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Abstract

The notion of pattern hypergraph provides a unified view of several previously
studied coloring concepts. A pattern hypergraph H is a hypergraph where each
edge is assigned a type Πi that determines which of possible colorings of the edge
are proper. A vertex coloring of H is proper if it is proper for every edge. In general,
the set of integers k such that H can be properly colored with exactly k colors need
not be an interval. We find a simple sufficient and necessary condition on the edge
types Π1, . . . ,Πλ for the existence of a pattern hypergraph H with edges of types
Π1, . . . ,Πλ such that the numbers of colors in proper colorings of H do not form an
interval of integers.

1 Introduction

Coloring problems are among the most intensively studied combinatorial problems both
for the theoretical and the practical reasons. Generalizations of usual graph and hy-
pergraph coloring, e.g., the channel assignment problem, are widely applied in practice.
A new general concept of mixed hypergraphs has attracted a lot of attention as wit-
nessed by a recent monograph by Voloshin [29] and an enormous number of papers on the
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subject, e.g., [6,10,13,17–24,26,30–33]. The concept generalizes usual colorings of hyper-
graphs in which it is required that no edge is monochromatic as well as colorings of co-
hypergraphs [7,18] in which it is required that each edge contains at least two vertices with
the same color. The latter type of hypergraph colorings arises naturally in the classical no-
tion of anti-Ramsey problems [1,12,14,15]. In addition, both types of hypergraph colorings
are closely related to face-constrained colorings of embedded graphs [11, 16, 27, 28]. The
notion of mixed hypergraphs is powerful enough to model general constraint satisfaction
problems, in particular, list colorings, graph homomorphisms, circular colorings, locally
surjective, locally bijective and locally injective graph homomorphisms, L(p, q)-labelings,
the channel assignment problem, T -colorings and generalized T -colorings [19].

A mixed hypergraph is a hypergraph with two types of edges, C-edges and D-edges. A
coloring of a mixed hypergraph is proper if no C-edge is polychromatic (rainbow) and no
D-edge is monochromatic. Mixed hypergraphs have some very surprising properties. The
most striking results include: for any finite set of integers I with 1 6∈ I, there is a mixed
hypergraph which can be colored by precisely k colors if and only if k ∈ I [13], e.g., there
exists a mixed hypergraph on 6 vertices which is 2-colorable and 4-colorable and which
is not 3-colorable. An even stronger result holds: for any sequence s1, . . . , sk of integers
such that s1 = 0, there exists a mixed hypergraph which has precisely sk′ proper colorings
using k′ colors, 1 6 k′ 6 k, and no proper coloring using more than k colors [20]. These
results led to a lot of papers describing which subclasses of mixed hypergraphs have such
unusual properties [6, 10, 17, 21–24,26, 30, 32, 33].

Another generalization of mixed hypergraphs are color-bounded hypergraphs introduced
by Bujtás and Tuza [3, 4]. In this model, every edge of a hypergraph is assigned two
numbers s and t, and it is required that the number of colors used to color vertices of that
edge is at least s and at most t. An even more general model is considered in [5] where
each edge is assigned four numbers s, t, a and b, and it is required that the number of
colors used on the edge is between s and t and the largest number of vertices having the
same color is between a and b. Clearly, mixed hypergraphs can be viewed as a special type
of color-bounded hypergraphs. Like for mixed hypergraphs, the numbers of colors that
can be used in a proper coloring of a color-bounded hypergraph need not form an interval
and can in fact be almost any set of integers, even for hypergraph with very restricted
types of edges.

In this paper, we provide a full characterization of edge types of hypergraphs that
can cause this behavior. We introduce a notion of pattern hypergraphs that includes
usual (hyper)graph colorings and colorings of co-hypergraphs and mixed hypergraphs. In
addition, pattern hypergraphs appear naturally in certain types of constraint satisfaction
problems and our characterization yields also interesting results in this area as described
later in this section.

1.1 Pattern hypergraphs

An edge type is a non-empty set Π of equivalence relations on an ordered set A. The size
of the edge type Π is |A|. A pattern hypergraph H consists of a vertex set V (H) and
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Figure 1: An example of a pattern hypergraph (depicted in the very left part of the
figure). The hypergraph consists of edges of sizes two (depicted as segments) and edges
of sizes three (dashed-line ovals). The edges of sizes two are of type Π1 that contains only
the trivial equivalence relation. The edges of sizes three are of type Π2 that contains the
trivial and the universal equivalence relation. The feasible set of the pattern hypergraph
is {2, 4, 5, 6}. All distinct proper colorings are shown in the right part of the figure.

an edge set E(H). Each edge E is assigned an edge type whose size matches the size of E.
The hypergraph is oriented, i.e. any edge is considered to be an ordered tuple and each
vertex appears at most once in it. The vertices of E naturally correspond to the elements
of the support set of its edge type. The hypergraph H may contain the same edge several
times with distinct edge types assigned as well as edges with the same set of vertices but
with different orderings.

An edge of type Πi is called a Πi-edge. If H is a pattern hypergraph with edges of
types Π1, . . . , Πλ, then H is a (Π1, . . . , Πλ)-hypergraph. In case that λ = 1, H is briefly
called a Π1-hypergraph. An example of a pattern hypergraph can be found in Figure 1.

A k-coloring c of a pattern hypergraph H is a mapping of V onto a set of k colors. A
coloring c is proper if for each edge E of type Π, the equivalence relation π of “having the
same color” restricted to the vertices of E is contained in Π (under the fixed correspon-
dence between the vertices of E and the elements of the support set of Π). In that case,
the equivalence relation π ∈ Π is called consistent with c on E. The feasible set F(H) of
H is the set of all integers k for which there is a proper k-coloring of H .

If F(H) is non-empty, then H is colorable. The least element of F(H) is called the
chromatic number of H and denoted by χ(H). The largest element of F(H) is called
the upper chromatic number of H and denoted by χ̄(H). If F(H) = [χ(H), χ̄(H)] or
F(H) = ∅, i.e., F(H) is an interval of integers, the feasible set is said to be unbroken or
gap-free. Otherwise, it is called broken.

An equivalence relation is universal if it consists of a single class only. It is called
trivial if all of its classes are singletons. Cl is the edge type containing all the equivalence
relations on l elements except for the trivial one. Dl is the edge type containing all the
equivalence relations on l elements except for the universal one. D2-hypergraphs are usual
graphs and the proper colorings of a D2-hypergraph are exactly the proper colorings of
the corresponding graph. Similarly, Dl-hypergraphs are l-uniform hypergraphs and their
proper colorings are exactly the proper colorings of the corresponding hypergraphs.

