
An interesting new Mahonian permutation statistic

Mark C. Wilson∗

Department of Computer Science, University of Auckland
Private Bag 92019 Auckland, New Zealand

mcw@cs.auckland.ac.nz

Submitted: Jul 21, 2010; Accepted: Oct 21, 2010; Published: Oct 29, 2010

Mathematics Subject Classification: Primary 05A05. Secondary 68W20, 68W40, 68Q25.

Abstract

The standard algorithm for generating a random permutation gives rise to an
obvious permutation statistic DIS that is readily seen to be Mahonian. We give
evidence showing that it is not equal to any previously published statistic. Nor
does its joint distribution with the standard Eulerian statistics des and exc appear
to coincide with any known Euler-Mahonian pair.

A general construction of Skandera yields an Eulerian partner eul such that
(eul,DIS) is equidistributed with (des,MAJ). However eul itself appears not to be
a known Eulerian statistic.

Several ideas for further research on this topic are listed.

1 The statistic

1.1 Random permutations

The standard algorithm [Knu81, 3.4.2, Algorithm P] for uniformly generating a random
permutation of [n] := {1, . . . , n} is as follows. Start with the identity permutation ι =
1 . . . n in the symmetric group Sn. There are n steps labelled n, n− 1, . . . , 1 (the last step
can be omitted, but it makes our notation easier to include it here). At step i a random
position ji is chosen uniformly from [i] and the current element in position ji is swapped
with the element at position i.

Example 1. The permutation 25413 ∈ S5 is formed by choosing j5 = 3, j4 = 1, j3 =
1, j2 = 1, j1 = 1. Its inverse 41532 is formed by choosing j5 = 2, j4 = 3, j3 = 2, j2 =
1, j1 = 1.

∗Thanks to Frank Ruskey, Mark Skandera, Einar Steingŕımsson and Kyle Petersen for useful discus-
sions.
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In terms of multiplication in Sn, π is a product of “transpositions”
∏

i6n(iji). Any
of these “transpositions” may be the identity permutation. This representation as a
“triangular product” gives a bijection between Sn and the set of sequences (j1, . . . , jn)
that satisfy 1 6 ji 6 i for all i.

Knuth attributes this algorithm to R. A. Fisher and F. Yates [FY38], and a com-
puter implementation was given by Durstenfeld [Dur64]. Recently [Wil09] the present
author and others have studied the distribution of various quantities associated with the
algorithm.

1.2 The statistic

For each n > 1, there is a map Sn → Sn+1 that maps π to the permutation π↑ that fixes
n + 1 and agrees on 1, . . . , n with π. We let S be the direct limit of sets induced by these
maps. If we think of each ↑ as an inclusion map, as is common, then S is simply the union
of all Sn. For our purposes a permutation statistic is simply a function T : S → N.

Of course it is always possible to construct a statistic T by for each n making it equal
to a given statistic Tn on Sn. However unless the values of T cohere for different values of
n this is not useful. We define a statistic on S to be coherent if it satisfies the following
property. To be coherent, the identity T (π) = T (π↑) must hold for all n and π ∈ Sn.

We now define a (coherent) permutation statistic, which we denote by DIS, as follows.

Definition 2. At step i of the algorithm described above, one symbol moves rightward
a distance di = i − ji (possibly zero), and one symbol moves leftward the same distance.
We define DIS(π) =

∑

i di, the total distance moved rightward by all elements.

There is an alternative interpretation of DIS. The sequence of moves that formed π
starting from the identity will take π−1 to the identity, and the moves are the same as
selection sort. The algorithm then sorts π−1 via selection sort. We can think of DIS as a
measure of the work done by selection sort when comparisons have zero cost. This model
might be useful in analysing, for example, physical rearrangement of very heavy distinct
objects.

In view of the last paragraph it makes sense also to consider the statistic IDIS given
by IDIS(π) = DIS(π−1).

Example 3. For our running example 25413, the value of DIS is (1 + 2 + 3 + 4 + 5) −
(1 + 1 + 1 + 1 + 3) = 8, while for IDIS the value is 6. In terms of π−1 = 41532, the swaps

used to create π yield successively 41235, 31245, 21345, 12345.

