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Abstract

Let Ed(n) be the maximum number of pairs that can be selected from a set of
n points in R

d such that the midpoints of these pairs are convexly independent.
We show that E2(n) > Ω(n

√
log n), which answers a question of Eisenbrand, Pach,

Rothvoß, and Sopher (2008) on large convexly independent subsets in Minkowski
sums of finite planar sets, as well as a question of Halman, Onn, and Rothblum
(2007). We also show that ⌊1

3n2⌋ 6 E3(n) 6
3
8n2 + O(n3/2).

Let Wd(n) be the maximum number of pairwise nonparallel unit distance pairs in
a set of n points in some d-dimensional strictly convex normed space. We show that

W2(n) = Θ(E2(n)) and for d > 3 that Wd(n) ∼ 1
2

(

1 − 1
a(d)

)

n2, where a(d) ∈ N

is related to strictly antipodal families. In fact we show that the same asymptotics
hold without the requirement that the unit distance pairs form pairwise nonparallel
segments, and also if diameter pairs are considered instead of unit distance pairs.

1 Three related quantities

A geometric graph is a graph with the set of vertices in Rd and with each edge represented
as a straight line segment between its incident vertices. Halman et al. [8] studied geometric
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graphs for which the set of midpoints of the edges are convexly independent, i.e., they form
the vertex set of their convex hull. For any finite set P ⊂ Rd let E(P ) be the maximum
number of pairs of points from P such that the midpoints of these pairs are convexly
independent, and define Ed(n) = maxP⊂Rd,|P |=n E(P ). Halman et al. [8] asked whether
E2(n) is linear or quadratic.

Motivated by the above question, Eisenbrand et al. [5] studied a more general quantity:
the maximum size Md(m, n) of a convexly independent subset of P + Q, where P is a set
of m points and Q a set of n points in Rd, with the maximum again taken over all such
P and Q. (The sets P and Q are not required to be disjoint, but may clearly without loss
of generality be assumed to be.) They showed that M2(m, n) = O(m2/3n2/3 + m + n),
from which follows E2(n) 6 M2(n, n) = O(n4/3), since the midpoints of pairs of points
in P are contained in 1

2
(P + P ). In fact, it holds more generally that Ed(n) 6 Md(n, n).

They mentioned that they do not know any superlinear lower bound for M2(m, n).
We now introduce Wd(n) as the maximum number of pairwise nonparallel segments

of unit length among a set of n points in some strictly convex d-dimensional normed
space. Here the maximum is taken over all sets of n points in Rd and all strictly convex
norms on Rd. Then it is immediate that 2Wd(n) 6 Md(n, n), since if P has W pairwise
nonparallel unit distance pairs in some strictly convex norm with unit sphere S, then
P + (−P ) intersects S in at least 2W points.

2 Asymptotic equivalence

We now observe that the three quantities Ed(n), Md(n, n) and Wd(n) are in fact asymp-
totically equivalent. Here we consider two functions f, g : N → N to be asymptotically

equivalent if there exist c1, c2 > 0 such that c1f(n) 6 g(n) 6 c2f(n) for all n > 2. We
have already mentioned the bounds Ed(n) 6 Md(n, n) and 2Wd(n) 6 Md(n, n).

Claim 1.

Md(n, n) 6 Ed(2n).

Proof. Let P and Q each be a set of n points such that P +Q contains Md(n, n) convexly
independent points. Without loss of generality, P and Q are disjoint. Then P ∪Q is a set
of 2n points such that the set of midpoints of pairs between P and Q equals 1

2
(P +Q).

Claim 2.

Md(n, n) 6 2Wd(2n).

Proof. Again let P and Q be disjoint sets of n points each such that P + Q contains a
convexly independent subset S of size at least Md(n, n). There exists a strictly convex
hypersurface C symmetric with respect to the origin such that some translate of it contains
at least Md(n, n)/2 points from S. Then P∪Q has at least Md(n, n)/2 pairwise nonparallel
unit distances in the norm which has C as unit sphere.

Claim 3.

