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Abstract

We investigate permutations in terms of their cycle structure and descent set.
To do this, we generalize the classical bijection of Gessel and Reutenauer to deal
with permutations that have some ascending and some descending blocks. We then
provide the first bijective proofs of some known results. We also extend the work
done in [4] by Eriksen, Freij, and Wästlund, who study derangements that descend
in blocks of prescribed lengths. In particular, we solve some problems posed in [4]
and also obtain a new combinatorial sum for counting derangements with ascending
and descending blocks.

1 Introduction

We consider permutations in terms of their descent set and conjugacy class (equivalently,
cycle structure). Let π be a permutation on {1, . . . , n}. An ascent of π is an index i,
1 6 i < n, such that π(i) < π(i+1). A descent of π is such an index with π(i) > π(i+1).

The study of permutations by descent set and cycle structure goes back at least as far
as 1993, when Gessel and Reutenauer enumerated them using symmetric functions [5].
In their proof, they obtained a bijection from permutations with at most a given descent
set to multisets of necklaces with certain properties. By a necklace we mean a directed
cycle where the vertices are usually assigned colors or numbers. Multisets of necklaces
are usually referred to as ornaments. Figure 1 illustrates these terms.

The Gessel-Reutenauer bijection preserves cycle structure. It also forgets other struc-
ture that is not so relevant, making it easier to study permutations by cycle structure and
descent set. We will restate Gessel’s and Reutenauer’s result to bring it closer to the lan-
guage of more recent work ([6], [4]). Choose a1, . . . , ak with a1+· · ·+ak = n, and partition
{1, . . . , n} into consecutive blocks A1, . . . , Ak with |Ai| = ai. An (a1, . . . , ak)-ascending
permutation is a permutation π that ascends within each of the blocks A1, . . . , Ak. This
is the same as saying that the descent set of π is contained in {a1, a1 + a2, . . . , a1 + a2 +
· · ·+ ak−1}. In this language, the Gessel-Reutenauer bijection is a map from (a1, . . . , ak)-
ascending permutations to ornaments that preserves cycle structure.
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We provide a generalization of the Gessel-Reutenauer bijection to deal with both as-
cending and descending blocks. Let A = (a1, . . . , ak) and S ⊂ {1, . . . , k}. Then an
(a1, . . . , ak, S)-permutation (or just an (A, S)-permutation if a1, . . . , ak are clear from con-
text) is a permutation that descends in the blocks Ai for i ∈ S and ascends in all of the
other blocks. We generalize the Gessel-Reutenauer bijection to give a cycle-structure-
preserving bijection from the (A, S)-permutations to ornaments with certain properties.
Our bijection can be thought of as equivalent to Reiner’s bijection for signed permuta-
tions, as a descent for normal permutations is the same as an ascent over negative values
for signed permutations [8].

Both here and in [5], the Gessel-Reutenauer bijection is easy to describe. We take a
permutation π, write it as a product of disjoint cycles, and replace each element of each
cycle by the block it belongs to. A permutation and its image under the bijection are
illustrated later in the paper, in Figures 2 and 3, respectively. Since the Gessel-Reutenauer
bijection forgets so much structure, the surprising thing is that it is injective.

We describe the image of our bijection in Theorem 2.2. In proving Theorem 2.2, we
consider a second bijection onto ornaments, but this time the ornaments have properties
that are easier to describe. The tradeoff is that the bijection no longer preserves cycle
structure, but it is not too difficult to describe how the cycle structure changes. This
second bijection is described in Theorem 2.1.

Our bijective methods apply to some of the results in the original paper by Gessel and
Reutenauer. The (a1, . . . , ak)-ascending permutations are all permutations with at most
a given descent set. By using inclusion-exclusion on the (a1, . . . , ak)-ascending permuta-
tions, we can study the number of permutations with exactly a given descent set. We
can do the same thing with the (a1, . . . , ak)-descending permutations. It turns out that
comparing the two allows us to see what happens when we take the complement of the
descent set. In [5], Gessel and Reutenauer prove the following two theorems.

Theorem 4.1 of [5]. Associate to each conjugacy class of Sn a partition λ based on cycle
structure. If λ has no parts congruent to 2 modulo 4 and every odd part of λ occurs only
once, then the number of permutations of cycle structure λ with a given descent set is
equal to the number of permutations of cycle structure λ with the complementary descent
set.

(a) (b) (c)

Figure 1: Examples of necklaces and ornaments. (a) and (b) are two different representa-
tions of the same necklace with 5 vertices. (c) is an ornament with two different 3-cycles
and a 1-cycle.
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Theorem 4.2 of [5]. The number of involutions in Sn with a given descent set is equal
to the number of involutions in Sn with the complementary descent set.

We obtain Theorem 4.1 of [5] as a consequence of Corollary 3.1 by setting S to ∅.
Corollary 3.1 deals with permutations with at least a given ascent or descent set, but as
noted before we can apply inclusion-exclusion to get the same result about pemutations
with exactly a given ascent or descent set.

Corollary 3.1. Associate to each conjugacy class C of Sn a partition λ of n based on
cycle structure.

The number of (A, S)-permutations in C is the same if we replace S by {1, . . . , k}\S,
assuming that all odd parts of λ are distinct and λ has no parts congruent to 2 mod 4.

To our knowledge, this is the first bijective proof of Theorem 4.1 of [5]. We also obtain
the following generalization of Theorem 4.2 of [5].

Corollary 3.2. The number of (A, S)-involutions is the same if we replace S by its
complement.

This is the first known bijective proof of Theorem 4.2 of [5].
Our bijections also allow us to take a purely combinatorial approach to the problems

considered in [6] and [4]. In [6], Han and Xin, motivated by a problem of Stanley [9], study
the (a1, . . . , ak)-descending derangements, meaning derangements that descend in each of
the blocks A1, . . . , Ak (so, in our language, the case when S = {1, . . . , k}). Han and
Xin use symmetric functions to prove their results. In [4], Eriksen, Freij, and Wästlund
also study the (a1, . . . , ak)-descending derangements, but they use generating functions
instead of symmetric functions.

Eriksen et al. show that the number of (a1, . . . , ak)-descending derangements is sym-
metric in a1, . . . , ak and ask for a bijective proof of this fact. We obtain a bijective proof
of the following stronger statement.

Corollary 4.11. Let σ be a permutation of {1, . . . , k} and let C be a conjugacy class
in Sn. The number of (a1, . . . , ak, S)-permutations in C is the same as the number of
(aσ(1),. . .,aσ(k), σ(S))-permutations in C.

Eriksen et al. also show that the number of (a1, . . . , ak)-descending derangements is

∑

06bm6am,m=1,...,k

(−1)
P

bi

( ∑

(ai − bi)

a1 − b1, . . . , ak − bk

)

.

They do this using the generating function

1

1 − x1 − · · · − xk

(

1

1 + x1
· · ·

1

1 + xk

)

1Sergei Elizalde proves a slightly less general version of Corollary 4.1 as Proposition 4.2 of [3].
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for the (a1, . . . , ak)-descending derangements, which first appears in [6]. They ask for a
combinatorial proof of their formula using inclusion-exclusion. They also ask for a similar
enumeration of the (a1, . . . , ak)-ascending derangements. We provide both of these as a
corollary to Theorem 2.1.

Corollary 4.22. The number of (A, S)-derangements is the coefficient of xa1

1 · · ·xak

k in

1

1 − x1 − · · · − xk

(

∏

i6∈S(1 − xi)
∏

i∈S(1 + xi)

)

.

Let lm = am if m ∈ S and let lm = 1 otherwise. The number of (A, S)-derangements is
also

∑

06bm6lm,m=1,...,k

(−1)
P

bi

( ∑

(ai − bi)

a1 − b1, . . . , ak − bk

)

.

It is also possible to prove Corollary 4.2 more directly using some structural lemmas
about (A, S)-derangements and standard techniques in recursive enumeration. We include
this approach as well, since it is more in the spirit of the paper by Eriksen, Freij, and
Wästlund [4].

We also work towards explaining a polynomial identity in [4]. Let fλ(n) be the gener-
ating function for permutations on {1, . . . , n} by number of fixed points. In other words,
the λk coefficient of fλ(n) is the number of permutations in Sn with k fixed points. Eriksen
et al. prove that the polynomial

1

a1! · · ·ak!