As an example of the expressive power of pattern hypergraphs, we show how (D2, Cl+1)-
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hypergraphs can be used to model list l-colorings (an analogous construction can be found
in [25] for mixed hypergraphs). In a list coloring problem we are given a graph G = (V, E)
together with a list (of size l) of possible colors Λ(v) at each vertex v, the goal is to find
a coloring c of its vertices such that c(v) ∈ Λ(v) for each v ∈ V and c(u) 6= c(v) whenever
uv ∈ E. Consider a (D2, Cl+1)-hypergraph H with the vertex set V ∪ Λ where Λ is the
union of Λ(v). Each pair of adjacent vertices u and v forms a D2-edge of H . Similarly
each pair of colors of Λ forms a D2-edge of H . For every v ∈ V , there is a Cl+1-edge
comprised of the (l + 1)-tuple {v} ∪ Λ(v). It is easy to check that proper colorings of H

correspond to list colorings of G.
There is also a close relation between pattern hypergraphs and certain types of con-

straint satisfaction problems. A constraint satisfaction problem (CSP) consists of variables
x1, . . . , xn, a domain set U and several types of constraints Pi ⊆ U ri . Each constraint
Pi must be satisfied for certain prescribed ri-tuples of x1, . . . , xn, i.e., the ri-tuple of the
values of such variables must be contained in Pi. The goal is to find an assignment
σ : {x1, . . . , xn} → U that satisfies all the constraints.

An important class of constraint satisfaction problems are those where each constraint
can be expressed as a disjunction of conjunctions of equalities and inequalities [2] (so-
called equality constrained languages). In addition to finding a solution, the goal is often
to minimize the size of the domain of a constructed solution. Constraint satisfaction
problems of this type can be easily modeled by pattern hypergraphs. The problem we
study in this paper may be reformulated as the following question related to verification of
optimality of a constructed solution for a CSP of this type: for which types of constraints
can one conclude that there is no solution with domain of size at most k−1 from the facts
that there is no solution for a domain of size k− 1 and there is a solution for a domain of
size k?

1.2 Notation and our results

An equivalence relation π is finer than π′, if x ∼π y implies that x ∼π′ y, i.e., the classes
of π partition the classes of π′. Conversely, if π is finer than π′, then π′ is coarser than
π. If Π is a set of equivalence relations with the same support set, then ρ(Π) denotes
the equivalence relation such that x ∼ρ(Π) y if and only if x ∼π y for all π ∈ Π. It is
easy to check that a relation defined in this way is indeed an equivalence relation. The
relation ρ(Π) is the (unique) coarsest equivalence relation finer than all the relations of
Π. An equivalence relation π′ is a refinement of π with respect to ρ(Π) if π′ is coarser
than ρ(Π) and π′ can be obtained from π by splitting one of the equivalence classes into
two. The following four closure concepts are considered in this paper (see Figures 2–5 for
examples):

• The edge type Π is simply-closed if it contains all the equivalence relations π that
have at most one equivalence class of size greater than one. In particular, Π contains
both the universal and the trivial equivalence relation. The unique inclusion-wise
smallest edge type that is simply-closed is denoted by Πsimple. Note that Π is simply-
closed if and only if Πsimple ⊆ Π.
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Figure 2: The smallest simply-closed edge type Πsimple for the edge size 4. Each 4-tuple
represents a single equivalence relation (equivalent elements are drawn using the same
geometric object). The number of equivalence classes of the relations grows from the
bottom to the top. The arrows lead in the direction from coarser to finer equivalence
relations.

Figure 3: An edge type which is down-closed but which is neither simply-closed, up-
closed nor up-group-closed. At each arrow, the relation at the tail forces the presence of
the relation at the head in the edge type.

• The edge type Π is down-closed if for any π ∈ Π the edge type Π contains all
equivalence relations π′ that are coarser than π. In particular, Π contains the
universal equivalence relation.

• The edge type Π is up-closed if for any π ∈ Π the edge type Π contains all the
equivalence relations π′ that can be obtained from π by choosing an element x and
introducing a new single element class containing only x. In particular, Π contains
the trivial equivalence relation.

• The edge type Π is up-group-closed if for any π ∈ Π the edge type Π contains all
the refinements π′ of the equivalence relation π with respect to ρ(Π). Note that the
edge type Π also contains all other equivalence relations that are finer than π and
coarser than ρ(Π).

If all the edge types Π1, . . . , Πλ are simply-closed, then any (Π1, . . . , Πλ)-hypergraph has
an unbroken feasible set. The same holds, if all the types are down-closed, up-closed or
up-group-closed. Our main result is that these sufficient conditions are also necessary.
This provides a full characterization of edge types that can cause the feasible set of a
pattern hypergraph to be broken.

The paper is structured as follows: we first discuss the relation between the concepts of
pattern hypergraphs and mixed hypergraphs in Section 2 and show that our new general
results on pattern hypergraphs also provide new results for mixed hypergraphs. The
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Figure 4: An edge type which is up-closed but which is neither simply-closed, down-
closed nor up-group-closed. At each arrow, the relation at the tail forces the presence of
the relation at the head in the edge type.

Figure 5: An edge type which is up-group-closed but which is neither simply-closed,
down-closed nor up-closed.

sufficiency and necessity of the conditions are studied in Sections 3 and 4. In Section 5,
we show that several possible modifications of the definition of pattern hypergraphs do not
lead to more general concepts and briefly discuss possible directions for future research.

2 Mixed Hypergraphs

Mixed hypergraphs were introduced in [30, 31]. A mixed hypergraph has two types of
edges: C-edges and D-edges. C-edges and D-edges of size l are exactly Cl-edges and
Dl-edges in the language of pattern hypergraphs. A mixed hypergraph is a mixed bi-
hypergraph if each edge is simultaneously a C-edge and a D-edge. A hypergraph H is
spanned by a graph G if V (G) = V (H) and every edge of H induces a connected subgraph
of G. The following results on feasible sets of mixed hypergraphs were obtained:

• For any finite integer set I such that 1 6∈ I, there exists a mixed hypergraph H with
F(H) = I [13]. Moreover, there is such a hypergraph H which has only one proper
k-coloring for any k ∈ I. A similar result may be obtained for l-uniform mixed
bihypergraphs for l > 3.

• Any mixed hypergraph spanned by a path [6], a tree [21, 22], a cycle [32, 33] or
a strong cactus [23] has an unbroken feasible set. There are mixed hypergraphs
spanned by weak cacti with a broken feasible set [23].

• For any non-planar graph G with at least six vertices, there is a mixed hypergraph
H spanned by G with a broken feasible set [23].