Given a permutation for which we do not already know the ji, we can find these easily.

Example 4. Given π = 25413 as above, we can read off j5 = 3 from π. Thus multiplying π
on the right by the transposition (35) leads to 23415. We have now reduced to π = 2341.
We now read off j4 = 1 and reduce to π = 231. Continuing in this way we obtain

j3 = 1, j2 = 1, j4 = 1.
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At first sight it may appear that we must search to find the position of symbol i at step
i, leading to a quadratic time algorithm for the procedure of the last example. However
this is not the case, provided we compute DIS and IDIS simultaneously, and the entire
computation can be done in linear time (note that computing π−1 from π is a linear time
operation). Note that, for example, it is still unknown whether the number of inversions
INV of a permutation can be computed in linear time.

Example 5. In the running example π = 25413, π−1 = 41352, we read off j5(π) =
3, j5(π

−1) = 2. To multiply π on the right by the transposition (35) we need not scan all

of π, because we know the location of the symbol 5, namely j5(π
−1). Thus the multiplication

takes constant time. We can either multiply π−1 on the left by (35) or on the right by

(25). Each leads to the same answer, namely 41235, and this is the inverse of the updated

π. Continuing in this way we obtain the result of the last example.

It will be helpful to know the values of DIS on some special permutations.

Example 6. We define

π0 = n(n − 1) . . . 1

π1 = 2 . . . n1

π−1

1 = n12 . . . (n − 1)

Note that π0 is created by the algorithm by choosing ji = n+1−i provided n+1−i < i,
whereupon all later swaps are trivial. Also π1 is created by choosing ji = 1 for all i, while

π−1

1 is formed by choosing ji = i − 1 for i > 2. Thus

DIS(ι) = 0

DIS(π0) = ⌊n2/4⌋ =

{

n2

4
if n is even;

n2−1

4
if n is odd.

DIS(π1) = n(n − 1)/2

DIS(π−1

1 ) = n − 1

The maximum value of DIS on Sn is n(n−1)/2, corresponding uniquely to the n-cycle
π1. The minimum value of DIS on Sn is 0, corresponding uniquely to the identity ι.

As a random variable, the restriction DISn of DIS to Sn is the sum of DISn−1 and a
random variable Un that is uniform on [0, 1, . . . , n − 1]. Thus, iterating this recurrence,

we see that DISn has probability generating function Fn(q) :=
∏n

i=1

1−qi

1−q
. This is the

definition of a Mahonian statistic on Sn. Note that n(n − 1)/2 − DIS =
∑

i
ji is also

Mahonian by the symmetry of the Mahonian distribution.
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2 DIS is not trivially equal to a known statistic

Tabulating numerical values makes it clear that DIS is not equal to any of the most well-
known Mahonian statistics. Table 1 gives the values of DIS and several other Mahonian
statistics when n = 4 (it is amusing to note that they all coincide on the element 2134 -
the obvious conjecture that they always coincide on 2134 . . . n is in fact correct). These
statistics are INV, MAJ, DEN, MAD, MAK, HAG. We recall the unified definition of these
statistics given in [CSZ97]. We first require some partial statistics.

Table 1: Values of some permutation statistics for n = 4.

π DIS INV MAJ DEN MAD MAK HAG
1234 0 0 0 0 0 0 0
1243 1 1 3 3 1 3 3
1324 1 1 2 2 1 2 2
1342 3 2 3 5 1 4 5
1423 2 2 2 2 2 2 3
1432 2 3 5 3 2 5 2
2134 1 1 1 1 1 1 1
2143 2 2 4 4 2 4 4
2314 3 2 2 3 1 3 3
2341 6 3 3 6 1 5 6
2413 4 3 2 3 2 3 4
2431 4 4 5 4 2 6 3
3124 2 2 1 1 2 1 2
3142 4 3 4 4 3 5 5
3214 2 3 3 2 2 3 1
3241 5 4 4 5 2 6 4
3412 4 4 2 3 2 3 4
3421 5 5 5 4 2 6 3
4123 3 3 1 1 3 1 3
4132 3 4 4 2 4 4 2
4213 3 4 3 2 3 3 2
4231 3 5 4 3 3 5 1
4312 5 5 3 4 3 3 5
4321 4 6 6 5 3 6 4

Definition 7. A descent is an occurrence of the event π(i) > π(i + 1). The index i is the
descent bottom and π(i) is the corresponding descent top.