∑

T⊂{1,...,n}

(−1)|T |fλ(|{1, . . . , n}\T |)
k
∏

i=1

fλ(|Ai ∩ T |)

is (i) constant and (ii) counts the (a1, . . . , ak)-descending derangements when λ = 1.
Eriksen et al. show that this polynomial is constant by taking a derivative. They then ask
for a combinatorial proof that this polynomial always counts the (a1, . . . , ak)-descending
derangements. While we fall short of this goal, we obtain a more combinatorial proof that
the polynomial is constant by using a sieve-like argument. We obtain the constant as a
sum, which we then generalize to a sum that counts the (A, S)-derangements.

The rest of the paper is divided into five sections. In Section 2, we describe the two
bijections used in the remainder of the paper and prove that they are bijections. In the
process, we introduce maps Φ, Ψ, and Υ that will be useful in later sections. In Section 3,
we provide bijective proofs of Theorems 4.1 and 4.2 from the original Gessel-Reutenauer
paper [5].

In Section 4, we provide enumerations of the (A, S)-derangements. Section 4 is split
into two subsections. In Subsection 4.1, we provide the enumerations using the bijective
tools developed in Section 2. In this subsection, we also prove Corollary 4.1. In Subsection

2The referee points out that this result was presented by Dongsu Kim at Permutation Patterns 2009.
Dongsu Kim also presented Theorem 6.2, a result linking the (A, S)-derangements to another class of
permutations.
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4.2, we provide the enumerations again, this time using recursive tools similar to those
used in [4].

In Section 5, we show that the polynomial from [4] is constant and derive a new combi-
natorial sum for the (a1, . . . , ak)-descending derangements. In Section 6, we generalize the
sum from Section 5 to count the (A, S)-derangements. We have tried to make Sections
4.2 through 6 as self-contained as possible, in case the reader is interested only in the
case of derangements and not general permutations. Sections 4.2 and 5 are completely
self-contained. Section 6 depends on Sections 2 and 5.

In Section 7, we discuss directions of further research, including the further study of
the Gessel-Reutenauer map Φ as well as a generalization of the polynomial identity from
[4]. We also define all the terms used in this paper in Section 9, which occurs after the
Acknowledgements and before the Bibliography. These terms are all defined either in the
introduction or as they appear in the paper, but we have also collected them in a single
location for easy reference.

2 The Two Bijections

We now describe our two bijections. Here and later, we will have occasion to talk about
ornaments labeled by {1, . . . , k}. In this case we call the integers 1 through k colors, the
elements in S descending colors, and the elements not in S ascending colors.

Also define the fundamental period of a necklace as the smallest contiguous subse-
quence P of the necklace such that the necklace can be obtained by concatenating r

copies of P for some r. In this case, the necklace is said to be r-repeating. Call an or-
nament A-compatible if its vertices are labeled by {1, . . . , k} and exactly ai vertices are
labeled by i.3

Our first map is from permutations to A-compatible ornaments. It is a map Φ that
takes a permutation, writes it as a product of disjoint cycles, and replaces each element
of each cycle by the block it belongs to.

For example, let us suppose that we were considering the ((8, 10), {1})-permutations—
in other words, permutations that descend in a block of length 8 and then ascend in a block

3Here and later, we assume for notational convenience that A = (a1, . . . , ak), where the ai are all
non-negative integers.

1

18 16

8

9 2

17 10

3

15 7

11 4

14 6

12

5 13

Figure 2: The permutation π = 18 17 15 14 13 12 11 9 1 2 3 4 5 6 7 8 10 16, written as
a product of disjoint cycles. This is the pre-image of the ornament in Figure 3 under the
map Φ.
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of length 10. In particular, we will take the permutation π = 18 17 15 14 13 12 11 9 1 2 3 4 5
6 7 8 10 16. This permutation has cycle structure (1 18 16 8 9)(2 17 10)(3 15 7 11)
(4 14 6 12)(5 13). We replace each vertex in each cycle by the block it belongs to (A1 or
A2) to get (1 2 2 1 2)(1 2 2)(1 2 1 2)(1 2 1 2)(1 2), which corresponds to the ornament
depicted in Figure 3.

The map Φ clearly preserves cycle structure. We will show later that Φ is injective on
the (A, S)-permutations. In addition to Φ, we will consider two maps Ψ and Υ. Before
defining Ψ, we need the notion of an augmentation of an ornament.

We have illustrated an augmentation of an ornament consisting of a 5-cycle, a 3-cycle,
and five 2-cycles in Figure 4 (we will see that it is in fact the image of Φ(π) under Ψ).
Formally, we can think of an ornament ω as a multiset {νl1

1 , . . . , ν
lm
m }, where each νi is a

cycle and li is the number of times that νi appears in ω. An augmentation of ω is the
multiset ω together with an m-tuple λ = (λ1, . . . , λm), where each λi is a partition of li.
We usually denote this augmented ornament by ωλ, and we can more concisely represent
ωλ by {νλ1

1 , . . . , νλm
m }, since li is determined by λi.

Now we define Ψ, which sends ornaments to augmentations of ornaments. The map Ψ
takes each cycle ν in ω and replaces ν by r copies of its fundamental period ρ, assuming
that ν is r-repeating. If there are nr cycles that are r-repeating and map to ρ, then

A

B C

D

E
F

G H

I

J K

L M

N O

P

Q R

Figure 3: The image of the permutation π = (1 18 16 8 9)(2 17 10)(3 15 7 11)
(4 14 6 12)(5 13) under our bijection. White vertices came from block A1 and grey
vertices came from block A2. The labels A through R are only for the later convenience
of referring to specific vertices.

1

2 2

1

2

(1)

1

2 2

(1)

1 2

(1, 2, 2)

Figure 4: The image of the ornament in Figure 2 under the map Ψ. We send the pentagon
and triangle each to themselves together with the trivial partition (1). We send the two
4-cycles and the 2-cycle to the 2-cycle together with the partition (1, 2, 2), since each of
these cycles has the same fundamental period and the multiplicities of the periods in the
2-cycle and the two squares are 1, 2, and 2, respectively.
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the partition associated with ρ has nr blocks of size r. We also define a map Υ from
ornaments to ornaments such that Υ(ω) is the ornament that Ψ(ω) augments. We note
that all the necklaces in Υ(ω) are 1-repeating. We will call A-compatible ornaments such
that all necklaces are 1-repeating A-good ornaments.

Our first result is

Theorem 2.1. The map Υ ◦ Φ is a bijection from (A, S)-permutations to A-good orna-
ments. In particular, every A-good ornament ω has a unique augmentation ωλ that is in
the image of Ψ ◦ Φ. If ω = {νl1

1 , . . . , ν
lm
m }, then λ = (λ1, . . . , λm), where

λi =











(1, . . . , 1), if νi has an even number of vertices from descending blocks

(2, . . . , 2), if νi has an odd number of such vertices and li is even

(2, . . . , 2, 1), if νi has an odd number of such vertices and li is odd.

Theorem 2.1 immediately implies

Theorem 2.2. The map Φ is an injection from the (A, S)-permutations into the A-
compatible ornaments. The image of Φ is all A-compatible ornaments satisfying the fol-
lowing three conditions.

1. If the fundamental period of a necklace contains an even number of vertices from
descending blocks, then the necklace is 1-repeating.

2. If the fundamental period of a necklace contains an odd number of vertices from
descending blocks, then the necklace is either 1-repeating or 2-repeating.

3. If a necklace contains an odd number of vertices from descending blocks, then there
are no other necklaces identical to it in the ornament.

Our main tool in proving Theorem 2.1 will be two sequences that we associate with a
vertex of an ornament.

Given a vertex v, define the sequence W (v) = {w0(v), w1(v), . . .} by w0(v) = v,
wi+1(v) = s(wi(v)), where s(x) is the successor of x in the necklace. Thus w0, w1, . . . is
the sequence of colors one encounters if one starts at the vertex v and walks along the
necklace containing v.

Similarly define the sequence A(v) = {a0(v), a1(v), . . .} by ai(v) = (−1)ri(v)wi(v),
where ri(v) is the number of vertices in {w0(v), . . . , wi−1(v)} that come from descending
blocks.

We call W (v) the walk from v and A(v) the signed walk from v. Table 1 gives the
sequences A(v) for v = A, . . . , R for the ornament in figure 3. For convenience, we prove
the following:

Lemma 2.3. Let v and v′ be two vertices. Their walks W (v) and W (v′) agree up through
wi if and only if their signed walks A(v) and A(v′) agree up through ai.
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Proof. If their signed walks agree up through ai, their walks must agree up through wi,
since ai = ±wi and wi > 0 always.