• There are planar mixed hypergraphs with broken feasible sets but the gap in such
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sets may be only for 3 colors [10, 17, 26]. There is no planar mixed bihypergraph
with a broken feasible set [8, 10, 17, 26].

Theorem 18 allows us to enhance this list of results:

Theorem 1. For any l1 > 3 and l2 > 2, there exists a mixed hypergraph H with C-edges
only of size l1 and D-edges only of size l2 such that F(H) is broken.

Proof. Since the edge type Cl1 is neither simply-closed, up-closed nor up-group-closed and
the edge type Dl2 is not down-closed, Theorem 18 applies.

In a similar fashion, one may also reprove the following theorem of [13]:

Theorem 2. For any l > 3, there exists an l-uniform mixed bihypergraph H with a broken
feasible set.

Proof. Since the edge type Cl ∩ Dl is neither simply-closed, down-closed, up-closed nor
up-group-closed, Theorem 18 applies.

3 Sufficiency of the Conditions

We show the sufficiency of the conditions in this section.

Lemma 3. If each of edge types Π1, . . . , Πλ is simply-closed, then each (Π1, . . . , Πλ)-
hypergraph has an unbroken feasible set.

Proof. Fix a (Π1, . . . , Πλ)-hypergraph H with n vertices. Let 1 6 k 6 n. Color k − 1
vertices with mutually different colors and all the remaining vertices with the same color
different from the k − 1 colors. This coloring is a proper k-coloring because all the edge
types are simply-closed. Hence, F(H) = [1, n].

Lemma 4. If each of edge types Π1, . . . , Πλ is down-closed, then every (Π1, . . . , Πλ)-
hypergraph has an unbroken feasible set.

Proof. Fix a (Π1, . . . , Πλ)-hypergraph H . If H is uncolorable, then its feasible set is not
broken. Otherwise, consider a proper k-coloring c of H with k = χ̄(H). Since all the edge
types are down-closed, the coloring c′ defined as c′(v) := c(v) for c(v) 6 ℓ and c′(v) := ℓ

for c(v) > ℓ is a proper ℓ-coloring for every ℓ 6 k. Hence, F(H) = [1, χ̄(H)].

Lemma 5. If each edge type Π1, . . . , Πλ is up-closed, then each (Π1, . . . , Πλ)-hypergraph
has an unbroken feasible set.

Proof. Fix a (Π1, . . . , Πλ)-hypergraph H with n vertices. If H is uncolorable, then its
feasible set is not broken. Otherwise, let c be a proper k-coloring of H with k < n. By
symmetry, we can assume that the color k is used to color at least two vertices. Assume
that one of them is a vertex w. Since all the edge types are up-closed, the coloring c′

equal for v 6= w to c and assigning w a new color is a proper (k + 1)-coloring. Hence,
F(H) = [χ(H), n].
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Lemma 6. If each edge type Π1, . . . , Πλ is up-group-closed, then every (Π1, . . . , Πλ)-
hypergraph has an unbroken feasible set.

Proof. Fix a (Π1, . . . , Πλ)-hypergraph H . If H is uncolorable, then its feasible set is not
broken. Otherwise, consider the following relation ∼′ on the vertices of H : v ∼′ w if
v ∼ρ(Πi) w for some Πi-edge. Let ∼ be the equivalence closure of the relation ∼′ and k0

the number of its classes. If c is a proper coloring of H and v ∼ w, then c(v) = c(w).
Hence, χ̄(H) 6 k0. Let c be a k-coloring of H with k < k0. Observe that one of the k

colors is used to color at least two different equivalence classes of ∼. Let w be a vertex
colored with such a color. Consider the coloring c′ defined by c′(v) = c(v) for v 6∼ w

and assigning a completely new color to each v with v ∼ w. Since all the edge-types are
up-group-closed and ρ(Πi) is finer than ∼ on each Πi-edge, c′ is a proper (k +1)-coloring.
Hence, χ̄(H) = k0 and F(H) = [χ(H), k0].

4 Necessity of the Conditions

We first consider the case when all the edges of a pattern hypergraph are of the same
type. Later we generalize our arguments to pattern hypergraphs with more types of edges.
Let us start with several lemmas on edge types that contain the trivial or the universal
equivalence relation:

Lemma 7. If Π is an edge type which contains both the trivial and the universal equiva-
lence relation and which is not simply-closed, then there exists a Π-hypergraph H with a
broken feasible set.

Proof. Let l be the edge size of Π and consider a hypergraph H with n = l2 vertices such
that all possible l-tuples form edges of H . Clearly, 1 ∈ F(H) and n ∈ F(H). Assume
for the sake of contradiction that l ∈ F(H). Let c be a proper l-coloring of H . We can
assume without loss of generality that there are l vertices colored with the color 1, say
v1, . . . , vl. Let ui for 2 6 i 6 l be any vertex colored with the color i. Let π be an arbitrary
equivalence relation belonging to Πsimple. The tuple containing some of vertices v1, . . . , vl

in the positions of the largest class of π and some of vertices u2, . . . , ul in the positions of
the single-element classes of π is an edge of H and thus π ∈ Π. Hence, Πsimple ⊆ Π. But
this is impossible because Π is not simply-closed.

Lemma 8. If Π is an edge type that contains the trivial equivalence relation, that does
not contain the universal equivalence relation and that is not up-closed, then there exists
a Π-hypergraph H with a broken feasible set.

Proof. Let l be the edge size of Π. We construct a Π-hypergraph H with n = l2(l + 1)
vertices vij for 1 6 i 6 l and 1 6 j 6 l(l + 1). Fix an l-coloring c0 such that c0(vij) = i.
Include to H as edges all l-tuples such that c0 remains a proper coloring of H . Clearly,
l ∈ F(H) and n ∈ F(H). Assume for the sake of contradiction that l + 1 ∈ F(H). Let c

be a proper (l + 1)-coloring and let ξi be the color used by c to color the largest number
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of the vertices vij, 1 6 j 6 l(l + 1). We may assume without loss of generality that
c(vi1) = . . . = c(vil) = ξi for each 1 6 i 6 l.

We first prove that ξi 6= ξi′ for all i 6= i′. Assume that ξi = ξ′i. Let π be an equivalence
relation of Π such that the size l0 of the largest equivalence class of π is as large as possible.
Note that l0 < l because Π does not contain the universal equivalence. Consider an edge
E of H that contains the vertices vi1, . . . , vil0 and the vertex vi′1 (such an edge exists by
the construction of H and the choice of π). If c is a proper coloring, then Π contains an
equivalence relation with an equivalence class of size at least l0 + 1 since all the vertices
vi1, . . . , vil0 and vi′1 have the same color. This contradicts the choice of π.