Md(2n, 2n) 6 4Md(n, n).
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Proof. Let P and Q be two sets of 2n points each such that P + Q contains a set C
consisting of Md(2n, 2n) convexly independent points. Let P = P1 ∪P2 and Q = Q1 ∪Q2

be arbitrary partitions such that |P1| = |P2| = |Q1| = |Q2| = n. Label each p + q ∈ C
by (i, j) if p ∈ Pi and q ∈ Qj . Each point in C gets one of the four labels (1, 1),
(1, 2), (2, 1), (2, 2). By the pigeon-hole principle, at least Md(2n, 2n)/4 points in C have
the same label (i, j), which means that they are contained in Pi + Qj . It follows that
Md(2n, 2n)/4 6 Md(n, n).

The above claims imply the following.

Proposition 4. For any fixed dimension d, Md(n, n), Ed(n), and Wd(n) are asymptoti-

cally equivalent.

3 The plane

The fact that M2(n, n) = O(n4/3) [5] gives Proposition 4 nontrivial content in the case
d = 2. To show that the quantities E2(n), M2(n, n), and W2(n) grow superlinearly, it
is sufficient to consider the following smaller quantities. Let E◦(n) denote the largest
number of pairs of a set of n points in the Euclidean plane such that the midpoints of
these pairs are concyclic (i.e., they lie on the same Euclidean circle). Let W◦(n) denote
the largest number of pairwise nonparallel unit distance pairs in a set of n points in the
Euclidean plane. Then clearly E2(n) > E◦(n) and W2(n) > W◦(n). As observed in the
book of Braß, Moser, and Pach [2], a planar version of an argument of Erdős, Hickerson,
and Pach [6] already gives a superlinear lower bound W◦(n) = Ω(n log∗ n). Here log∗ n
denotes the iterated logarithm. In an earlier paper [13] we showed W◦(n) = Ω(n

√
log n).

This gives the following.

Theorem 5. E2(n), M2(n, n), and W2(n) are all in Ω(n
√

log n).

Recently it was shown by Buchin, Fulek, Kiyomi, Okamoto, Tanigawa, and Cs. Tóth [3]
and also by Ondřej B́ılka (personal communication) that M2(m, n) = Θ(m2/3n2/3+m+n).
This implies that E2(n), M2(n, n), and W2(n) are all in Θ(n4/3).

4 Higher dimensions

When d > 3, Proposition 4 has empty content, since then the functions Ed(n), Md(n, n),
and Wd(n) are all in Θ(n2), since, as shown by Halman et al. [8], Md(m, n) = mn for all
d > 3. They also showed that Ed(n) =

(

n
2

)

for d > 4, which leaves only the 3-dimensional
case of this function.

4.1 Convexly independent subsets of Minkowski sums in 3-space

Theorem 6. ⌊1
3
n2⌋ 6 E3(n) 6

3
8
n2 + O(n3/2).
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Proof. For the lower bound it is sufficient to construct, for each natural number k, three
collections B1, B2, B3 of k points each in R3 such that 1

2
(B1+B2)∪ 1

2
(B2+B3)∪ 1

2
(B3+B1)

is convexly independent. In fact we will construct three infinite collections with this
property.

Consider a cube with side length 2 and center o. Let I1, I2, I3 be three of its edges
with a common vertex. If, for each i = 1, 2, 3, we let Ai be a small subinterval of Ii

such that Ai and Ii have the same midpoint, then for each triple i, j, k with {i, j, k} =
{1, 2, 3}, 1

2
(Ai + Aj) is a small rectangle in the plane Πk through Ii and Ij . Then the set

⋃

i<j
1
2
(Ai+Aj) is in convex position, in the sense that each of its points is on the boundary

of its convex hull. It is not convexly independent, however. Note that 1
2
(Ai + Ak) and

1
2
(Aj +Ak) are both a distance of almost 1/2 from Πk and are in the same open half space

as o.
Now we replace each Ai by a sufficiently small strictly convex curve Bi, arbitrarily

close to Ai, in the plane Σi through o and Ii, curved in such a way that Bi ∪ {o} is in
strictly convex position. For example, we may take Bi to be a small arc of a circle with
center o and radius

√
2, around the midpoint of Ii.

At each point p of Bi there is a line ℓp supporting Bi at p in the plane Σi. For each
plane Π through ℓp except Σi, Bi \ {p} and o lie in the same open half space bounded by
Π. Note that ℓp is almost parallel to Ii, because Bi is close to Ai.