Now suppose their walks agree up through wi. Then rj(v) = rj(v
′) for all j 6 i and

wj(v) = wj(v
′) for all j 6 i, so (−1)rj(v)wj(v) = (−1)rj(v

′)wj(v
′) for all j 6 i. This is the

same as saying that aj(v) = aj(v
′) for all j 6 i, so we are done.

The key observation about W (v) and A(v) is given in the following lemma and its
corollary.

Lemma 2.4. If two vertices v and v′ have sequences of colors that agree through wl−1,
then the order of v and v′ is determined by the order of wl(v) and wl(v

′). In fact, if
{w1, . . . , wl−1} has an even number of vertices from descending blocks, then v and v′ come
in the same order as wl(v) and wl(v

′). Otherwise, they come in the opposite order.

Corollary 2.5. The vertices v and w come in the same order as A(v) and A(w), if we
consider the latter pair in the lexicographic order.

Proof of Lemma 2.4. We need to show that if the walks from v and v′ agree through wl−1,
then v and v′ come in the same order as (−1)rl(v)wl(v) and (−1)rl(v

′)wl(v
′).

We proceed by induction on l. In the base case l = 1, the result is a consequence of
the fact that v and v′ come from the same block, and if that block is ascending then v

and v′ are in the same order as their successors, whereas if it is descending they are in
the opposite order.

Now suppose that v and v′ have sequences of colors that agree through wl. Then
they also agree through wl−1, so by the inductive hypothesis v and v′ come in the same
order as (−1)rl(v)wl(v) and (−1)rl(v

′)wl(v
′) since wl(v) and wl(v

′) have the same color.
By taking the case l = 1 applied to wl(v) and wl(v

′), we know that wl(v) and wl(v
′)

come in the same order as (−1)r1(wl(v))wl+1(v) and (−1)r1(wl(v
′))wl+1(v

′). Hence v and v′

come in the same order as (−1)rl(v)+r1(wl(v))wl+1(v) and (−1)rl(v
′)+r1(wl(v

′))wl+1(v
′). Since

rl(v) + r1(wl(v)) = rl+1(v), the lemma follows.

Proof of Corollary 2.5. Suppose that A(v) < A(v′) lexicographically. Then there exists
an l such that A(v) and A(v′) first differ in the lth position, so the signed walks from v

and v′ agree through al−1. By Lemma 2.3, this means that the walks from v and v′ agree
through wl−1, so v and v′ come in the same order as al(v) and al(v

′). But al(v) < al(v
′)

by assumption, so v < v′, as was to be shown.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. We first show that Υ ◦ Φ is a bijection from (A, S)-permutations
to A-compatible ornaments.

To get from an A-good ornament ω0 to an ornament ω in Υ−1(ω0), we can do the
following. For each set of identical necklaces νl in the ornament ω0, split νl into |ν| sets
that we will call packets. Each packet consists of the l elements from identical positions in
the l necklaces (this notion is well-defined since each necklace in ω0 is 1-repeating). Within
each packet, re-choose the successors of each vertex (by permuting them arbitrarily). It is
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easy to verify that this operation preserves the fundamental period of a necklace, so that
we end up with an element in Υ−1(ω0). It is also easy to see that we can get any element
of Υ−1(ω0) in this way.

To get from ω to an element of Φ−1(ω), take ω and then replace, for each i, the vertices
colored i by the elements of Ai.

We can then think of Φ−1 ◦ Υ−1 as follows. Take an A-good ornament ω0, and again
split νl into packets. Now label the vertices of ω0 by the integers 1 through n such that
the vertices colored i are labeled by the elements of Ai. Finally, choose the successors of
each vertex. This process is illustrated in Figures 5, 6, and 7.

Note that we can recover each of the walks (and hence signed walks) of ω using just
Υ(ω). By Corollary 2.5, then, there is only one labeling of the vertices of ω0 that can
yield an (A, S)-permutation. It is obtained by first listing the vertices v1, . . . , vn of the
template so that if i < j then A(vi) < A(vj); then labeling vi with the integer i (ties
in A(v) are irrelevant here, since the later re-assignment of successors makes all vertices
with the same walk symmetric with respect to each other).

Once we have done this, there is a unique way to pick the successors of each vertex to
get an (A, S)-permutation. If a packet comes from an ascending block, then the successors
of the vertices should be ordered in the same way as the vertices themselves. If a packet
comes from a descending block, then the successors of the vertices should be ordered in
the opposite way as the vertices themselves. This constraint uniquely determines the
successors of each vertex, and we can also see that this constraint is sufficient to get an
(A, S)-permutation. We have thus shown that, for any A-good ornament ω0, there is a
unique element π of (Υ ◦ Φ)−1 that is also an (A, S)-permutation.

We now consider the cycle structure of this (A, S)-permutation (this will let us deter-
mine the image of Ψ ◦ Φ).

Suppose ω0 has a set of necklaces νl, and ν has d vertices from descending blocks and
x vertices in total. If d is even, then νl will contribute l cycles, all of length x, to π. If d
is odd, then we will instead end up with cycles of length 2x. The exception is if l is odd,
in which case there is also one cycle of length x coming from the vertices in each packet
that take on the median value for that packet.

This cycle structure corresponds precisely to the augmentation described in the state-
ment of Theorem 2.1, so we are done.

Table 1: The first 7 terms of A(v) for v = A, . . . , R. We have ordered the entries lexico-
graphically by A(v).

A 1,−2,−2,−1, 2, 1,−2 Q 1,−2,−1, 2, 1,−2,−1 N 2, 1,−2,−1, 2, 1,−2
F 1,−2,−2,−1, 2, 2, 1 D 1,−2,−1, 2, 2, 1,−2 P 2, 1,−2,−1, 2, 1,−2
I 1,−2,−1, 2, 1,−2,−1 E 2, 1,−2,−2,−1, 2, 1 R 2, 1,−2,−1, 2, 1,−2
K 1,−2,−1, 2, 1,−2,−1 H 2, 1,−2,−2,−1, 2, 2 C 2, 1,−2,−1, 2, 2, 1
M 1,−2,−1, 2, 1,−2,−1 J 2, 1,−2,−1, 2, 1,−2 G 2, 2, 1,−2,−2,−1, 2
O 1,−2,−1, 2, 1,−2,−1 L 2, 1,−2,−1, 2, 1,−2 B 2, 2, 1,−2,−1, 2, 2
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Figure 5: An ornament ω0 with 5 necklaces, each with 5 vertices. Each column is a packet
of ω0. The first and last half-vertex are the same. Light grey indicates block 1, white
indicates block 2, and dark grey indicates block 3, so A = (10, 10, 5). Also, S = {1, 3}, so
blocks 1 and 3 descend while block 2 ascends. The arrows indicate successors in ω0.
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6

5

4

3

2

1

Figure 6: The unique way of numbering the vertices in the ornament from Figure 5 to
get an (A, S)-permutation, based on Corollary 2.5.
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9
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6

5

4
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2

1

Figure 7: The unique way of choosing successors for the numbered ornament in Figure 6
to yield an (A, S)-permutation. The successors are indicated by arrows. Observe that we
end up with the 5-cycle (3 18 23 13 8) and two 10-cycles.
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In future sections we will deal with the (A, S)-derangements. For this, the following
proposition will be helpful.

Proposition 2.6. The image of the (A, S)-derangements under Υ◦Φ is all A-good orna-
ments with no 1-cycles from ascending blocks and an even number of 1-cycles from each
descending block.

Proof. This follows immediately by considering the formula for λi at the end of the state-
ment of Theorem 2.1. An augmentation of an ornament corresponds to a derangement if
and only if no necklaces of size 1 are augmented by partitions with parts of size 1.

We record the following corollary for use in Section 6.

Corollary 2.7. The (A, S)-derangements are in bijection with A-compatible ornaments
satisfying the following properties:

• Every cycle is either 1-repeating or 2-repeating.

• The only 2-repeating cycles are monochromatic 2-cycles from a descending block.

• There are no 1-cycles.

Proof. We can apply Proposition 2.6, then replace every pair of 1-cycles from a descending
block with a 2-cycle from the same block.

3 Revisiting Gessel and Reutenauer

In this section, we present two corollaries of the results presented in Section 2. They
imply Theorems 4.1 and 4.2 of [5].

Corollary 3.1. Associate to each conjugacy class C of Sn a partition λ of n based on
cycle structure.

The number of (A, S)-permutations in C is the same if we replace S by {1, . . . , k}\S,
assuming that all odd parts of λ are distinct and λ has no parts congruent to 2 mod 4.