Next, we show for contradiction that Π is up-closed. Since c is a proper (l+1)-coloring,
we may assume without loss of generality that c(v1,l+1) 6= ξi for all 1 6 i 6 l. Let π be
an equivalence relation of Π that is not the trivial one and π′ be an equivalence relation
obtained from π by creating a single element class by separating an element w from a
class W of π. Consider an edge E of H such that π is consistent with c0 on E, v1,l+1 ∈ E,
v1,l+1 corresponds to w, the remaining elements of W are some of the vertices v11, . . . , v1l

and other vertices of E are some of the vertices vi1, . . . , vil with 2 6 i 6 l. Since c is
a proper coloring, it follows that π′ ∈ Π. Hence, Π is up-closed, thus contradicting the
assumptions of the lemma.

Lemma 9. If Π is an edge type that contains the universal equivalence relation, that does
not contain the trivial equivalence relation and that is not down-closed, then there exists
a Π-hypergraph H with a broken feasible set.

Proof. Let l be the edge size of Π. We construct a Π-hypergraph H with n = l3 vertices
vij for 1 6 i 6 l2 and 1 6 j 6 l. Let L = l2. Fix a coloring c0 such that c0(vij) = i

for 1 6 i 6 L. Include to H as edges all l-tuples such that c0 is a proper coloring of the
tuple. Clearly, 1 ∈ F(H) and L ∈ F(H). We prove L − 1 6∈ F(H).

Assume for the sake of contradiction that there is a proper (L − 1)-coloring c of H .
We first prove that c(vij) = c(vij′) for all 1 6 i 6 L and 1 6 j, j′ 6 l. Assume that, e.g.,
c(v11) 6= c(v12). Let π be an equivalence relation contained in Π with the largest number
l0 of equivalence classes. Since Π does not contain the trivial equivalence relation, l0 < l.
Since the coloring c uses l2−1 colors, there exists a vertex vij with i 6= 1 such that the color
of c(vij) is neither c(v11) nor c(v12). We may assume that v21 is such a vertex. Similarly,
there exists a vertex c(vij) with i 6= 1, 2 such that c(vij) 6∈ {c(v11), c(v12), c(v21)}. We may
assume that v31 is such a vertex. In this way, we conclude that we can assume without
loss of generality that the colors of the vertices v11, v21, . . . , vl1 and v12 are mutually
distinct. Consider an edge E of H such that π is consistent with c0 on E and such that E

contains all the vertices v11, v21, . . . , vl01 and v12 (such an edge exists by the construction
of H). Since c is a proper coloring, Π must contain an equivalence relation consistent
with c on E and such an equivalence relation is comprised of at least l0 + 1 equivalence
classes. This contradicts the choice of π.

Let ξi be the common color of the vertices vij for 1 6 j 6 l. We can assume without
loss of generality that ξ1 = ξ2 and all the colors ξi for i > 2 are mutually different.
Consider now an equivalence relation π ∈ Π and an equivalence relation π′ obtained from
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π by an union of two classes of π. Let E be an edge H such that π is consistent with
c0 on E, E contains v11 and v21 and these two vertices correspond to elements of the
two unified equivalence classes of π. Since c is a proper coloring of H , the equivalence
relation π′ must be contained in Π. Consequently, Π is down-closed, thus contradicting
assumptions of the lemma.

We now focus on edge types avoiding both the universal and the trivial equivalence
relations:

Lemma 10. If Π is an edge type which contains neither the universal nor the trivial
equivalence relation, then there exists a Π-hypergraph H0 that has a unique proper coloring
(up to a permutation of colors) and all color classes have the same size.

Proof. Let l be the edge size of Π. Consider a Π-hypergraph H0 with 2l3 vertices vij such
that 1 6 i 6 2l and 1 6 j 6 l2 and a coloring c0(vij) = i. The edge set of H0 consists of
all l-tuples of vertices that are consistent with c0, i.e. H0 is the Π-hypergraph with the
maximum number of edges that has c0 as a proper coloring. We claim that c0 is the only
proper coloring of H0.

Consider a proper coloring c of H0. Let Ci = {c(vij), 1 6 j 6 l2} for 1 6 i 6 2l and
let I be the set of i’s for which |Ci| 6 l. We first assume that |I| 6 l. By symmetry, we
may also assume that 1, . . . , l 6∈ I. Let π be any equivalence relation contained in Π. Let
A1, . . . , Ak be the equivalence classes of π. Consider an l-tuple X of vertices such that
|X ∩{vi1, . . . , vil2}| = |Ai| and all the vertices of X are assigned different colors by c (such
a tuple exists because 1, . . . , k 6∈ I). The hypergraph H0 contains an edge E formed by
the vertices of X. Since c is proper, Π has to contain the trivial equivalence relation. This
excludes the case that |I| 6 l.

In the rest, we assume that |I| > l+1. By symmetry, we may assume that [1, l+1] ⊆ I

and c(vi1) = . . . = c(vil) for each i ∈ I. Let ξi = c(vi1) for i ∈ I and V = {vij, c(vij) =
ξi, 1 6 i 6 l}.

We claim that the colors ξi, i ∈ I are mutually different. By symmetry, it is enough
to exclude the case ξ1 = ξ2. Let l0 be the largest size of the equivalence class of an
equivalence relation contained in Π and let π ∈ Π be an equivalence relation with an
equivalence class of size l0. Consider an edge E formed by some of the vertices of V such
that π is consistent with c0 on E, the vertices corresponding to the largest equivalence
class are some of the vertices v11, . . . , v1l and E contains the vertex v21. Since c is a proper
coloring of H , there exists π′ ∈ Π consistent with c on E. However, the size of the largest
equivalence class of π′ is at least l0 +1, thus contradicting the choice of π and l0. Observe
that we have actually shown that ξ1 6= c(vij) for any i 6= 1 and arbitrary j.

Next, we show that c(vi0j0) = c(vi0j′
0
) for all i0 and j0 6= j′0. Fix any such i0, j0 and j′0.

We may assume that i0 > l (this includes both the cases that i0 ∈ I and i0 6∈ I). By the
observation at the end of the previous paragraph, c(vi0j0) and c(vi0j′

0
) are distinct from all

the colors ξ1, . . . , ξl. Consider now an equivalence relation π ∈ Π with the largest number
l0 of equivalence classes. Consider an edge E of H such that π is consistent with c0 on E,
E contains both the vertices vi0j0 and vi0j′

0
and the remaining vertices of E form a subset
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of {vi,j , i = 1, . . . , l, i0 and 1 6 j 6 l}. The vertices of E are colored by c with more
than l0 colors. Since c is a proper coloring, Π contains an equivalence relation with at
least l0 +1 equivalence classes which contradicts the choice of l0 and π. This implies that
I = {1, . . . , 2l} and V is the set of all the vertices of H . Hence, all the proper colorings
of H differ only by a permutation of colors.

