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Abstract

We study compositions c1, . . . , ck of the integer n in which adjacent parts may
be constrained to satisfy some periodic inequalities, for example

c2i > c2i+1 < c2i+2 (alternating compositions).

The types of inequalities considered are <, 6, >, > and 6=. We show how to
obtain generating functions from which various pieces of asymptotic information
can be computed. There are asymptotically Ar−n compositions of n. In a random
uniformly selected composition of n, the largest part and number of distinct parts are
almost surely asymptotic to log1/r(n). The length of the longest run is almost surely
asymptotic to C log1/r(n) where C is an easily determined rational number. Many
other counts are asymptotically normally distributed. We present some numerical
results for the various types of alternating compositions.

1 Introduction

Locally restricted compositions c1, . . . , ck are compositions in which the values allowed for
the part ci depend on the parts in a fixed width window ending at ci as well as on the value
of i modulo some modulus m. The earliest locally restricted compositions to be studied
were Carlitz compositions which require adjacent parts to differ. In [2] we generalized
Carlitz compositions to the case in which the difference between adjacent parts must lie
in some (nearly arbitrary) set of integers D, obtaining generating functions and a variety
of information. (For Carlitz compositions, D is the set of nonzero integers.) In this paper
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we study a different generalization of Carlitz compositions: Here we require adjacent parts
to satisfy an inequality, be unequal, or have no restriction; and the condition depends on
the position of the part modulo some m. Carlitz compositions have m = 1 and ci 6= ci+1.
Strictly alternating compositions have m = 2 and ci < ci+1 > ci+2.

In [3] we studied the general case of locally restricted compositions, obtaining various
results. For convenience, we state these results in Theorem 1 below for the classes of
compositions considered in this paper. Unfortunately [3] provides no method for com-
puting reasonably accurate numerical information. The main goal of this paper is to
discuss a method for obtaining generating functions from which some of the parameters
in Theorem 1 can be estimated, and to apply the method to alternating compositions.

A common framework for this paper and [2] would require ci+1 − ci ∈ Di, where the
subscript on Di is interpreted modulo m. Of course [3] contains such a generalization,
but it does not provide generating functions or numerical values. We have been unable
to find an approach that does.

In this paper, relations between adjacent parts take one of the six forms

ai−1 < ai, ai−1 6 ai, ai−1 > ai, ai−1 > ai, ai−1 6= ai and unrestricted.

Parts of size zero may or may not be allowed. These conditions are then put together
in a repeating pattern; for example, a4i 6= a4i+1 < a4i+2 > a4i+3 > a4i+4. There are two
requirements for the conditions:

1. Either
(a) “unrestricted” must appear or
(b) “not equal” (ci−1 6= ci) must appear or
(c) both increasing and decreasing inequalities must appear.

If this were not the case, we would be dealing with partitions, which behave differ-
ently from other restricted compositions.

2. If none of <, > and 6= appear, then parts of size zero are not allowed. Without this
restriction, n would have infinitely many compositions since a composition could
have arbitrarily many adjacent zero parts.

Recurrent local properties. A local property (of width w) is a property that holds for
the sequence of parts ci, ci+1, . . . , ci+w−1. It may include restrictions on i modulo m. For
example, “ci = 3” is a local property for any width w > 1 and “c2i +c2i+2 is odd” is a local
property for any width w > 3. On the other hand, “the next occurrence of a part equal
to ci is an odd distance from ci” is not a local property. A local property is recurrent if
it can occur almost arbitrarily often. More specifically, there is a j such that for each k
there is an n such that for 1 6 i 6 k, there is a composition of n in which the number of
occurrences of the property is between (i− 1)j and ij. The examples given earlier in this
paragraph are recurrent for the compositions we are considering.

Runs. A run is a sequence of parts that is repeated. Thus 2, 1, 3, 1, 3, 1, 4, 2, 2, 3 contains
the maximal runs 1, 3, 1, 3 and 3, 1, 3, 1 and 2, 2. The length of a run is the number of
parts it contains.
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Theorem 1 The following properties of compositions with periodic adjacent-part inequal-
ity constraints follow from the general case in [3]. After each property we give a parenthetic
reference to the relevant part of that paper. When randomness is mentioned, compositions
of n are sampled uniformly. All asymptotics are as n → ∞.