Proof. We will take an ornament that satisfies the conditions of Theorem 2.2, then show
that it still satisfies the conditions of Theorem 2.2 if we make each ascending block
a descending block and vice versa. This would provide an injection from the (A, S)-
permutations in C and the (A, {1, . . . , k}\S)-permutations in C. Since taking the comple-
ment of S twice yields S again, this is sufficient.

Suppose we have an ornament ω that satisfies the conditions of Theorem 2.2. Then (i)
every necklace with an even number of vertices from descending blocks in its fundamental
period is 1-repeating, (ii) every necklace with an odd number of vertices from descending
blocks in its fundamental period is either 1-repeating or 2-repeating, and (iii) no two
necklaces with an odd number of vertices from descending blocks are isomorphic.
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If a necklace has an even number of total vertices, then the conditions on λ ensure
that the number of vertices in the cycle is divisible by 4. Since every necklace is at most
2-repeating, this means that the size of the fundamental period must be even. In this
case, the number of vertices from ascending and descending blocks in the fundamental
period has the same parity. Therefore, whether the necklace satisfies the hypotheses of
(i), (ii), and (iii) remains unchanged when we replace S by its complement; since we are
left with the same necklace, whether that necklace satisfies the conclusions of (i), (ii), and
(iii) also remains unchanged.

If a necklace has an odd number of total vertices, then the conditions on λ imply that
it is the only necklace with that many vertices and thus cannot be isomorphic to any
other necklace. Thus the conclusion of (iii) is automatically satisfied. The necklace also
cannot be 2-repeating, since it has an odd number of total vertices, so the conclusions
of (i) and (ii) combine to say that, in all cases, the necklace must be 1-repeating. This
condition is independent of S, so whether this necklace satisfies the conditions imposed
by (i), (ii), and (iii) does not change if we replace S by its complement.

We have shown that an ornament satisfying the conditions of Theorem 2.2 will still
do so if we replace S by its complement, so we are done.

Corollary 3.2. The number of (A, S)-involutions is the same if we replace S by its
complement.

Proof. Under the map Υ ◦ Φ, the (A, S)-involutions are in bijection with A-compatible
ornaments such that (i) there are only 1-cycles and 2-cycles; (ii) any 2-cycle has vertices
of distinct colors; and (iii) if a 2-cycle has exactly one vertex from a descending block,
then it is not isomorphic to any other 2-cycle.

We observe that if we replace S by its complement, then condition (ii) does not
change, since any cycle with exactly one descending vertex also has exactly one ascending
vertex. Also, conditions (i) and (iii) do not change because they have nothing to do with
whether a block is ascending or descending. Therefore, the ornaments that correspond to
(A, S)-involutions also correspond to (A, {1, . . . , k}\S)-involutions. We can replace S with
{1, . . . , k}\S in the preceeding argument to see that it is also the case that the ornaments
corresponding to (A, {1, . . . , k}\S)-involutions also correspond to (A, S)-permutations, so
we are done.

4 Enumerating the (A, S)-derangements

4.1 Bijective enumeration of the (A, S)-derangements

In this subsection, we use the results from Section 2 to enumerate the (A, S)-derangements.

Corollary 4.1. Let σ be a permutation of {1, . . . , k} and let C be a conjugacy class
in Sn. The number of (a1, . . . , ak, S)-permutations in C is the same as the number of
(aσ(1),. . .,aσ(k), σ(S))-permutations in C.
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Proof. The description of the image of Φ in Theorem 2.2 doesn’t distinguish between the
blocks.

Corollary 4.2. The number of (A, S)-derangements is the coefficient of xa1

1 · · ·xak

k in

1

1 − x1 − · · · − xk

(

∏

i6∈S(1 − xi)
∏

i∈S(1 + xi)

)

. (1)

Let lm = am if m ∈ S and let lm = 1 otherwise. The number of (A, S)-derangements is
also

∑

06bm6lm,m=1,...,k

(−1)
P

bi

( ∑

(ai − bi)

a1 − b1, . . . , ak − bk

)

. (2)

Proof. As in Section 2, we will refer to an A-compatible ornament where every necklace
is 1-repeating as an A-good ornament.

First note that

1

1 − x1 − · · · − xk

=
∞
∑

n=0

(

k
∑

i=1

xi

)n

=
∞
∑

c1,...,ck=0

(

c1 + · · · + ck

c1, . . . , ck

)

xc1
1 · · ·xck

k .

From here it is easy to see that the xa1

1 · · ·xak

k coefficient in (1) is equal to the sum
given in (2). It thus suffices to establish that (2) enumerates the (A, S)-derangements.

By Proposition 2.6, the (A, S)-derangements are in bijection with the A-good or-
naments with no 1-cycles in ascending colors and an even number of 1-cycles in each
descending color.

Note that the number of (a1, . . . , ak)-good ornaments is
(

a1+···+ak

a1,...,ak

)

. This is because

these ornaments are in bijection with the (a1, . . . , ak)-ascending permutations by Theorem
2.2. There are

(

a1+···+ak

a1,...,ak

)

(a1, . . . , ak)-ascending permutations because, once we determine
the set of permutation values within each block, there is exactly one way to order them
to be increasing.

Also, the number of (a1, . . . , ak)-good ornaments with at least bi 1-cycles of color i is
(

(a1−b1)+···+(ak−bk)
a1−b1,...,ak−bk

)

. This is because they are in bijection with the (a1−b1, . . . , ak−bk)-good

ornaments (the bijection comes from removing, for each i, bi of the 1-cycles of color i).
Now if f(b1, . . . , bk) is the number of (a1, . . . , ak)-good ornaments with at least bi 1-

cycles of color i, then a standard inclusion-exclusion argument shows that the number
of ornaments with an even number of 1-cycles in descending colors and no 1-cycles in
ascending colors is

∑

06bm6lm,m=1,...,k

(−1)
P

bif(b1, . . . , bk)

where lm = am if m ∈ S and lm = 1 if m 6∈ S. Since we know that f(b1, . . . , bk) =
(

(a1−b1)+···+(ak−bk)
a1−b1,...,ak−bk

)

, (2) follows.
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4.2 Recursive enumeration of the (A, S)-derangements

In this subsection, we will enumerate the (A, S)-derangements using recursive techniques.
We will refer to an index i, 1 6 i 6 n, such that π(i) < i as a deficiency, and an index
with π(i) > i as an excedance. We let Des(π) denote the descent set of π, Exc(π) the set
of excedances, and Fix(π) the set of fixed points.

We begin by describing a process of “fixed point removal” defined in Sections 1 and 2
of [4]. This process preserves descents, excedances, and fixed points (and so also ascents
and deficiencies).

Lemma 4.3. Given integers i and j, j 6= i, define

ρi(j) =

{

j if j < i

j − 1 if j > i

Given a set S of integers, define ρi(S) to be ρi(S\{i}). For a permutation π on
{1, . . . , n} with π(i) = i, define the permutation ψi(π) on {1, . . . , n−1} as ψi(π) = ρiπρ

−1
i .

The map ψi is a bijection from permutations on {1, . . . , n} with π(i) = i to permuta-
tions on {1, . . . , n−1}. Furthermore, Des(ψi(π)) = ρi(Des(π)), Exc(ψi(π)) = ρi(Exc(π)),
and Fix(ψi(π)) = ρi(Fix(π)).

The proof is a routine verification, so we omit it. The easiest way to visualize this
process is to think of permutations in terms of their permutation matrices, and then ψi(π)
is the permutation we get if we remove the ith row and ith column of π. We refer to the
process of sending π to ψi(π) as “removing the fixed point i from π.”

The next lemma appears implicitly in both [6] and [4].

Lemma 4.4. If i ∈ S, then any (a1, . . . , ak, S)-permutation has at most one fixed point
in the block Ai.

Proof. The permutation values are decreasing in Ai, so if j ∈ Ai and π(j) = j, then all
elements of Ai coming before j are excedances, and all elements of Ai coming after j are
deficiencies.

This implies the following bijection, which appears as Lemma 2.2 of [4]. We include
the proof for completeness.

Lemma 4.5. If i ∈ S, then there is a bijection between (a1, . . . , ai, . . . , ak, S)-permutations
with one fixed point in Ai and (a1, . . . , ai − 1, . . . , ak, S)-permutations with no fixed points
in Ai.

Proof. To get from a permutation with one fixed point in Ai to one with no fixed points
in Ai, just remove the fixed point as explained in Lemma 4.3.