Each π can be uniquely decomposed into descent blocks (maximal descending sub-
words). Denote the first and last letter of each block of length at least 2 by c(B), o(B).
The right embracing number of π(i) is the number of descent blocks strictly to the right
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of the block containing π(i) and for which c(B) > π(i) > o(B). The sum of all right
embracing numbers is denoted by Res(π).

Example 8. For π1 the descent blocks are all of length 1 except for the last one, n1. The

right embracing number of each letter 2, . . . , n − 1 is 1 and the right embracing number

of n and of 1 are each 0. For π−1

1 there is again a single nontrivial descent block, namely

n1, and all right embracing numbers are 0. For π0 there is a single descent block of length

n and all right embracing numbers are 0.

Definition 9. An excedance is an occurrence of the event π(i) > i. The index i is
the excedance bottom and π(i) is the corresponding excedance top. The sum of all de-
scent/excedance tops/bottoms of π we denote by Dtop(π), Etop(π), Dbot(π), Ebotπ. The
differences Ddif(π) and Edif(π) are given by Ddif = Dtop−Dbot, Edif = Etop−Ebot.

There is a unique decomposition π into πE and πN , where πE is the subsequence
formed by excedances and πN the subsequence formed by nonexcedances. For our running
example π = 25413, we have πE = 25 and πN = 413. For the inverse 41532 we have
respectively 45 and 132. We define Ine(π) = INV(πE) + INV(πN ).

For each excedance bottom i we define L(i) to be the number of indices k such that
k < i and ak 6 i; let L be the sum over all such i.

Example 10. Note that (π1)E = 23 . . . n and (π1)N = 1. Similarly (π−1

1 )E = n and

(π−1

1 )N = 12 . . . (n − 1). Also (π0)E = n(n − 1) . . . t + 1 and (π0)N = t . . . 1, where

t = ⌊n/2⌋.

The values of the partial statistics defined above are tabulated in Table 2.

Proposition 11 ([CSZ97]). We have

MAK = Dbot+ Res

MAD = Ddif + Res

DEN = Ebot + Ine

INV = Edif + Ine

HAG = Edif + INV(πE) − INV(πN) + L

In addition MAJ is the sum of indices corresponding to descent tops.

2.1 Trivial bijections

To show that statistics T and T ′ are different, it suffices to find some n and some π ∈ Sn

for which T (π) 6= T ′(π). However it may be the case that T and T ′ agree on Sn for some
larger values of n. If both T and T ′ are coherent, this possibility cannot occur.

Note that DIS and IDIS, along with all statistics from previous literature with which
we compare them here, are coherent. Thus simply computing values for small n, as in the
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Table 2: Values of partial statistics on special permutations (t = ⌊n/2⌋)
perm Ebot Edif Dbot Ddif Res Ine L
π0 t(t + 1)/2 ⌊n2/4⌋ n(n − 1)/2 n − 1 0 ⌊(n − 1)2/4⌋ 0
π1 n(n − 1)/2 n − 1 1 n − 1 n − 2 0 (n − 1)(n − 2)/2
π−1

1 1 n − 1 1 n − 1 0 0 0

previous section, is usually enough to distinguish the statistics. However we can often give
a general construction of permutations for which a given pair of statistics differs greatly.

Although DIS does not equal any of the well-known statistics of the previous section,
it is possible a priori that DIS has the form S ◦ g where S is a known Mahonian statistic
and g is a filtered bijection of S (a bijection of S that bijectively takes Sn to Sn for each
n).

In this section we consider the so-called “trivial” involutions of Sn (there is a nontrivial
bijection Φ of Sn introduced in [CSZ97]; we give more details in Section 2.2.) These invo-
lutions are inversion (group-theoretic inverse), reversal (reverse the order of the letters)
and complementation (subtract each letter from n + 1). Then in the obvious notation R
and C commute and IR = CI, IC = RI. Thus I, R, C generate a group G isomorphic to
the dihedral group of order 8.