Lemma 11. If Π is an edge type which contains neither the universal nor the trivial
equivalence relation, then there exists a Π-hypergraph with a broken feasible set if and
only if there exists a (Π, C2,D2)-hypergraph with a broken feasible set.

Proof. It is enough to prove that if there is a (Π, C2,D2)-hypergraph H with a broken
feasible set, then there is a Π-hypergraph H ′ with a broken feasible set. The opposite
implication is trivial. Let l be the edge size of Π. In addition, let H0 be the hypergraph
from the statement of Lemma 10. Let V1, . . . , Vk be the color classes of the unique proper
coloring of H0. Note that |V1| = · · · = |Vk| > 2. For the remainder of the proof, fix a
vertex v1 ∈ V1.

Fix a (Π, C2,D2)-hypergraph H with a broken feasible set. Let U be the vertex set
of H . We construct a Π-hypergraph H ′ with a broken feasible set. The vertex set of
H ′ is (U × V1) ∪ V2 ∪ · · · ∪ Vk. For every u ∈ U , include a copy of H0 to H ′ on the
vertex set ({u} × V1) ∪ V2 ∪ · · · ∪ Vk (identifying the corresponding vertices of {u} × V1

and V1). If E is a Π-edge of H , then we include a Π-edge E ′ = {[u, v1]|u ∈ E} in
H ′. If E is a D2-edge {u1, u2} of H , we include a copy of H0 to H ′ on the vertex set
({u1} × V1) ∪ ({u2} × V1) ∪ V3 ∪ · · · ∪ Vk. If E is a C2-edge {u1, u2} of H , we include a
copy of H0 to H ′ on the vertex set ({u1} × (V1 \ {v1}) ∪ {[u2, v1]}) ∪ V2 ∪ V3 ∪ · · · ∪ Vk.

Fix a proper coloring c of H . Color the vertices {u} × V1 by c(u) and the vertices of
V2∪Vk by k−1 mutually distinct colors not used by c. It is straightforward to verify that
the obtained coloring is a proper coloring of H ′. Hence, {x + k − 1|x ∈ F(H)} ⊆ F(H ′).
Consider now a proper coloring c of H ′. We show that c restricted to the vertices U×{v1} is
a proper coloring of H . Clearly, all the constrains imposed by Π-edges of H are satisfied.
By our construction, it is easy to verify that if H contains a D2-edge {u1, u2}, then
c(u1) 6= c(u2) and that if H contains a C2-edge {u1, u2}, then c(u1) = c(u2). Moreover,
the vertices of V2∪· · ·∪Vk are colored by k−1 colors distinct from the colors of the vertices
U×{v1} and the vertices of U×V1 have only the colors assigned to the vertices of U×{v1}.
Hence, {x−k +1|x ∈ F(H ′)} ⊆ F(H) and consequently F(H ′) = {x+k−1|x ∈ F(H)}.
Since H has a broken feasible set, the feasible set of H ′ is also broken.

We now introduce a notion of projections of edge types. An edge type Π′ is a C-
projection of Π if there exist α and β such that Π′ = {π|π ∈ Π ∧ α ∼π β}. An edge type
Π′ is a D-projection of Π if there exist α and β such that Π′ = {π|π ∈ Π ∧ α 6∼π β}. A
projection of Π is any edge type that can be obtained from Π by a sequence of C-projections
and D-projections. Note that Π itself is a trivial projection of Π.

If Π′ is a C-projection (or D-projection) of Π, then for every (Π′, C2,D2)-hypergraph
there is a (Π, C2,D2)-hypergraph with the exactly same proper colorings obtained by
adding C2-edges (or D2-edges, respectively). Thus the following lemma is an immediate
consequence of Lemma 11:
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Lemma 12. Let Π be an edge type containing neither the trivial nor the universal equiv-
alence relation. If there exists a projection Π′ of Π and a (Π′, C2,D2)-hypergraph with a
broken feasible set, then there exists a Π-hypergraph with a broken feasible set.

Elements α, β, γ and δ (that need not be distinct) of the support set of an edge type
Π have the Property P∼ if the following holds:

• there is π ∈ Π such that α ∼π β,

• α 6∼ρ(Π) β, α 6∼ρ(Π) γ, α 6∼ρ(Π) δ, β 6∼ρ(Π) γ and γ 6∼ρ(Π) δ, and

• for each π ∈ Π, if α ∼π β, then γ ∼π δ,

The elements α, β, γ and δ have the Property P6∼ if the last condition of the previous
definition is replaced by:

• for each π ∈ Π, if α 6∼π β, then γ ∼π δ,

The elements with one of these properties can be used to simulate other edge types
and eventually to obtain pattern hypergraphs with broken feasible sets. We state this
more precisely in the following series of lemmas.

Lemma 13. If Π is an edge type such that ρ(Π) 6∈ Π, then there is a projection Π0 of Π
and (not necessarily distinct) elements α, β, γ and δ that have Property P6∼ for Π0.

Proof. Let π0 = ρ(Π) and α and β be any two elements such that α 6∼π0
β and α ∼π β for

some π ∈ Π. Consider the D-projection Π′ with respect to the pair α and β. Assume first
that π0 6= ρ(Π′). Then there exist γ and δ such that γ 6∼π0

δ and γ ∼ρ(Π′) δ. If α ∼π0
γ

and β ∼π0
γ, then α ∼π0

β which is impossible by the choice of α and β. Similarly, it
cannot hold that α ∼π0

δ and β ∼π0
δ. An analogous argument excludes that α ∼π0

γ

and simultaneously α ∼π0
δ, and β ∼π0

γ and simultaneously β ∼π0
δ.

If α ∼π0
γ and β ∼π0

δ, then γ ∼ρ(Π′) δ implies α ∼ρ(Π′) β which is impossible by
the definition of Π′. A similar argument excludes that α ∼π0

δ and β ∼π0
γ. Hence, we

may assume without loss of generality that α 6∼π0
γ, α 6∼π0

δ and β 6∼π0
γ. Recall that

α 6∼π0
β and γ 6∼π0

δ. Since γ ∼ρ(Π′) δ we conclude that the elements α, β, γ and δ have
the property P6∼ for Π0 = Π.