To go backwards, find the unique index j ∈ Ai such that π(j) < j but π(k) > k for
all k ∈ Ai with k < j. Then insert a fixed point just before j (by applying ψ−1

j to the
permutation). In the case that π(k) > k for all k ∈ Ai, insert a fixed point just after the
end of the block Ai.
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We will also need versions of Lemmas 4.4 and 4.5 to deal with the case of ascending
blocks (when i 6∈ S).

Lemma 4.6. Let i 6∈ S, and let π be an (a1, . . . , ak, S)-permutation. Then all the fixed
points in Ai appear consecutively.

Proof. If j is an excedance, j < k, and j, k ∈ Ai, then k is also an excedance. Similarly,
if j is a deficiency, k < j, and j, k ∈ Ai, then k is also a deficiency.

Lemma 4.7. If i 6∈ S, then there is a bijection between (a1, . . . , ai, . . . , ak, S)-permutations
with exactly p fixed points in Ai and (a1, . . . , ai − l, . . . , ak, S)-permutations with exactly
p − l fixed points in Ai. In particular, there is a bijection between (a1, . . . , ai, . . . , ak, S)-
permutations with exactly l fixed points in Ai and (a1, . . . , ai − l, ak, S)-permutations with
exactly zero fixed points in Ai.

Proof. To get from a permutation with p fixed points in Ai to a permutation with p − l

fixed points in Ai, just remove the first l fixed points.
To go backwards, find the unique index j ∈ Ai such that π(j) > j but π(k) < k for

all k ∈ Ai with k < j. Then insert l fixed points just before j (by applying ψ−1
j to the

permutation l times). In the case that π(k) < k for all k ∈ Ai, insert l fixed points at the
end of the block Ai.

Note that Lemma 4.7 also holds if we replace all instances of “exactly” with ”at least.”
Lemmas 4.5 and 4.7 allow us to construct a recursion for the number of (a1, . . . , ak, S)-

derangements. In fact, now that we have Lemma 4.7 in hand, the recursion follows by
the same methods as in [4]. For notational convenience, we will assume S to be fixed
throughout the argument. Then let fj(a1, . . . , ak) denote the number of (a1, . . . , ak, S)-
permutations with no fixed points in blocks Ai for i 6 j. In this case, fk(a1, . . . , ak) is
the number of (a1, . . . , ak, S)-derangements.

Proposition 4.8. Let mi = 1 if i ∈ S and let mi = ci if i 6∈ S. Then, for all 0 6 j < k,

fj(c1, . . . , ck) =

mj+1
∑

h=0

fj+1(c1, . . . , cj , cj+1 − h, cj+2, . . . , ck).

Proof. The number of (c1, . . . , ck, S)-permutations with no fixed points in blocks Ai for
i 6 j is the sum, over all h, of the number of (c1, . . . , ck, S)-permutations with no fixed
points in blocks Ai for i 6 j and h fixed points in Aj+1.

If j + 1 ∈ S, then the number of (c1, . . . , ck, S)-permutations with no fixed points in
blocks Ai for i 6 j and h fixed points in Aj+1 is equal to 0 if h > 1. If h 6 1, then by
Lemma 4.5 the number of such permutations is equal to the number of (c1, . . . , cj+1 −
h, . . . , ck, S)-permutations with no fixed points in blocks Ai for i 6 j + 1 . But the latter
quantity is just fj+1(c1, . . . , cj+1 − h, . . . , ck), so in the case that j + 1 ∈ S we have

fj(c1, . . . , ck) =
1
∑

h=0

fj+1(c1, . . . , cj+1 − h, . . . , ck),
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which agrees with Proposition 4.8.
If j + 1 6∈ S, then the number of (c1, . . . , ck, S)-permutations with no fixed points in

blocks Ai for i 6 j and h fixed points in Aj+1 is equal, by Lemma 4.7, to the number of
(c1, . . . , cj+1 − h, . . . , ck, S)-permutations with no fixed points in blocks Ai for i 6 j + 1.
This latter quantity is again just fj+1(c1, . . . , cj+1−h, . . . , ck), so in the case that j+1 6∈ S

we have

fj(c1, . . . , ck) =

cj+1
∑

h=0

fj+1(c1, . . . , cj+1 − h, . . . , ck),

which again agrees with Proposition 4.8. We have thus established Proposition 4.8 in
both the ascending and descending cases, so we are done.

We now use Proposition 4.8 to obtain another proof of Corollary 4.2.

Proof of Corollary 4.2. We have already shown that the generating function for the num-
ber of (A, S)-derangements implies the summation. It therefore suffices to establish the
generating function for the (A, S)-derangements.

Let

Fj(x1, . . . , xk) =

∞
∑

a1,...,ak=0

fj(a1, . . . , ak)x
a1

1 · · ·xak

k

be the generating function for fj(a1, . . . , ak). We will prove inductively that

Fj(x1, . . . , xk) =
1

1 − x1 − · · · − xk

(

∏

i6∈S,i6j 1 − xi
∏

i∈S,i6j 1 + xi

)

. (3)

From this, we will have

Fk(x1, . . . , xk) =
1

1 − x1 − · · · − xk

(

∏

i6∈S 1 − xi
∏

i∈S 1 + xi

)

,

which is what we are trying to show.
We start by establishing (3) in the case that j = 0. When j = 0, fj(a1, . . . , ak) is just

the number of (a1, . . . , ak, S)-permutations (with no restrictions on fixed points). Thus
f0(a1, . . . , ak) =

(

a1+···+ak

a1,...,ak

)

, since once we have distributed the numbers 1, . . . , n among
the blocks A1, . . . , Ak, there is a unique way to order them so that they ascend or descend
as they are supposed to. So when j = 0 we have

F0(x1, . . . , xk) =
∞
∑

a1,...,ak=0

(

a1 + · · · + ak

a1, . . . , ak

)

xa1

1 · · ·xak

k

=

∞
∑

n=0

(x1 + · · · + xk)
n

=
1

1 − x1 − · · · − xk

.
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This completes the base case for the induction. Now the recursive formula for fj in

Proposition 4.8 implies that Fj =
Fj+1

1−xj+1
if j+1 ∈ S and Fj = (1+xj+1)Fj+1 if j+1 6∈ S,

which proves the inductive step. We are therefore done.

Remark. When S = ∅ (that is, in the case of (a1, . . . , ak)-ascending permutations), we
can also derive the sum in Corollary 4.2 combinatorially. By Lemma 4.7, we can interpret

the multinomial coefficient
(

Pk
i=1

(ai−bi)
a1−b1,...,ak−bk

)

as the number of (A, ∅)-permutations with at
least bi fixed points in block i. Then the sum in Corollary 4.2 is an inclusion-exclusion
sum that counts the number of (A, ∅)-permutations with no fixed points in any block,
which is the definition of an (a1, . . . , ak)-ascending derangement.

5 A polynomial sum

In this section we study a polynomial sum appearing in [4]. The polynomial is

1

a1! · · ·ak!

∑

T⊂{1,...,n}

(−1)|T |fλ(|{1, . . . , n}\T |)
k
∏

i=1

fλ(|Ai ∩ T |). (4)

Surprisingly, this polynomial turns out to be constant. As a reminder, fλ(n) is the
generating function for the elements of Sn by the number of fixed points. Thus the first
few values of fλ are

fλ(0) = 1

fλ(1) = λ

fλ(2) = 1 + λ2

fλ(3) = 2 + 3λ+ λ3

fλ(4) = 9 + 8λ+ 6λ2 + λ4

Eriksen et al. (Section 5 of [4]) show that (4) counts the (a1, . . . , ak)-descending de-
rangements. They do this in two steps: they first show that (4) is equal to the number of
(a1, . . . , ak)-descending derangements when λ = 1, and then they show that (4) does not
depend on λ by differentiating with respect to λ. In this section, we show combinatorially
that (4) is constant.

Call a cycle of a permutation π small if it lies entirely within one of the blocks Ai. Let
c(π) be equal to 0 if π contains any odd-length small cycles, and let c(π) be equal to 2m

otherwise, where m is the number of small cycles in π (which will in this case necessarily
all have even length).

Proposition 5.1.

1

a1! · · ·ak!

∑

T⊂{1,...,n}

(−1)|T |fλ(|{1, . . . , n}\T |)
k
∏

i=1

fλ(|Ai ∩ T |) =
1

a1! · · ·ak!

∑

π∈Sn

c(π). (5)
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In particular, (4), which is also the left-hand side of (5), does not depend on λ, and
the right-hand side of (5) is the number of (a1, . . . , ak)-descending derangements.