(a) The number of compositions of n is asymptotic to Ar−n with an exponentially small
relative error. (Theorem 3)

(b) Suppose the index in the constraints is shifted, for example, with alternating com-
positions we may replace a2i < a2i+1 > a2i+2 with a2i+1 < a2i+2 > a2i+3. And/or
suppose we do or do not require that the number of parts be a multiple of the period.
The value of A in (a) will change, but the value of r and the base of the exponential
in the relative error does not. (Example 4)

(c) The number of distinct parts and the largest part are each almost surely asymptotic
to log1/r(n). (Section 9)

(d) Suppose arbitrarily long runs can be based on repetitions of ~p. The number of parts
in the longest run based on ~p is almost surely asymptotic to (1/µ(~p)) log1/r(n), where
µ(~p) is the average size of parts in ~p. (Theorem 5)

(e) Let the random variable Xn be the number of occurrences of recurrent local property.
The distribution of Xn is asymptotically normal with mean and variance asymptotic
to µn and σ2n for some positive µ and σ. (Theorem 4)

One can easily deduce other, perhaps less interesting, properties from the general for-
mulation in [3]. For example, the proof of Theorem 4 in that paper is easily adapted
to show that the conclusion in (e) holds for random variables such as “the sum of parts
exceeding 3” and “the sum of parts c2i+1.”

Example 1 (Run lengths) When all the conditions are weak inequalities, it follows
from (e) that the longest run almost surely consists of repetitions of 1 and has length
asymptotic to log1/r(n). Suppose we are dealing with alternating compositions containing
at least one strong inequality. If 0 is allowed as a part, then the longest run is almost
surely an alternating sequence of 0 and 1 with a length asymptotic to 2 log1/r(n). If 0 is
not allowed as a part, then the longest run is almost surely an alternating sequence of 1
and 2 with a length asymptotic to (2/3) log1/r(n).

Estimating A and r from generating functions is practical for small m. For most
recurrent local conditions, we are unable to obtain generating functions and so estimating
µ and σ in (e) appears difficult in most cases. An exception is the number of parts,
which counts the recurrent local condition “ci is a part”. We can also keep track of the
last part and so obtain information about its distribution, which is not asymptotically
normal. All this is discussed in Sections 2 and 3. In Section 4 we specialize to alternating
compositions and present some numerical results showing the rapid convergence of the
asymptotic estimates. If you are interested only in results for alternating compositions,
skip to Section 4.
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2 Obtaining Generating Functions

We build up generating functions by adding one part at a time. As a result, we need to
keep track of both the sum of parts and the size of the last part. We can easily keep track
of the number of parts. If the period of the constraints is m, we obtain m generating
functions, fi(x, t, z) where i keeps track of the number of parts modulo m, x keeps track
of the sum of parts, t keeps track of the number of parts and z keeps track of the size of
last part. By appending a new last part to compositions counted by fi−1, we obtain an
equation for fi. Thus we obtain a system of m functional equations. With one exception
to be noted shortly, here they are:

if ai−1 6 ai, fi(x, t, z) =
fi−1(x, t, xz)

1 − xz
t;

if ai−1 < ai, fi(x, t, z) =
xzfi−1(x, t, xz)

1 − xz
t;

if ai−1 > ai, fi(x, t, z) =
(xz)δfi−1(x, t, 1) − xzfi−1(x, t, xz)

1 − xz
t;

if ai−1 > ai, fi(x, t, z) =
(xz)δfi−1(x, t, 1) − fi−1(x, t, xz)

1 − xz
t;

if ai−1 6= ai, fi(x, t, z) =
(xz)δfi−1(x, t, 1)

1 − xz
t − fi−1(x, t, xz)t;

if unrestricted, fi(x, t, z) =
(xz)δfi−1(x, t, 1)

1 − xz
t;

where
δ =

{

0 if parts of size zero are allowed,
1 otherwise.

The exception to the above equations is that the equation for f1(x, z) must have the

starting value (xz)δt
1−xz

added.

We derive the recursion for ai−1 > ai. The other derivations are similar. With [zk]
denoting the coefficient of zk,

fi(x, t, z) = t
∑

k

k−1
∑

p=δ

(xz)p [zk]fi−1(x, t, z)

= t
∑

k

(xz)δ − (xz)k

1 − xz
[zk]fi−1(x, t, z)

=
(xz)δfi−1(x, t, 1) − fi−1(x, t, xz)

1 − xz
t.

Example 2 (Using the recursions) To illustrate the usage of the recursions to obtain
generating functions, consider the period-three constraints

a3i < a3i+1 > a3i+2 6 a3i+3 with no zero parts allowed. (1)
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We have

a3i < a3i+1 f1(x, t, z) =
xzf3(x, t, xz)

1 − xz
t +

txz

1 − xz
(2)

a3i+1 > a3i+2 f2(x, t, z) =
xzf1(x, t, 1) − f1(x, t, xz)

1 − xz
t (3)

a3i+2 6 a3i+3 f3(x, t, z) =
f2(x, t, xz)

1 − xz
t. (4)

Substituting we obtain

f1(x, t, z) =
txz

1 − xz
+

t2xz

1 − xz

f2(x, t, x2z)