If ρ(Π′) = ρ(Π), we apply the same procedure to Π′ by considering the new relation
π′

0 and new elements α′ and β ′. Since each time the number of equivalence relations
contained in Π is decreased (we have chosen α and β such that α ∼π β for a relation
π ∈ Π) the process must eventually terminate. We either end with Π0, α, β, γ and δ with
the property P6∼ (Π0 is obtained from Π by a sequence of D-projections) or we end up
with a D-projection of Π comprised of a single equivalence relation π0. In the latter case,
π0 = ρ(Π) must be contained in Π which contradicts the assumption of the lemma.

Lemma 14. Let Π be an edge type which contains neither the universal nor the trivial
equivalence relation. If there exist elements α, β, γ and δ that have Property P6∼, then
there exists a (Π, C2,D2)-hypergraph H with a broken feasible set.
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Proof. Let l be the edge size of Π (note that l > 3). Observe that α, β and γ are
mutually different and δ is either β or different from all of α, β and γ. We construct
a (Π, C2,D2)-hypergraph H with the vertices vijk for 1 6 i 6 l + 2, 1 6 j 6 l + 4 and
1 6 k 6 l. For simplicity, we say that the vertices with the same first index form rows
and the vertices with the same second index form columns. Let c1 be the (l + 2)-coloring
defined as c1(vijk) = i and c2 the (l +4)-coloring defined as c2(vijk) = j. We include to H

as Π-edges all the l-tuples such that c1 and c2 remain proper colorings of H . Similarly,
the pairs of vertices assigned different colors by both c1 and c2 form D2-edges and the
pairs of vertices assigned the same colors by both the colorings form C2 edges. Hence, two
vertices vijk and vi′j′k′ form a D2-edge if and only if i 6= i′ and j 6= j′ and two vertices vijk

and vi′j′k′ form a C2-edge if and only if i = i′ and j = j′. Consider any proper coloring c

of H and let ξij be the common color of the vertices vijk for 1 6 k 6 l.
Let π1 be an equivalence relation of Π such that γ 6∼π1

δ (and hence α ∼π1
β) and π2

be an equivalence relation of Π such that α 6∼π2
β (and hence γ ∼π2

δ). We distinguish
several cases with respect to the mutual relation of π1, π2, α, β, γ and δ: in each case,
we show that either the rows or the columns of c are monochromatic under c and that
different rows (columns respectively) use different colors (i.e., that c differs from c1 or c2

only by a permutation of colors). Therefore, F(H) = {l + 2, l + 4} and the feasible set of
H is broken.

• β = δ

Assume that there exists i, j and j′ such that ξij 6= ξij′. By the construction of H

and the existence of π1 and π2, we can find an edge E of H such that α = vij1,
β = vij′1 and γ = vi′j′1 for all i′ 6= i. Consequently ξi′j′ = ξij′ for all i 6= i′. Similarly,
with setting α = vij′1 and β = vij1 we conclude that ξi′j = ξij for all i 6= i′. Let j′′

be any number different from both j and j′. Since ξij′′ 6= ξij or ξij′′ 6= ξij′, we may
conclude that ξij′′ = ξi′j′′ for all i 6= i′. Hence each column is monochromatic in c.
In such case, c has to be a proper (l + 4)-coloring by the presence of D2-edges.

On the other hand, if ξij = ξij′ for all possible triples i, j and j′, the coloring c

consists of monochromatic rows and it is a proper (l + 2)-coloring.

• β 6= δ, either γ or δ is π1-equivalent to α (and hence to β as well) and
either α or β is π2-equivalent to γ (and hence to δ as well).

By symmetry we can assume that β ∼π1
δ and β ∼π2

δ (otherwise we exchange
α and β, or γ and δ). Proceed as in the previous case with the additional setting
δ = vij2 whenever β has been set to be vij1 for some i and j (note that two such
vertices are contained in a C2-edge).

• β 6= δ and either γ or δ is π1-equivalent to α (and hence to β as well), but
α 6∼π2

γ and β 6∼π2
γ.

By symmetry we can assume that α ∼π1
γ. Assume that there exist i, j and j′ such

that ξij 6= ξij′. By the construction of H and the existence of π1 and π2, there is an
edge E of H such that α = vij1, β = vij′1, γ = vij′′1 and δ = vi′j′′1 for any i′ 6= i
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and j′′ 6= j, j′. But then ξij′′ = ξi′j′′. Hence all the columns are monochromatic
with a possible exception for the two columns indexed by j and j′. By the presence
of the D2-edges, there exist k and k′, k, k′ 6∈ {j, j′} such that ξik 6= ξik′. By an
analogous argument, we conclude that the j-th column and the j′-th column are
also monochromatic. Consequently c is a proper (l + 4)-coloring.

On the other hand, if ξij = ξij′ for all possible triples i, j and j′, then the coloring
c is a proper (l + 2)-coloring.

• β 6= δ and either α or β is π2-equivalent to γ (and hence to δ as well), but
α 6∼π1

γ and α 6∼π1
δ.

By symmetry we can assume that β ∼π2
γ. Assume that there exist i, j and j′

such that ξij 6= ξij′. By the construction of H and the existence of π1 and π2, there
is an edge E of H such that α = vij1, β = vij′1, γ = vi′j′1 and δ = vi′′j′1 for all
i′, i′′ 6= i. But then ξi′j′ = ξi′′j′ for all i 6= i′, i′′. Similarly as in the previous two
cases, we conclude that all the columns except possibly for their elements of the
i-th row are monochromatic. Using the same reasoning for another choice of i one
can conclude that the columns are completely monochromatic. Hence c is a proper
(l + 4)-coloring.

Otherwise, if ξij = ξij′ for all possible triples i, j and j′, the coloring c consists of
monochromatic rows.

• β 6= δ, α 6∼π1
γ, α 6∼π1

δ, α 6∼π2
γ and β 6∼π2

γ.

Assume that there exist i, j and j′ such that ξij 6= ξij′. By the construction of H

and the existence of π1 and π2, there is an edge E of H such that α = vij1, β = vij′1

and γ = vi′j′′1 and δ = vi′′j′′1 for any i 6= i′, i′′ and j′′ 6= j, j′. But then ξi′j′′ = ξi′′j′′.
Hence, all the columns with a possible exception for the columns indexed by j and
j′ are monochromatic in all the rows different from the i-th row. Using analogous
arguments as in the previous two cases, we infer that all the columns are completely
monochromatic. Hence, the coloring c is a proper (l + 4)-coloring.

Again, if ξij = ξij′ for all possible triples i, j and j′, the coloring c consists of
monochromatic rows.

Lemma 15. Let Π be an edge type which contains neither the universal nor the trivial
equivalence relation. If there exist (not necessarily distinct) elements α, β, γ and δ that
have Property P∼, then there exists a (Π, C2,D2)-hypergraph H with a broken feasible set.