Proof. As noted above, Eriksen et al. have already shown that (4) counts the (a1, . . . , ak)-
descending derangements, so to prove Proposition 5.1, we only need to establish (5).

The 1
a1!···ak !

factor appears on both sides of (5), so we may ignore it and instead prove
that

∑

T⊂{1,...,n}

(−1)|T |fλ(|{1, . . . , n}\T |)
k
∏

i=1

fλ(|Ai ∩ T |) =
∑

π∈Sn

c(π). (6)

We start by creating a multivariate version of (6). We will work in C[Sn], the group
algebra of Sn. Define a function I : 2Sn → C[Sn] by

I(T ) =
∑

π∈T

π

for any T ⊂ Sn. Now we write down an element of C[Sn] that is similar to the sum on
the left-hand-side of (6). Given a set X, let Sym(X) denote the symmetric group acting
on X. Whenever X ⊂ {1, . . . , n}, there is a natural embedding of Sym(X) in Sn. The
desired element of C[Sn] is

Q =
∑

T⊂{1,...,n}

(−1)|T |I(Sym({1, . . . , n}\T )) ·
k
∏

i=1

I(Sym(Ai ∩ T )). (7)

The rest of the proof hinges on the following claim.

Claim.
Q =

∑

π∈Sn

c(π)π (8)

Proof of claim. Fix a permutation π and consider the terms ofQ in which π appears. That
is, consider for which values of T the permutation π lies in GT := Sym({1, . . . , n}\T ) ×
∏k

i=1 Sym(Ai ∩ T ). The permutation π lies in GT if and only if each of its cycles lies in
{1, . . . , n}\T or in T ∩Ai for some i. In other words, (i) for every cycle that is not small,
{1, . . . , n}\T must contain that cycle; (ii) for every small cycle c, the set {1, . . . , n}\T
must either contain c or be disjoint from c. If there is any odd-length small cycle c in π

then we can pair off terms where c ⊂ T with terms where c ∩ T = ∅, and |T | will have
different parity in both cases, so any permutation with an odd-length small cycle cancels
out of Q.

If π has no odd-length small cycles, then the preceding argument shows that |T | will
be even whenever π ∈ GT (because T is a union of small cycles of π). Therefore, π will
always appear with the same (positive) sign, and π appears c(π) times in this case because
every small cycle of π can either lie in T or not lie in T . Thus the coefficient of π in Q is
indeed c(π), and the claim follows.
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Now consider the vector space homomorphism FIX : C[Sn] → C[λ] defined on elements
of Sn as

FIX(π) = λ|fix(π)|

and extended by linearity to all of C[Sn]. Note that FIX(Q) is equal to the left-hand-side
of (6). On the other hand, by considering (8), we see that FIX(Q) is equal to

∑

π∈Sn

c(π) FIX(π). (9)

However, every fixed point of π is a small cycle of odd length. Therefore, if FIX(π) 6= 1,
then c(π) = 0. Hence (9) simplifies to

∑

π∈Sn

c(π).

This is exactly the right-hand-side of (6), so the left-hand-side and right-hand-side of
(6) are equal, as we wanted to show.

In the next section, we will prove directly that

1

a1! · · ·ak!

∑

π∈Sn

c(π)

counts the (a1, . . . , ak)-descending derangements and also generalize this formula to count
the (A, S)-derangements.

6 A combinatorial sum

We now derive a combinatorial sum for the (A, S)-derangements. In this section, we will
make use of the maps Φ, Ψ, and Υ, which are defined at the beginning of Section 2.

Let cS(π) = 0 if π has any odd-length small cycles or small cycles in ascending blocks.
Otherwise, let cS(π) = 2m, where m is the number of small cycles. The next theorem is
our main result in this section.

Theorem 6.1. The number of (A, S)-derangements is equal to

1

a1! · · ·ak!

∑

π∈Sn

cS(π).

We recall Corollary 2.7, which states that the (A, S)-derangements are in bijection
with the ornaments such that (i) the number of vertices colored i is equal to ai; (ii)
every cycle is aperiodic (1-repeating), with the exception of monochromatic 2-cycles from
descending blocks; and (iii) there are no 1-cycles. We will call an ornament satisfying
these conditions an (A, S)-satisfactory ornament. In view of the statement of Theorem
6.1, we will also define an (A, S)-acceptable permutation as a permutation with
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• no small cycles from ascending blocks

• only even-length small cycles from descending blocks

and define an (A, S)-acceptable ornament as an ornament with

• no monochromatic cycles in ascending blocks

• only even-length monochromatic cycles from descending blocks

• exactly ai vertices colored i.

Thus the image of the (A, S)-acceptable permutations under Φ is the (A, S)-acceptable
ornaments.

We are now ready to prove Theorem 6.1. Roughly, our strategy will be to take the
(A, S)-acceptable permutations, map them to the (A, S)-acceptable ornaments with Φ,
map them to augmentations of (A, S)-satisfactory ornaments with Ψ, and then forget the
augmentations to obtain (A, S)-satisfactory ornaments.

Proof of Theorem 6.1. Let Π be the set of (A, S)-acceptable permutations, Ω the set of
(A, S)-acceptable ornaments, and Σ the set of (A, S)-satisfactory ornaments. Recall that
we are trying to show that

1

a1! · · ·ak!

∑

π∈Sn

cS(π)

counts the (A, S)-derangements. Consider the element

X =
1

a1! · · ·ak!

∑

π∈Sn

c(π)π

of the group algebra C[Π]. As noted earlier, Φ maps Π into Ω. Naturally extend Φ
to a map from C[Π] to C[Ω]. Note that if Φ(π) = Φ(π′), then cS(π) = cS(π′), so we
can regard cS as a function on ornaments by defining cS(ω) to be cS(Φ−1(ω)) for any
(A, S)-acceptable ornament ω.

Finally, let N(ω) denote the group of symmetries of an ornament ω. So if ω =
{νl1

1 , . . . , ν
lm
m }, and νi is ri-repeating, then the size of N(ω) is r1l1! · · · rmlm!. In Figure 8,

we compute the number of symmetries of an ornament.

1

2 2

1

2 1

2 2

1

2 1

2 1

2 1

2

1 2

Figure 8: An (8, 10)-compatible ornament (in fact, the same ornament as in Figure 3).
White vertices are labeled 1 and grey vertices are labeled 2. This ornament has 22 ·2! = 8
symmetries, since we can permute the two squares and also rotate each of them by any
multiple of 180 degrees.
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Claim.

Φ(X) =
∑

ω∈Ω

cS(ω)

|N(ω)|
ω.

Proof of claim. Given any ornament ω, there are a1! · · ·ak! ways to fill in the vertices of ω
with the integers {1, . . . , n} such that the vertices labeled i are assigned distinct elements
of Ai. However, there is some double-counting going on, as every symmetry of ω means
that two different ways of filling in the vertices of ω will actually yield the same permuta-
tion in the end. Thus we overcount by a factor of |N(ω)|, hence a1!···ak !

|N(ω)|
permutations map

to a given ornament ω under the map Φ. Since each of these permutations is assigned a
weight cS(ω)

a1!···ak !
in the sum for X, the claim follows.

Now take the map Υ defined in Section 2. One can check that it maps Ω bijectively to
the set Σ of (A, S)-satisfactory ornaments. Extend Υ to an isomorphism from C[Ω] to
C[Σ].

If Ψ(ω) = ω′
λ, then ω, and hence |N(ω)|, is determined by λ and ω′. We will obtain a

convenient expression for |N(ω)| in terms of ω′ and λ. Suppose that ω′
λ = {νλ1

1 , . . . , νλm
m }.

Also let f(ν) be equal to the r for which the cycle ν is r-repeating. For all cases we will
consider, f(ν) = 2 if ν is a monochromatic 2-cycle and f(ν) = 1 otherwise.

Claim. If λi has nij parts of size j and |λi| denotes the total number of parts of λi, then

|N(ω)| =
∏

i

(

f(νi)
|λi|
∏

j

jnijnij !

)

. (10)

Proof of claim. Note that the symmetries of ω come from the internal symmetries of each
cycle together with the symmetries between the cycles. In other words, every symmetry of
ω permutes isomorphic cycles and also might rotate each cycle by a multiple of its period
length. There are nij cycles in ω that are equal to j concatenated copies of νi; each
of these cycles has jf(νi) internal symmetries, and there are nij ! ways to permute these
cycles among each other, so these cycles contribute a factor of f(νi)

nijjnijnij!. Multiplying
this across all i and j yields (10).