For example we have

(25413)I = 41532

(25413)R = 31452

(25413)C = 41253

(25413)IC = 25134

(25413)IR = 23514

(25413)RC = 35214

(25413)IRC = 41532

We shall show that DIS is not trivially equivalent to any well-known statistic. In the
absence of a standardized database of permutation statistics, we define “well-known” to
mean “mentioned in at least one of the papers [CSZ97, BS00]”. We define Σ to be the
set consisting of well-known Mahonian statistics.

In [BS00] it is shown how all known “descent-based” Mahonian statistics can be written
in terms of “Mahonian d-functions” for some d 6 4. Each such d-function simply computes
the numbers of occurrences of a certain generalized permutation pattern of length at most
d, then sums this process over a finite number of such patterns. In particular in Table
1 of the above article, all 14 Mahonian 3-functions (up to trivial bijections) are given.
In [CSZ97] the images of these statistics under a bijection Φ were also considered. We
consider this bijection in Section 2.2.

Theorem 12. There do not exist S ∈ Σ and g ∈ G such that DIS = S ◦ g.
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Proof. Note that πR
0 = ι = πC

0 while π0 is a product of ⌊n/2⌋ disjoint transpositions,
and hence πI

0 = π0. Hence the orbit of π0 under G is the set {ι, π0} and this is also
the orbit of ι. The orbit of π1 under G is disjoint from that of π0 and ι. It consists of
π1, π

−1

1 , πR
1 = πC

1 = 1n . . . 2, π−R
1 = (n − 1) . . . 1n.

It follows that if S ◦ g = DIS for some permutation statistic S and element g ∈ G,
then S(π0) must equal zero or DIS(π0). However it is readily seen by comparing with
Table 2 that none of the statistics in [CSZ97] satisfy this property. This includes those
mentioned in passing, such as LAG and SIST.

Now consider the statistics in [BS00, Table 1], given in terms of permutation pattern
counts. Any pattern that is not strictly descending does not occur in π0, so we need
only count occurrences of ba, cba, cb − a, c − ba. Again, none of these lead to zero or
DIS(π0), since the number of occurrences of these four patterns in π0 is respectively
n − 1, n − 2, (n − 1)(n − 2)/2, (n − 1)(n − 2)/2.

Finally we consider Haglund’s statistic HAG and a descent-based variant DAG as
defined in [BS00]. The statistic DAG can be dealt with by counting pattern occurrences
in π0 as above. However it is not as easy to differentiate HAG from DIS by using our
special permutations. In fact when n is even, HAG and DIS take the same value on π0

(they coincide with Edif). When n is odd, HAG is smaller than DIS by (n − 1)/2. We
instead use the permutation π2 = n2 . . . (n− 1)1 formed from ι by a single transposition.
Its orbit under G consists of itself and its reverse 1(n−1) . . . 2n, and DIS takes the values
n − 1 and ⌈(n − 2)2/4⌉ respectively on these two elements. However, HAG(π2) = 1.

2.2 Euler-Mahonian pairs and nontrivial bijections

In [CSZ97] a bijection Φ of Sn was given and it was shown that Φ had appeared (some-
what disguised) in several previous papers. The key property of Φ is that it takes
(des, Dbot, Ddif, Res) to (exc, Ebot, Edif, Ine). This then gives access to equidistribu-
tion results for Euler-Mahonian pairs. The term Euler-Mahonian refers in the literature
to a bistatistic (e, M) such that e is Eulerian, M is Mahonian, and the joint distribution
of (e, M) is the same as that of another well-known pair (e′, M ′). Originally the term
was used only for (e′, M ′) = (des, MAJ). Other authors, for example [BS00, CSZ97] allow
more possibilities for (e′, M ′), and aim to classify these bistatistics up to equidistribution.