Now let {i, j, k} = {1, 2, 3} and consider points p ∈ Bi, q ∈ Bj, and let ℓp and ℓq be
as above. Let Σ be the plane through o containing lines parallel to ℓp and ℓq. Then by
the previous paragraph, p + Σ is a plane supporting Bi at p such that Bi \ {p} lies in the
same open half space as o, with a similar statement for q +Σ. It follows that 1

2
(p+ q)+Σ

is a plane supporting 1
2
(Bi + Bj) at 1

2
(p + q) such that 1

2
(Bi + Bj) \ {1

2
(p + q)} lies in

the same open half space as o. Since ℓp is almost parallel to Ii and ℓq almost parallel to
Ij , Σ is almost parallel to Πk (the plane through Ii ∪ Ij). Thus 1

2
(p + q) + Σ is a small

perturbation of Πk. Since 1
2
(Bi +Bk) and 1

2
(Bj +Bk) are at a distance of almost 1/2 from

Πk, they will also be in the same open half space determined by 1
2
(p + q) + Σ as o. It

follows that
⋃

i<j
1
2
(Bi +Bj)\{1

2
(p+ q)} is in an open half space bounded by 1

2
(p+ q)+Σ.

It follows that
⋃

i<j
1
2
(Bi + Bj) is in strictly convex position. We may now choose k

points from each Bi to find a set of 3k points in R3 with the midpoints of 3k2 pairs of
points in strictly convex position.

For the upper bound it follows from refinements of the Erdős-Stone theorem (see e.g.
[7]) that it is sufficient to show that any geometric graph such that the midpoints of the
edges are convexly independent, does not contain K2,2,2,2,2, the complete 5-partite graph
with two vertices in each class.

Thus assume for the sake of contradiction that there exist five sets Ci, i = 1, 2, 3, 4, 5, of
two points each in R3, such that

⋃

i<j
1
2
(Ci + Cj) is convexly independent. In particular,

if we choose a ci ∈ Ci for each i, we obtain that the 10 midpoints of {c1, . . . , c5} are
convexly independent. As proved by Halman et al. [8], the set {c1, . . . , c5} cannot then
itself be convexly independent. On the other hand, the union of any 4 of the Cis must
be convexly independent. Indeed, for any fixed c1 ∈ C1, since 1

2
(c1 +

⋃5
j=2 Cj) must

be convexly independent, the union
⋃5

j=2 Cj is also convexly independent. Now choose
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4 points from different Cis such that their convex hull has largest volume among all
such choices. Without loss of generality, we may assume that these points are ci ∈ Ci,
i = 1, 2, 3, 4. For any c5 ∈ C5, as mentioned above, the set {c1, . . . , c5} is not convexly
independent, i.e., one of the points is in the convex hull of the others. If e.g. c1 is in the
convex hull of c2c3c4c5, then c2c3c4c5 has larger volume, a contradiction. Similarly, none
of c2, c3, c4 can be in the convex hull of the other four. Thus c5 must be in the convex hull
of c1c2c3c4. Similarly, the other point c′5 ∈ C5 is also in the tetrahedron c1c2c3c4. The ray
from c5 through c′5 intersects one of the faces of this tetrahedron, say the triangle c1c2c3.
Then {c1, c2, c3, c5, c

′
5} is not convexly independent. It follows that C1 ∪ C2 ∪ C3 ∪ C5 is

not convexly independent, which contradicts what we have already shown.

Note that by the Erdős-Stone theorem, one of the two bounds in Theorem 6 must be
asymptotically correct. Indeed, either there is some upper bound to c ∈ N for which the
complete 4-partite graph Kc,c,c,c is realizable, from which the Erdős-Stone theorem gives
E(n) 6 n2/3 + o(n2), or there is no such upper bound, which trivially gives the lower
bound 3n2/8. We conjecture that Kc,c,c,c is not realizable for some c ∈ N. It would be
sufficient to prove the following.

Conjecture 7. For some ε > 0 the following holds. Let Ai = {pi, qi}, i = 1, 2, 3, 4, be

four sets of two points each in R3, such that ‖pi − qi‖2 < ε. Then the set of midpoints

between different Ai,
⋃

i,j=1,2,3,4,
i6=j

1

2
(Ai + Aj),

is not convexly independent.