In view of this, we will define N(λi) =
∏

j j
nijnij ! and define N(λ) =

∏

iN(λi). Thus
|N(ω)|
cS(ω)

= N(λ). Also, let λ ⊢ l mean that λ is a partition of l. We then see that

Υ(Φ(X)) =
∑

ω′∈Σ

ω′
∑

λ

1

N(λ)
=

∑

ω′={ν
l1
1

,...,ν
lm
m }∈Σ

ω′

m
∏

i=1

∑

λi⊢li

1

N(λi)
.

Here the sum for λ is over all augmentations ω′
λ of ω′, and the sum for λi is over all

partitions λi of li. Our final observation is that N(λi) is the size of the stabilizer of the
conjugacy class corresponding to λi in Sli, hence

∑

λi⊢li

1
N(λi)

= 1 by the class equation
for Sli . Thus the above equation simplifies to

Υ(Φ(X)) =
∑

ω′∈Σ

ω′
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which implies that 1
a1!···ak!

∑

π∈Sn
cS(π) is equal to |Σ|, which is the number of (A, S)-

satisfactory ornaments, which by Corollary 2.7 is the number of (A, S)-derangements, so
we are done.

If, instead of considering (A, S)-satisfactory ornaments, we consider ornaments that
have no 1-cycles in ascending blocks and an even number of 1-cycles in each descending
block, the same idea as above works. This new set of ornaments is also in bijection with
the (A, S)-derangements, since we can replace every pair of 1-cycles from a descending
block with a 2-cycle from the same block.

Running through the above argument with this new set of ornaments yields Theorem
6.2. Theorem 6.2 is interesting because instead of a sum like

∑

π∈Sn
cS(π), we end up

with the cardinality of a set because all coefficients in the sum end up being either 0 or
1. It is also more natural than Theorem 6.1 since it uses only bijections induced by the
maps Φ and Υ.

Theorem 6.2. Let D be the number of (A, S)-derangements, and let E be the number of
permutations such that

• There are no small cycles in ascending blocks.

• The total length of all small cycles in each descending block is even.

Then E = a1! · · ·ak!D.

Proof sketch. Let Π′ be the set of permutations with no small cycles in ascending blocks
and such that the total length of all small cycles in each descending block is even. Let
Ω′ be the set of all A-compatible ornaments with no monochromatic cycles in ascending
colors and such that the total length of all monochromatic cycles in each descending color
is even. Let Σ′ be the set of A-good ornaments with no 1-cycles in ascending blocks and
an even number of 1-cycles in each descending block. As noted in Proposition 2.6, Φ is
a bijection between the (A, S)-derangements and Σ′. The map Φ also sends Π′ to Ω′,
and Υ sends Ω′ bijectively to Σ′. Finally, all the fibres of Φ, when mapping from Π′ to
Ω′, have size a1! · · ·ak!. This means that the map Φ−1 ◦ Υ ◦ Φ, as a map from Π′ to the
(A, S)-derangements, is a surjection such that each fibre has size a1! · · ·ak!. This implies
Theorem 6.2.

We also note a more direct relation between Theorem 6.1 and Theorem 6.2. We can see
this by fixing a set of elements in each block that are to come from small cycles. Suppose
that this set is T for some block (T necessarily has even cardinality). The relevant claim
is that the total number of permutations on T (i.e., |T |!) is equal to the sum, over all
permutations with only even cycles, of 2 raised to the power of the number of cycles in
the permutation. In other words, the claim is that if S = {1} and A = (a), then

∑

π∈Sn

cS(π) = a!.

the electronic journal of combinatorics 17 (2010), #R14 22



If we then multiply across all blocks, we see that the sum in Theorem 6.1 is equal to
E, which shows that Theorems 6.1 and 6.2 imply each other.

We will now prove our claim. In fact, we can prove a stronger statement.

Proposition 6.3. Let T be a set whose cardinality is divisible by m. For a permutation
π of T , let d(π) equal 0 if π has any cycles whose length is not divisible by m and let it
be equal to mt otherwise, where t is the number of cycles in π. Then

∑

π∈Sym(T )

d(π) = |T |!.

Proof. Let n = |T |. We will use the Pólya enumeration theorem [10]. Consider the set F
of all functions from T to {0, . . . , m − 1}. Then Sym(T ) acts on F by pre-composition.
That is, [π · f ](t) := f(π(t)) for f ∈ F . We give a weight w(f) to each function f ∈ F
equal to the sum of the values of f across T . In other words, w(f) =

∑

t∈T f(t). Note
that two elements in the same orbit under Sym(T ) have the same weight, so we can define
w on the orbits of F as well.

Let Z be the cycle index of Sym(T ), that is,

Z(x1, . . . , xn) =
1

n!

∑

π∈Sym(T )

n
∏

j=1

x
nj(π)
i ,

where nj(π) is equal to the number of cycles of length j in π. Also, let C(t) be the
generating function by weight for the orbits of F and let c(t) be the generating function
by weight for the elements of {0, . . . , m−1}. The Pólya enumeration theorem states that

C(t) = Z(c(t), c(t2), c(t3), . . .).

We can easily see that c(t) = 1 + t + t2 + . . . + tm−1. Furthermore, the orbit of a
function f ∈ F is uniquely determined by |f−1(i)| for i = 0, . . . , m − 1, and conversely
there is a non-empty orbit of functions f with |f−1(i)| = ai for any sequence a0, . . . , am−1

with a0 + . . . + am−1 = n. Hence the tk coefficient of C(t) is equal to the number of
solutions, over non-negative integers, to the equations

a0 + a1 + a2 + . . .+ am−1 = n

a1 + 2a2 + . . .+mam−1 = k.

It follows that C(t) is equal to the xn coefficient in

1

1 − x

1

1 − tx

1

1 − t2x
· · ·

1

1 − tm−1x
.

We will denote the xn coefficient of a polynomial p by [xn]p. We have then shown that

[xn]

(

1

1 − x

1

1 − tx
· · ·

1

1 − tm−1x

)

= Z(1 + t+ · · · + tm−1, 1 + t2 + · · · + t2m−2, . . .).
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If we evaluate this at a primitive mth root of unity ζ , then we see that

[xn]

(

1

1 − x

1

1 − ζx
· · ·

1

1 − ζm−1x

)

= Z(0, 0, . . . , m, 0, 0, . . . , m, . . .),

where the m occurs in every mth spot. But then the right-hand side is 1
n!

∑

π∈Sym(T ) d(π),

and the left-hand side is [xn] 1
1−xm . Since n is divisible by m, [xn] 1

1−xm = 1. This implies
that

∑

π∈Sym(T ) d(π) = n!, as claimed.

7 Conclusion and Open Problems

In this paper we have considered the map Φ applied to (A, S)-permutations. It would be
interesting to study Φ as a map on all permutations at once or perhaps restricted to other
special classes of permutations.

One interesting class of permutations consists of permutations that are split into blocks
of length a1, . . . , ak, and such that the relative ordering of the permutation values within
block i agrees with some pre-determined permutation πi—so (a1, . . . , ak)-ascending per-
mutations would be the special case when πi is the identity permutation for all i. We
will call the more general case an ((a1, π1), . . . , (ak, πk))-permutation. For example, a
((3, 312), (2, 12))-permutation would be a permutation π such that π(2) < π(3) < π(1)
and π(4) < π(5).

Unfortunately, the map Φ is not usually injective when applied to the ((a1, π1), (a2, π2),
. . . , (ak, πk))-permutations. For instance, let ((a1, π1), (a2, π2)) = ((3, 132), (1, 1)). Then
Φ(1423) = Φ(2431), as they both yield a 1-cycle with color 1 and a 3-cycle with colors
1, 1, 2. If one considers large enough permutations, one can also find cases where Φ maps
3 permutations to the same ornament. In fact, it appears that Φ fails to be injective
for some set of permutations π1, . . . , πk whenever there is some i with ai > 2. (This
is the smallest case that allows for a permutation πi that is neither always ascending
nor always descending.) Also, the sizes of the fibres of Φ appear to vary. Thus there is
no obvious structure that is preserved, at least in terms of injectivity, when we look at
((a1, π1), . . . , (ak, πk))-permutations.

It also appears that Corollary 4.1 does not hold in this case. In particular, the number
of ((3, 123), (3, 132))-permutations in the conjugacy class (1, 2, 3) is not the same as the
number of ((3, 132), (3, 123))-permutations in the conjugacy class (1, 2, 3). (There is a
single one, π = 134265 in the first case, and there are none in the second case.)