In [BS00, Table 2] seven equivalence classes (under equidistribution) of Euler-
Mahonian pairs (des, T ) were given for n = 5 (note that the second matrix, corresponding
to MAJ, has an error: in the row indexed by des = 2, the entries listed as 14 should be
16). This corresponds to 14 Mahonian statistics T . It is easy to see that DIS does not
occur in this table, because its maximum value occurs on π1 and des(π1) = 1, yet none
of the seven distributions has a nonzero entry in the (1, 10) position. We can also check
easily that (exc, DIS) has a different distribution from all the entries in the table. Thus
if T ′ is the image of such a T under Φ, then T ′ 6= DIS.
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1 0 0 0 0 0 0 0 0 0 0
0 4 6 8 8 0 0 0 0 0 0
0 0 3 7 10 22 15 9 0 0 0
0 0 0 0 2 0 5 6 9 4 0
0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0
0 4 3 5 3 3 3 2 1 1 1
0 0 6 6 13 12 9 9 8 3 0
0 0 0 4 3 7 8 4 0 0 0
0 0 0 0 1 0 0 0 0 0 0

Table 3: Joint distributions (exc, DIS) and (exc, IDIS) for n = 5.

1 0 0 0 0 0 0 0 0 0 0
0 4 3 5 5 2 3 2 1 0 1
0 0 6 8 12 14 11 7 5 3 0
0 0 0 2 3 6 5 6 3 1 0
0 0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0
0 4 3 5 5 2 2 3 1 0 1
0 0 6 8 12 15 11 6 5 3 0
0 0 0 2 3 5 6 6 3 1 0
0 0 0 0 0 0 1 0 0 0 0

Table 4: Joint distributions (des, DIS) and (des, IDIS) for n = 5.

We still need to check HAG. By direct computation we can show readily that

Φ(π0) = π1

Φ(π1) = (π1)
−1

Suppose that T = DIS ◦Φ for some T ∈ Σ. Then T (π0) = n(n−1)/2 and T (π1) = n−1.
Clearly HAG fails this test. If T ◦ Φ = DIS then T (π1) = ⌈n2/4⌉ which again HAG fails.

3 An Eulerian partner for DIS

Skandera [Ska02] gave a general procedure for associating to each Mahonian statistic
M another statistic e that is Eulerian and such that the pair (e, M) is Euler-Mahonian
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(equidistributed with (des, MAJ)). Of course, such an Eulerian statistic may not be known
or particularly interesting.

Applying this procedure to DIS yields an Eulerian statistic eul. Concretely, eul(π)
is obtained from the numbers di by listing them in order, and counting each time we
encounter a number larger than the current record (the record being initialized to zero).
For example, for our running example 25413 we have d = (0, 1, 2, 3, 2) and so eul takes
the value 3. Also note that eul(π0) = ⌈(n − 1)/2⌉ while eul(ι) = 0 and eul(π1) = n − 1.

A well-known Eulerian statistic is the number of excedances exc. Now exc agrees with
eul on π0 and π1. Also, eul and exc are equal when n = 3. Nevertheless, eul is not equal
to exc in general, nor does it equal des.

Eulerian statistics in the literature are less commonly found than Mahonian ones. As
far as I am aware, eul is itself new, but this is based on much less evidence than the
corresponding claim about DIS.

4 Further comments

The current paper gives substantial evidence that the statistic DIS is really new. In order
to check thoroughly whether a permutation statistic is new to the literature, one would
ideally check a database of such statistics. I have not found such a database. I propose
that as a minimum, tables of values for n = 4, along with the joint distribution with
exc and des for n = 5, be included in all papers dealing with this topic, to allow easy
comparison. It would then be much easier to show that the entire group Γ generated by
G and Φ does not have any element g with T ◦ g = DIS for some known Mahonian T ,
since all such T of which I am aware are consistent.

It may be desirable to find a “static” description of DIS and IDIS, which have been
defined “dynamically”. I do not know a systematic way to do this (one possible idea is
to find linear combinations of the above partial statistics that fit the values for small n).
A related question is to determine whether DIS can be written as a Mahonian d-function
for some d.

The statistic IDIS should extend to words via the selection sort interpretation.
Whether this statistic is Mahonian on words should be investigated and I intend to do
this in future work. Dennis White has informed me that a general machine explained by
him and Jennifer Galovich in [GW96] will construct a bijection between (nearly) any Ma-
honian statistic and INV. The machine works in the context of words, and this connection
may be worth pursuing.

Note: As I was preparing this article I was made aware of completely independent
recent work by T. Kyle Petersen [Pet10] that also discusses the statistic DIS and some
generalizations. The intersection between the topics of these two papers is small, and the
reader should consult both articles for a fuller picture.
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