Proof. If ρ(Π) 6∈ Π, then by Lemmas 13 and 14, there exists a (Π0, C2,D2)-hypergraph
with a broken feasible set a projection Π0 of Π. Hence, there is also such a (Π, C2,D2)-
hypergraph. In the rest, we deal with the case ρ(Π) ∈ Π. Let π0 = ρ(Π).

Let H be a (Π, C2,D2)-hypergraph on l(l+2)(l+4) vertices obtained by the construction
from the proof of Lemma 14. Let c be a proper coloring of H and let us keep the notation
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introduced in the proof of Lemma 14. Observe that the elements α, β and γ from the
statement of the lemma are mutually different and δ is either β or different from all of α,
β and γ.

We first deal with the case β = δ. The assumptions of the Lemma 15 yield that
α 6∼π0

β, α 6∼π0
γ and β 6∼π0

γ. Let π be an equivalence relation of Π such that α ∼π β

(and thus β ∼π γ). Consider i, j and j′ such that ξij = ξij′. By the construction of H

and the existence of π0 and π, there is an edge E of H such that α = vij1, β = vij′1 and
γ = vij′′1 for any j′′ 6= j, j′. This implies that ξij = ξij′ = ξij′′ for all j′′. Hence, each row
is either monochromatic or completely polychromatic. If all the rows are monochromatic,
then c is a proper (l + 2)-coloring. If any of the rows is completely polychromatic, then c

uses at least l+4 colors. We conclude that F(H) ⊆ {l+2}∪[l+4, n] where n = (l+2)(l+4),
and since {l + 2, l + 4} ⊆ F(H), the feasible set of H is broken.

The remaining case is that all α, β, γ and δ are mutually different. If it holds that
β ∼π δ for all π ∈ Π, apply the same argument as in the previous paragraph setting
δ = vij′2. Again, we conclude that the feasible set of H is broken.

Assume that β 6∼π δ for some π ∈ Π. In particular, β 6∼π0
δ. Observe that for any

pair of elements α, β, γ and δ, there is π ∈ Π such that the elements of this pair are
not π-equivalent. Hence, any two of α, β, γ and δ are not π0-equivalent. Let π be an
equivalence of Π such that α ∼π β (and thus γ ∼π δ). If all such equivalence relations
satisfy that β ∼π γ, then α ∼π β implies β ∼π γ for each π ∈ Π. Set α′ = α, β ′ = δ′ = β,
γ′ = γ and apply the argument for the case when β = δ. If this is not the case, there
exists π ∈ Π such that α ∼π β but β 6∼π γ. Fix such a relation π.

Consider i, j and j′ such that ξij = ξij′. By the construction of H and the existence of
π0 and π, there is an edge E of H such that α = vij1, β = vij′1, γ = vi′j′′1 and δ = vi′j′′′1

for any i′ 6= i, j′′ 6= j, j′ and j′′′ 6= j, j′, j′′. But then ξi′j′′ = ξi′j′′′. Hence, each row except
possibly for the i-th row is monochromatic with a possible exception for the elements
of the j-th and j′-th column. Using a similar arguments as in the previous, we may
conclude that all the rows are actually completely monochromatic. Hence, either all the
rows are completely monochromatic or there is a completely polychromatic row. Again,
the feasible set of H is broken.

We show in the last lemma of the series that if Π is not up-group-closed, then Lemma 14
or Lemma 15 can be applied:

Lemma 16. If Π is an edge type that is not up-group-closed, then there exist a projection
Π0 of Π and (not necessarily distinct) elements α, β, γ and δ that have Property P∼ or
Property P6∼ for Π0.

Proof. If ρ(Π) 6∈ Π, then the statement follows from Lemma 13. Hence, we can assume
that ρ(Π) ∈ Π. Since Π is not up-group-closed, there exists an equivalence relation π ∈ Π
such that a refinement π′ of π with respect to ρ(Π) is not contained in Π. Note that
π′ 6= ρ(Π) since we have assumed that ρ(Π) ∈ Π. Hence, there exists α and β such that
α 6∼ρ(Π) β and α ∼π′ β.

Consider the C-projection Π′ of Π with respect to the pair α and β. Note that π ∈ Π′.
We first consider the case when there are two elements γ and δ such that γ ∼ρ(Π′) δ and
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γ 6∼π′ δ, i.e., the relation ρ(Π′) is not finer than π′. Note that since π′ is coarser than ρ(Π),
it holds that γ 6∼ρ(Π) δ. If α ∼ρ(Π) γ and β ∼ρ(Π) γ, then α ∼ρ(Π) β, which is impossible
by the choice of α and β. Similarly, it does not hold that α ∼ρ(Π) δ and β ∼ρ(Π) δ, or
α ∼ρ(Π) γ and α ∼ρ(Π) δ, or β ∼ρ(Π) γ and β ∼ρ(Π) δ. If α ∼ρ(Π) γ and β ∼ρ(Π) δ, then
α ∼π′ β implies γ ∼π′ δ which is impossible by the choice of γ and δ. An analogous
argument yields that it cannot simultaneously hold that α ∼ρ(Π) δ and β ∼ρ(Π) γ. Hence,
it can be assumed that α 6∼ρ(Π) γ, α 6∼ρ(Π) δ and β 6∼ρ(Π) γ. Note that if α ∼π′′ β for an
equivalence relation π′′ ∈ Π, then γ ∼π′′ δ because γ ∼ρ(Π′) δ and Π′ is the C-projection of
Π with respect to α and β. Since α 6∼ρ(Π) β and γ 6∼ρ(Π) δ by our previous discussion, the
elements α, β, γ and δ satisfy the conditions of the statement of the lemma with Π0 = Π.

The other case is that the relation ρ(Π′) is finer than π′. Since π ∈ Π′, π′ 6∈ Π′

and ρ(Π′) is finer than π′, Π′ is not up-group-closed. Hence, we can apply the same
procedure for a new pair of elements α′ and β ′. Since each time the number of equivalence
relations contained in the edge type decreases (note that we have chosen α and β such
that α 6∼ρ(Π) β), we eventually end with the quadruple α, β, γ and δ and a suitable
projection Π0 of Π.

We are now ready to prove our main results:

Theorem 17. Let Π be an edge type. There exists a Π-hypergraph with a broken feasible
set if and only if Π is neither simply-closed, down-closed, up-closed nor up-group-closed.

Proof. We distinguish the following four cases based on whether the trivial and the uni-
versal equivalence relation is contained in Π:

• Π contains both the trivial and the universal equivalence relation.