Nevertheless, one could perhaps show that when the number of inversions in each πi

is bounded, so is the size of the pre-image of each ornament under Φ, provided that we
hold the number of blocks constant. One could also ask for ways to determine, for a
given ornament, what the pre-image of Φ looks like. Perhaps there is some generalization
of Lemma 2.4 or Corollary 2.5 that would hold. Since Φ is not injective in general, the
conclusion would necessarily have to be weaker, but perhaps one could find a nice partial
order or multi-dimensional sequence to use that would help to determine the relative order
of two vertices in an ornament.
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We could also look at the map Ψ ◦Φ. We could ask the same sorts of questions about
this map as we asked about Φ, and we will probably be more successful, since the bijection
between (A, S)-permutations and augmentations of A-good ornaments seems to be the
most natural of all the bijections presented in this paper. The tradeoff is that Ψ ◦ Φ
does not preserve cycle structure, but it should still be fairly easy to figure out the cycle
structure in most cases. I believe that to understand Φ, one should start by trying to
understand Ψ ◦ Φ.

We still need a better explanation of why (4) counts the (a1, . . . , ak)-descending de-
rangements. Our argument right now is unsatisfying because it involves two disjoint
arguments (Proposition 5.1 and Theorem 6.1) and therefore does not give a direct con-
nection between (4) and the number of (a1, . . . , ak)-descending derangements. It would
therefore be nice to have an argument directly relating (4) to the (a1, . . . , ak)-descending
derangements for all values of λ.

It would also be nice to generalize (4) to count the (A, S)-derangements. This is
particularly tempting because (4) reduces to a special case of the equation in Theorem
6.1, and this equation counts the (A, S)-derangements in general. On the other hand, the
bijection from Corollary 2.7 is somewhat unnatural, so it is possible that the right way to
generalize (4) would involve something closer to the bijection of Theorem 6.2.

The sum 1
a1!···ak !

∑

π∈Sn
cS(π) looks tantalizingly close to something we would get out

of an application of the Pólya enumeration theorem. We in fact proved Proposition 6.3,
a result closely related to this sum, using the Pólya enumeration theorem. So it would be
interesting to see if we could prove that a1!···ak!

P

π∈Sn

enumerates the (A, S)-derangements

using Pólya theory, or, even better, drawing a connection between that sum and the
polynomial sum in [4].

Another question is whether we can obtain a recursion, similar to that for fj, for the
number of derangements with exactly a given descent set. This is different from looking at
(A, S)-permutations because with (A, S)-permutations there are certain points (between
the blocks) when a permutation can either ascend or descend, and so the descent set
is never specified completely. A starting point would be to find an elegant recursion
for the permutations with a given descent set. We can already count the permutations
with a given descent set using inclusion-exclusion (see for example Theorem 1.4 of [1]),
but a recursive enumeration might be more flexible and thus allow us to incorporate the
constraint that the permutations also be derangements more easily.

We could also ask for the asymptotic density of the (A, S)-derangements in the (A, S)-
permutations. Is it, as in the case of all derangements, roughly 1

e
? In Section 7 of

[4], Eriksen et al. show that being a derangement and being an (a1, . . . , ak)-descending
permutation are positively correlated events, but it is possible that they are not strongly
correlated enough to affect the asymptotics.

There are a couple ways to get a notion of asymptotic density. We could first of all fix
S and demand that each of the block sizes gets large. In other words, we could ask if there
exists an α such that for any sequence of k-tuples of positive integers (a1j , . . . , akj) such
that mink

i=1 aij goes to infinity with j, the density of the (a1j , . . . , akj, S)-derangements in
the (a1j , . . . , akj, S)-permutations approaches α. We could also fix S and all of a1, . . . , ak
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and look at the (ca1, . . . , cak, S)-derangements for c = 1, 2, . . ., and then ask the same
question. Even better would be to actually compute α (which would depend on S and,
in the latter formulation, also on a1, . . . , ak).

Another direction for further research is to find a polynomial-time algorithm to count
the (A, S)-derangements. All current algorithms take time exponential in the number of
blocks. One difficulty is that even a very efficient recursion will probably have k variables
and so even a dynamic programming approach will take exponential time.

A final direction of further inquiry involves a simpler proof of one of our results. In
the proof of Corollary 4.2, we used the fact that there are

(

n

a1,...,ak

)

A-good ornaments.
The enumeration of A-good ornaments required Theorem 2.2. However, the simplicity
of both the question “How many A-good ornaments are there?” and its answer suggests
that there should be a more direct proof that there are

(

n

a1,...,ak

)

A-good ornaments. Can
we find such a proof?
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9 Glossary

This section is intended for reference only. All necessary definitions will also be given
either in the introduction or the body of the paper.

• ascent: an index i of a permutation π on {1, . . . , n} such that π(i) < π(i+ 1)

• descent: an index i of a permutation π on {1, . . . , n} such that π(i) > π(i+ 1)

• excedance: an index i of a permutation π on {1, . . . , n} such that π(i) > i

• deficiency: an index i of a permutation π on {1, . . . , n} such that π(i) < i

• fixed point: an index i of a permutation π on {1, . . . , n} such that π(i) = i
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• derangement: a permutation with no fixed points

• (a1, . . . , ak)-ascending permutation: a permutation that ascends within consecutive
blocks of lengths a1, . . . , ak; in other words, its descent set is contained in {a1, a1+a2,

. . . , a1 + · · · + ak−1}. The blocks are referred to as A1, . . . , Ak, so, for example,
A1 = {1, . . . , a1}.

• (a1, . . . , ak)-descending permutation: a permutation that descends in consecutive
blocks of lengths a1, . . . , ak. Once again the blocks are referred to as A1, . . . , Ak.

• (a1, . . . , ak, S)-permutation or (A, S)-permutation (in this case A = (a1, . . . , ak) im-
plicitly): a permutation that, when split into blocks A1, . . . , Ak of lengths a1, . . . , ak,
descends in the blocks Ai for i ∈ S and ascends in the other blocks.

• necklace: a directed cycle whose vertices are either colored or labeled; Figure 1 has
an example of a necklace. Necklaces are also sometimes called cycles.

• fundamental period: the smallest contiguous subsequence P of a necklace such that
the necklace is r copies of P for some r.

• r-repeating: a necklace is r-repeating for the value of r in the preceding definition

• ornament: a multiset of necklaces; Figure 1 has an example of an ornament.

• (a1, . . . , ak)-compatible ornament or A-compatible ornament: an ornament whose
vertices are colored by the integers {1, . . . , k} such that ai vertices are colored by i.
In this case we are either implicitly or explicitly considering (A, S)-permutations as
well, so there is an associated subset S of {1, . . . , k}.

• ascending color: a color that does not lie in the set S in the above definition

• descending color: a color that does lie in the set S

• (a1, . . . , ak)-good ornament or A-good ornament: an A-compatible ornament such
that every necklace is 1-repeating

• Φ: a map from permutations to A-compatible ornaments; it takes a permutation,
writes it as a product of disjoint cycles, and replaces each element of each cycle by
the block it belongs to

• Ψ: a map from A-compatible ornaments to augmentations of A-good ornaments;
for each cycle of an ornament ω that is r-repeating, replace it with r copies of its
fundamental period. This gives us an A-good ornament ω′. If ρ is a necklace of
ω′, and nr necklaces in ω have fundamental period ρ and are r-repeating, then the
partition augmenting ρ has nr parts of size r.

• Υ: a map from A-compatible ornaments to A-good ornaments. It is obtained by
applying Ψ, then forgetting the augmentation to end up with just an ornament.
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• walk: the sequence W (v) defined in Lemma 2.4

• signed walk: the sequence A(v) defined in Corollary 2.5

• packet: Given a vertex v of an ornament, the packet of v is the set P (v) := {v′ |
A(v′) = A(v)}; if v is in a 1-repeating necklace ν, we can think of P (v) as the set
of all vertices in necklaces isomorphic to ν in the position corresponding to v.

• (a1, . . . , ak, S)-acceptable permutation or (A, S)-acceptable permutation: a permu-
tation with no small cycles from ascending blocks and only even-length small cycles
from descending blocks

• (a1, . . . , ak, S)-acceptable ornament or (A, S)-acceptable ornament: an (a1, . . . , ak)-
compatible ornament with no monochromatic small cycles from ascending blocks
and only even-length monochromatic small cycles from descending blocks

• (a1, . . . , ak, S)-satisfactory ornament or (A, S)-satisfactory ornament: an ornament
that is (a1, . . . , ak)-compatible, that has no 1-cycles, and such that all cycles are
aperiodic, except possibly for monochromatic 2-cycles
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