP bound Previous known bound
µ(13, 4) 367270674 479001600
µ(11, 5) 362880 712800
µ(12, 5) 6141046 7149277
µ(13, 5) 75789398 78823048
µ(11, 6) 138600 273402
µ(12, 6) 1766160 3926242
µ(13, 6) 21621600 29511947
µ(11, 7) 32874 55440
µ(12, 7) 361396 665280
µ(13, 7) 4163390 8648640
µ(13, 8) 879493 1235520

Table 1: LP bound for 11 6 n 6 13

Applying theorem 1 to the results of Table 1, we obtain recursive consequences. This
leads to the upper bounds appearing in Table 2. The previous known bounds are due to
Deza and Frankl [10].

As noticed by H. Tarnanen [15], many of the upper bounds obtained by linear pro-
gramming coincide with the bound µ(n, d) 6

n!
(d−1)!

of theorem 1. For 14 6 n 6 16,

computations of the LP bound give n!
(d−1)!

6 a∗ for all d 6 n. In order to obtain sharper
upper bounds, other linear constraints on the coefficents ai must be considered. The
following theorem motivates the study of permutation arrays of given weight.

Theorem 7. Let C be an (n, d)− permutation code and ai =
1

|C|
ξT
CAiξC. Let D =

{i1, . . . , ik} be the set of indices of the conjugacy classes whose elements have n−w fixed
points. Then

∑

i∈D

ai 6 µ(n, d, w)

the electronic journal of combinatorics 17 (2010), #R135 6



µ(n, d) nµ(n− 1, d) Previous known bound
µ(11, 4) 3326400 3628800
µ(12, 4) 39916800 39916800
µ(12, 5) 4354560 7149277
µ(13, 5) 56609280 78823048
µ(14, 5) 792529920 947590121
µ(12, 6) 1663200 3926242
µ(13, 6) 21621600 29511947
µ(14, 6) 302702400 351525367
µ(14, 7) 58287460 106314989
µ(14, 8) 12312902 17297280

Table 2: Upper bounds for µ(n, d) obtained by µ(n, d) 6 nµ(n− 1, d)

Proof. For each i, ai|C| counts the number of pairs of permutations (φ, ψ) with φ, ψ ∈ C
and φψ−1 ∈ Ci, or, equivalently, the sum for φ ∈ C of the number of permutations ψ ∈ C

such that φψ−1 ∈ Ci. The conjugacy classes are disjoint so we can write |C|
∑

i∈D

ai =

∑

φ∈C

|{ψ ∈ C : φψ−1 ∈ ∪i∈DCi}|. For each φ ∈ C, the set rφ({ψ ∈ C : φψ−1 ∈ ∪i∈DCi}) is

composed of permutations of weight w, so |C|
∑

i∈D

ai =
∑

φ∈C

µ(n, d, w), and this concludes

the proof.

Denote by A(n, d, w) the maximum possible size of a constant weight w binary code
of length n and distance d. Properties and known values of A(n, d, w) for small values of
the parameters can be found in [1]. In [17], Yang, Dong and Chen stated properties of
µ(n, d, w) for w 6 d.

Theorem 8. Yang, Dong and Chen[17]

(i) µ(n, d, w) 6 A(n, 2d− 2w,w) for w < d

(ii) µ(n, d, w) = 1 for 2w < d, w 6= 1

(iii) µ(n, 2k, k) = ⌊n
k
⌋ for 2 6 k 6 ⌊n

2
⌋

(iv) µ(n, 2k + 1, k + 1) = A(n, 2k, k + 1) for 1 6 k 6 ⌊n−1
2
⌋

(v) µ(n, 4, 3) 6
n(n− 1)

3
for n > 4

The following theorem provides upper bounds for µ(n, d, w) even if w > d.

Theorem 9. For all n > 3,
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(i) µ(n, n, n) = n− 1

(ii) µ(n, n, n− 1) = n

(iii) µ(n, d, w) 6
(

n

k

)

µ(k, d, w) for w 6 k < n

(iv) µ(n, d, w) 6 µ(n− 1, d, w) + (n− 1)(µ(n− 1, d, w− 1) + µ(n− 2, d, w− 2)) for
w < n

(v) µ(n, d, n) 6 (n− 1)(µ(n− 1, d, n− 1) + µ(n− 2, d, n− 2) for 2 6 d < n

(vi) µ(n, n− 2, n) 6 (n− 1)(µ(n− 1, n− 2) − 1)

Proof. The set consisting of the identity and all permutations of a (n, n)-code of weight
n is a (n, n)-code. Equality (i) immediately follows from µ(n, n) = n. In [7], G. Chang
proved that a diagonal partial latin square whose entries are 1,2,. . . ,n can always be
completed in a latin square, such a latin square corresponds to a (n, n)−code of weight
n− 1, and so (ii) holds.
If C is a (n, d)−code of weight w, then for each k−subset K of {1, . . . , n}, the permutations
φ ∈ C with supp(φ) ⊂ K form a set isometric to a (k, d)−code of weight w. This leads
to inequality (iii).
Denote by Ci the subset of permutations φ in a (n, d)−code C of weight w such that
φ(1) = i. If w < n, the subset C1 is a (n − 1, d)−code of weight w. For i = 2, . . . , n,
l(1,i)(C

i) consists of permutations whose support is of cardinality w−1 and of permutations
fixing 1 and i, with support of cardinality w − 2, and so |l(1,i)(C

i)| 6 µ(n− 1, d, w− 1) +
µ(n − 2, d, w − 2). Any (n, d)−code of weight w can be written as a disjoint union
C = ∪n

i=1C
i, proving inequality (iv). If w = n then C1 is empty, and the corresponding

inequality is (v). For w = n and d = n− 2, and for i = 2, . . . , n each of subset l(1,i)(C
i) is

isometric to a (n − 1, n− 2)−code whose all elements have support at least n− 2. Such
a code can be completed with the identity permutation and therefore has size less than
µ(n− 1, n− 2) − 1, hence equality (vi).

The upper bounds given in Theorem 9 are not sharp. For example, a clique search
inspired by the method developped in [8] gives µ(6, 5, 5) = 15, while the upper bound
obtained by application of Theorem is 9 µ(6, 5, 5) 6 34. For this reason, the upper
bounds do not contribute to any improvement of the results given by Theorem 7 for the
range of values considered in Tables 1 and 2.
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