Note that if Π is down-closed, up-closed or up-group-closed, then it is also simply-
closed. If Π is simply closed, then any Π-hypergraph has an unbroken feasible set
by Lemma 3. If Π is not simply-closed, then there is a Π-hypergraph with a broken
feasible set by Lemma 7.

• Π contains the trivial equivalence relation but it does not contain the
universal equivalence relation.

Π is neither simply-closed nor down-closed. Note that if Π is up-group-closed, then
it is also up-closed. If Π is up-closed, then the feasible set of any Π-hypergraph is
unbroken by Lemma 5. On the other hand, if Π is not up-closed, then there is a
Π-hypergraph with a broken feasible set by Lemma 8.

• Π contains the universal equivalence relation but it does not contain the
trivial equivalence relation.

The edge-type Π is neither simply-closed nor up-closed. Note that if Π is up-group-
closed, then it is also down-closed. If Π is down-closed, then any Π-hypergraph
has unbroken feasible set by Lemma 4, and if Π is not down-closed, then there is a
Π-hypergraph with a broken feasible set by Lemma 9.
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• Π contains neither the trivial nor the universal equivalence relation.

Π is not simply-closed, down-closed or up-closed. If Π is up-group-closed, then
the feasible set of every Π-hypergraph is unbroken by Lemma 6. If Π is not up-
group-closed, then there exists a (Π, C2,D2)-hypergraph with a broken feasible set by
Lemma 14 or Lemma 15 applied to the quadruple α, β, γ and δ and the projection
Π0 of Π from Lemma 16. Consequently, there is a Π-hypergraph with a broken
feasible set by Lemma 12.

We now state a version of Theorem 17 for pattern hypergraphs with more edge types:

Theorem 18. Let Π1, Π2, . . . , Πλ be fixed edge types for i = 1, 2, . . . , λ. There exists a
(Π1, . . . , Πλ)-hypergraph with a broken feasible set if and only if there exist (not necessarily
distinct) integers i1, i2, i3 and i4, 1 6 i1, i2, i3, i4 6 λ, such that:

• the edge type Πi1 is not simply-closed, and

• the edge type Πi2 is not down-closed, and

• the edge type Πi3 is not up-closed, and

• the edge type Πi4 is not up-group-closed.

Proof. If all the edge types are simply-closed, then the feasible set of every (Π1, . . . , Πλ)-
hypergraph is unbroken by Lemma 3. Similarly, Lemmas 4, 5 and 6 imply that the feasible
set of every (Π1, . . . , Πλ)-hypergraph is unbroken if all the edge types are down-closed,
up-closed or up-group-closed. In the rest of the proof, we show that otherwise there exists
a (Π1, . . . , Πλ)-hypergraph with a broken feasible set.

Let li be the size of the edge type Πi, 1 6 i 6 λ. We construct a new edge type Π
of size l1 + . . . + lλ. The support set A of Π consists of elements xij with 1 6 i 6 λ and
1 6 j 6 li. For every i, 1 6 i 6 λ, the elements xij are identified with the elements of the
support set of Πi. An equivalence relation π is contained in Π if there exist equivalence
relations πi ∈ Πi, 1 6 i 6 λ, such that the following holds for every i, j and j′:

• xij ∼π xij′ if and only if xij ∼πi
xij′.

In other words, the equivalence relation π is comprised of some equivalence relations
contained in Π1, . . . , Πλ. Note that Π contains relations π with xij ∼π xi′j′ as well as with
xij 6∼π xi′j′.

Since Πi1 is not simply-closed, the edge type Π is also not simply closed. Similarly,
Π is not down-closed, up-closed or up-group-closed. By Theorem 17, there exists a Π-
hypergraph H with a broken feasible set. We turn H into a (Π1, . . . , Πλ)-hypergraph H ′:
each Π-edge E of H is decomposed into λ parts of sizes l1, . . . , lλ corresponding to the
support sets of the original edge types and the parts form Πi-edges of H ′, 1 6 i 6 λ. It
is clear that every proper coloring of H is also a proper coloring of H ′ and vice versa.
Hence, H ′ is a (Π1, . . . , Πλ)-hypergraph with a broken feasible set.
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5 Conclusion

There are several modifications of the concept of pattern hypergraphs that can look more
general than pattern hypergraphs at the first sight, but they are all covered by Theorem 18:

• The edges are formed by unordered tuples. In this case, we may just assume that
each edge type Π contains together with an equivalence relation π all the equivalence
relations obtained from π by a permutation of the elements.

• Cycle systems considered in [9]. In this case, we just assume that each edge type Π
contains together with an equivalence π all its rotations.

• The edges are ordered but a vertex may be contained in the same edge several times.
There is a simple strategy how to cope with this setting: for each edge type Π, add
all the edge types Π′ of smaller sizes obtained by identifying some elements of the
support set of Π and then consider the pattern hypergraphs with edges of all the
types obtained in this way.

It is straightforward to state Theorem 18 in any of the above mentioned setting. As
examples, we restate Theorem 18 in the first and the third case. Let us start with the
latter one:

Theorem 19. Let Πi be edge types for 1 6 i 6 λ. Assume that a single vertex is allowed
to be contained several times in an edge of a hypergraph. There exists a (Π1, . . . , Πλ)-
hypergraph with a broken feasible set if and only if there exist (not necessarily distinct)
integers i1 and i2, 1 6 i1, i2 6 λ, such that:

• the edge type Πi1 is not down-closed, and

• the edge type Πi2 is not up-group-closed.

In the first case, we need definitions. The unoriented edge type Π is a set of multisets
of positive integers such that the integers in each multiset sum to a fixed integer ℓ which
represents the edge size. The coloring of an edge with ℓ vertices of type Π is proper if the
numbers of vertices of each color form one of the multisets contained in Π. An unoriented
pattern hypergraph is a hypergraph with edges of unoriented edge types. The sought
characterization theorem reads as follows.

Theorem 20. Let Πi be unoriented edge types for 1 6 i 6 λ. There exists a (Π1, . . . , Πλ)-
hypergraph with a broken feasible set if and only if there exist (not necessarily distinct)
integers i1, i2 and i3, 1 6 i1, i2, i3 6 λ, such that:

• there exists k such that Πi1 does not contain the multiset {1, . . . , 1, k} tough the
integers in this multiset sum to the integer ℓ corresponding to Πi1,

• there exist {a1, . . . , ak} ∈ Πi2 and k > 2 such that {a1, . . . , ak−1 + ak} 6∈ Πi2, and

• there exist {a1, . . . , ak} ∈ Πi3 with ak > 2 such that {a1, . . . , ak−1, ak − 1, 1} 6∈ Πi3.
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