4.2 Pairwise nonparallel unit distance pairs in strictly convex

norms

The function Wd(n) is related to large strictly antipodal families, as studied by Martini
and Makai [9, 10] and others [4]. We introduce the following related quantities.

Let Ud(n) be the largest number of unit distance pairs that can occur in a set of n
points in a strictly convex d-dimensional normed space. Let Dd(n) be the largest number
of diameter pairs that can occur in a set of n points in a strictly convex d-dimensional
normed space, where a diameter pair is a pair of points from the set whose distance equals
the diameter of the set (in the norm). As in the definition of Wd(n), for both Ud(n) and
Dd(n) we take the maximum over all sets of n points in Rd and all strictly convex norms on
Rd. Then clearly Wd(n) 6 Ud(n) and Dd(n) 6 Ud(n). Our final result is the observation
that these three functions are in fact asymptotically equal for each d > 3. To this end we
use the notion of a strictly antipodal family of sets. Let {Ai : i ∈ I} be a family of sets
of points in Rd. We say that this family is strictly antipodal if for any i, j ∈ I, i 6= j, and
any p ∈ Ai, q ∈ Aj, there is a linear functional ϕ : Rd → R such that ϕ(p) < ϕ(r) < ϕ(q)
for any r ∈

⋃

i∈I Ai \ {p, q}. Let a(d) denote the largest k such that for each m there
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exists a strictly antipodal family of k sets in Rd, each of size at least m. It is known that
cd < a(d) < 2d for some c > 1, and 3 6 a(3) 6 5 [9].

Theorem 8.

lim
n→∞

Wd(n)

n2
= lim

n→∞

Ud(n)

n2
= lim

n→∞

Dd(n)

n2
=

1

2

(

1 − 1

a(d)

)

.

Proof. Suppose first {Ai : i = 1, . . . , a(d)} is a strictly antipodal family of sets in Rd, each
of size k, where k ∈ N is arbitrary. We may perturb these points such that the family
remains strictly antipodal, so that no two segments between pairs of points from

⋃

i Ai

are parallel. It follows from the definition of strict antipodality that
⋃

i,j,i6=j(Ai − Aj)
is a centrally symmetric, convexly independent set of points. There exists a centrally
symmetric, strictly convex surface S through these points. The set S defines a strictly
convex norm on Rd such that the distance between any two points in different Ai is a
unit distance. Note that all distances between points in

⋃

i Ai are at most 1. This gives
two lower bounds

Wd(n), Dd(n) >
1

2

(

1 − 1

a(d)

)

(1 + o(1))n2.

We have already mentioned the trivial inequalities Wd(n), Dd(n) 6 Ud(n). It remains
to show that

Ud(n) 6
1

2

(

1 − 1

a(d)

)

(1 + o(1))n2.

Suppose this is false. Then, by the Erdős-Stone theorem, for arbitrarily large m ∈ N

there exists a family {Ai : i = 1, . . . , a(d)+1} with each Ai a set of m points in Rd, and a
strictly convex norm on Rd, such that the distance between any two points from different
Ai is 1 in this norm. By the triangle inequality, the diameter of each Ai is at most 2.
By Lemma 9 below, each Ai has a subset A′

i of at least cdm points and of diameter less
than 1, for some cd > 0 depending only on d. Thus the distance between two points in
different A′

i is the diameter of the set
⋃

i A
′
i. It follows, again from the definition of strict

antipodality, that {A′
i : i = 1, . . . , a(d) + 1} is a strictly antipodal family of more than

a(d) sets. Since the size of each A′
i is arbitrarily large, we obtain a contradiction.

Lemma 9. Let A be a set of m points of diameter 1 in a d-dimensional normed space.

Then for any λ ∈ (0, 1), A has a subset A′ of diameter at most λ and with

|A′| >
|A|

(1 + λ)d+O(log d)
.

Proof. According to a result of Rogers and Zong [12], if N is the smallest number of
translates of a convex body H that cover a convex body K, then

N 6
vol(K − H)

vol(H)
(d log d + d log log d + 5d).

Applying this to K = conv(A) and H = −λK, we obtain that there are at most (1 +
λ)dO(d log d) translates of −λ conv(A) (each of diameter λ) that cover conv(A). By the

pigeon-hole principle, one of the translates contains at least |A|
(1+λ)dO(d log d)

points of A.
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