1 − x2z

=
txz

1 − xz
+

t3xz

1 − xz

x3zf1(x, t, 1) − f1(x, t, x3z)

(1 − x2z)(1 − x3z)
. (5)

Iterating this equation we obtain

f1(x, t, z) = A(x, t, z) + B(x, t, z)f1(x, t, 1)

where A(x, t, z) =
∞

∑

k=0

(−1)ktxz

1 − xz

k
∏

i=1

t3x3i+1z

(1 − x3i−1z)(1 − x3iz)(1 − x3i+1z)
(6)

and B(x, t, z) =

∞
∑

k=1

(−1)k−1x3kz

k
∏

i=1

t3x3i−2z

(1 − x3i−2z)(1 − x3i−1z)(1 − x3iz)
(7)

With z = 1 we have

f1(x, t, 1) =
A(x, t, 1)

1 − B(x, t, 1)
(8)

and so

f1(x, t, z) = A(x, t, z) + B(x, t, z)
A(x, t, 1)

1 − B(x, t, 1)
. (9)

Combining this with (3) and (4) we obtain

f2(x, t, z) =
−tA(x, t, xz)

1 − xz
−

B(x, t, xz)t − txz

1 − xz

A(x, t, 1)

1 − B(x, t, 1)

f3(x, t, z) =
−t2A(x, t, x2z)

(1 − xz)(1 − x2z)
−

B(x, t, x2z)t2 − t2x2z

(1 − xz)(1 − x2z)

A(x, t, 1)

1 − B(x, t, 1)

If we don’t care where in the period the compositions start or end, we add txz
1−xz

to (3)
and (4) as well as (2) to allow arbitrary starts and we compute

f1(x, t, z) + f2(x, t, z) + f3(x, t, z) −
2txz

1 − xz
− t2

∑

0<i<j

xi(xz)j

to allow arbitrary ends. (The first subtraction arises because single part compositions are
counted thrice and the second arises because two part compositions with c1 = i < j = c2

are counted twice.)
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Example 3 (Reverse of previous example) In the previous example, only one
fi(x, t, 1) appeared, namely f1(x, t, 1) in (3). If there is more than one descent, there
will be more than one such fi. To illustrate, we reverse left and right in the previous
example:

a3i > a3i+1 < a3i+2 > a3i+3 with no zero parts allowed.

For simplicity, we do not keep track of the number of parts. Our recursions are

a3i > a3i+1 f1(x, z) =
xzf3(x, 1) − xzf3(x, xz)

1 − xz

a3i+1 < a3i+2 f2(x, z) =
xzf1(x, xz)

1 − xz

a3i+2 > a3i+3 f3(x, z) =
xzf2(x, 1) − f2(x, xz)

1 − xz
.

As in the previous example, terms such as xz
1−xz

should be added as needed. Iterating as
in the previous example, we obtain an equation of the form

f1(x, z) = A(x, z)f1(x, x) + B(x, z)f1(x, x2) + C(x, z), (10)

where A, B and C are known. Setting z = x and z = x2 gives two equations in the
unknowns f1(x, x) and f1(x, x2), which can be solved and substituted back into (10) to
obtain an equation of the form

f1(x, z) =
D(x, z)

(A(x, x) − 1)B(x, x) − (B(x, x2) − 1)A(x, x2)
+ R(x, z) (11)

in place of (9).

3 Obtaining Numerical Values

Ultimately, one obtains a generating function of the form

f(x, t, z) =
N(x, t, z)

D(x, t)
+ R(x, t, z). (12)

where D(x, 1) has a simple zero at r > 0 and no other zeroes in [0, r), and N(x, 1, 1)
and R(x, 1, 1) have radii of convergence larger than r. The property of R follows by
computation in particular cases. The rest is due to the fact, proved in [3], that f(x, 1, 1)
has a simple pole at r and no other singularities on its circle of convergence.

Since D(x, 1) can be computed to any desired accuracy and the zero is simple, one
can estimate r to any desired accuracy.

The value of A in [xn] f(x, 1, 1) ∼ Ar−n is more involved. By standard results, it is
−N(r, 1, 1)/rD′(r, 1).
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The distribution of the last part has probability density function asymptotic to

lim
n→∞

[xn] N(x, 1, z)

[xn] N(x, 1, 1)
= lim

n→∞

[xn] N(x, 1, z)

Ar−n
.

Thus asymptotic moments and probabilities for given last part size are obtainable. How-
ever, the full asymptotic distribution may be difficult to obtain.

The number of parts in a random composition is asymptotically normal with mean
and variance asymptotic to µn and σ2n, respectively. These require the computation of
first and second partials and estimating the coefficient of xn in the resulting series. See [1]
for further information. In particular,

µ =
∂D(r, 1, 1)/∂t

r ∂D(r, 1, 1)/∂x
.

4 Alternating Compositions

In this section we present results for alternating compositions; that is, those compo-
sitions such as 1, 3, 2, 6, 4 in which the parts alternating increase and decrease. There are
three variables in the type of compositions: smallest allowed part (zero or one), strict or
weak increase, and strict or weak decrease.

We use notation such as (1< >) to describe such compositions. Thus (1< >) means
that zero parts are not allowed, increases must be strict, and decreases may be weak.
Of the eight possibilities, (06>) is forbidden because the use of zeros leads to infinitely
many compositions of n. By reversing the order of the parts (δ < >)-compositions are
seen to be equivalent to (δ 6>) compositions. These five cases are reduced even further
by noting that adding 1 to each part gives a bijection from (0 ρ σ)-compositions to (1 ρ σ)-
compositions. Finally, adding 1 to down parts converts a (0< >)-composition to a (16>)-
composition. Thus there are only two cases to consider provided our generating function
has variables to keep track of the number of parts and number of down parts:

(0< >) which gives (1< >) and (16>);

(0< >) which gives (1< >), (06>) and (16>).

In what follows, we do not require that a composition start at the beginning of a period
nor end at the end of a period. Table 1 gives the number of alternating compositions for
n 6 10 and Table 2 shows that the asymptotic approximation Ar−n is quite accurate.

We now derive the generating function for (0 < >)-compositions. The approach for
(0< >)-compositions is nearly identical.

Let the coefficient of satbxnzd in our generating function be the number of compositions
such that

• there are a down parts (s “counts” number of down parts),
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• there are b parts (t “counts” number of parts),

• the parts sum to n (x “counts” sum of parts),

• the last part is d (z “counts” last part).

Since the period is two, we introduce two functions f< and f>, where the subscript
indicates the type of inequality involving the newly added part—a slight change from
Section 2. Thus f< deals with the case ck−1 < ck. Since we are allowing both the c1 < c2

and c1 > c2 compositions, f ’s have initial conditions. The approach in Section 2 leads to

f<(s, t, x, z) =
txz

1 − xz
+ f>(s, t, x, xz)

txz

1 − xz

f>(s, t, x, z) =
st

1 − xz
+ f<(s, t, x, 1)

st

1 − xz
− f<(s, t, x, xz)

st

1 − xz
.

1 2 3 4 5 6 7 8 9 10

(0< >) 4 8 20 41 89 192 408 869 1856 3953

(1< >) 1 1 3 4 7 12 19 29 48 75

(16>) 1 2 4 8 16 28 52 91 161 280

(06>) 4 10 22 51 115 256 571 1273 2836 6315

(16>) 1 2 3 5 8 13 22 36 57 93

Table 1: The number of alternating compositions for small n.

(0< >) (1< >) (16>) (06>) (16>)

A 2.04984811 0.82222360 1.14429868 2.10981051 0.84100927

r 0.469323708 0.636281750 0.576148769 0.449139726 0.624235520

n = 5 exact 89 7 16 115 8

n = 5 Ar−n 90 8 18 115 9

n = 10 exact 3,953 75 280 6,315 93

n = 10 Ar−n 3,954 76 284 6,316 94

n = 20 exact 7,625,560 6,949 70,438 18,906,628 10,419

n = 20 Ar−n 7,625,561 6,950 70,444 18,906,627 10,419

Table 2: A comparison of exact and Ar−n estimates for compositions of n.
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These lead to

f<(s, t, x, z) = A(s, t, x, z) + B(s, t, x, z)
A(s, t, x, 1)

1 − B(s, t, x, 1)

f>(s, t, x, z) =
st

1 − xz

(

1 − A(s, t, x, xz)
)

+
st

1 − xz

(

1 − B(s, t, x, xz)
) A(s, t, x, 1)

1 − B(s, t, x, 1)
.

where

A(s, t, x, z) =
∞

∑

k=1

(−1)k−1

(

1 +
st

1 − x2kz

)

×

(k−1
∏

i=1

st

1 − x2iz

)( k
∏

i=1

tx2i−1z

1 − x2i−1z

)

B(s, t, x, z) =

∞
∑

k=1

(−1)k−1

k
∏

i=1

(

st

1 − x2iz

tx2i−1z

1 − x2i−1z

)

The generating function for the number of (0< >)-compositions by number of parts and
sum of parts is

g(t, x) = f>(1, t, x, 1) + f<(1, t, x, 1) −
tx

1 − x
,

where the subtraction occurs because a single nonzero part is counted by both f> and f<.
The generating function for the number of (1< >)-compositions is g(tx, x).
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