
Lower Bounds for the Average Genus of a CF-graph

Yichao Chen
College of Mathematics and Econometrics

Hunan University, Changsha 410082, P.R.China

ycchen@hnu.edu.cn

Submitted: Nov 15, 2009; Accepted: Oct 28, 2010; Published: Nov 5, 2010

Mathematics Subject Classifications: 05C10

Abstract

CF-graphs form a class of multigraphs that contains all simple graphs. We prove
a lower bound for the average genus of a CF-graph which is a linear function of its
Betti number. A lower bound for average genus in terms of the maximum genus and
some structure theorems for graphs with a given average genus are also provided.

1 Introduction

A graph is often denoted by G = (V, E), it is simple if it contains neither multiple edges
nor self-loops. If a graph does not contain self-loops but contains multiple edges, we call
it a multigraph, otherwise if it contains self-loops, we call it a pseudograph. The graph
with only one vertex and no edges is called the trivial graph. The vertex-connectivity
κ(G) of a graph G is the minimum number of vertices whose removal from G results in a
disconnected or trivial graph. The edge-connectivity κ1(G) of G is the minimum number
of edges whose removal from G results in a disconnected or trivial graph. A spanning tree
of G is a tree which is a subgraph of G with the same vertex set as G. For a spanning
tree of G, the number of co-tree edges is called the Betti number of G, denoted by β(G).

A surface means a compact closed 2-manifold without boundary. It is known that there
are two kinds of surfaces, orientable and nonorientable. An embedding of G into a surface
S is a topological embedding i : G → S (see [14]) and each component of S − i(G), called
a region, is homeomorphic to an open disk. In this paper, we only consider embeddings
of G into orientable surfaces S. A rotation at a vertex v of a graph G is a cyclic order of
all edges incident with v, thus an n-valent vertex admits (n − 1)! rotations. A rotation
system R of the graph is a collection of rotations, one for each vertex of G. An embedding
of G into an orientable surface S induces a rotation system as follows: the rotation at v is
the cyclic permutation corresponding to the order in which the edge-ends are traversed in
an orientation-preserving tour around v. Conversely, by the Heffter-Edmonds principle,
every rotation system induces a unique embedding (up to homeomorphism) of G into some
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orientable surface S. The bijection of this correspondence implies that the total number
of orientable embeddings is

∏

v∈G(dv − 1)!.
The average genus γavg(G) of a graph G is the expected value of the genus random

variable, over all labeled 2-cell orientable embeddings of G, using the uniform distribution.
The investigation of average genus will help us to understand embeddings of graphs better.
We also show that it is connected with the mode of embedding distribution sequence [12].
See [1, 3, 4, 5, 6, 7, 15, 20, 21] etc. for more details.

A cactus is a graph obtained in the following way: start with a tree T, then replace
some of the vertices in T by simple cycles and connect the edges incident to each such
vertex to the corresponding cycle in an arbitrary way. A necklace Nr,s of type (r, s) is a
cycle where r disjoint edges are doubled and s self-loops are added to s vertices which are
not endpoints of doubled edges. Figure 1 shows two necklaces of type (2, 2) and a cactus
with six vertices.

Figure 1: Two necklaces of type (2, 3) and a cactus with six vertices.

A bridge is an edge whose deletion increases the number of connected components. A
bar-amalgamation of two disjoint graphs H and G is obtained by running an edge between
a vertex of G and a vertex of H. A cactus-free graph is inductively defined as follows:
1. Every 2-edge connected graph that is not a simple cycle is cactus-free. 2. The bar-
amalgamation of two cactus-free graphs is cactus-free. The intuitive idea of a cactus-free
graph G is that when all the bridges are deleted from G, none of the components of the
resulting graph is a simple cycle or an isolated vertex.

Let G be a graph with minimum degree at least three. A frame of G is obtained
recursively by (1) for every vertex of degree four incident to a loop, deleting the loop and
contracting one of the remaining incident edges, and (2) for every pair of vertices both
of degree three and joined by two edges, contracting the three edges incident to one of
them. A CF-graph is the frame of a cactus-free graph.

G F (G)

Figure 2: A graph G and it’s frame.



Figure 1 gives an example of a graph G and its frame F (G).
In other words, a CF-graph can also be defined as a graph that does not contain the

structures of Figure 1.

Figure 3: Three forbidden structures.

Note that Cacti and Necklaces Nr,s(r, s > 1) are not CF-graphs, the average genus of
each of the two graphs is bounded by 1(see [4, 15], for details). In [3], J. Chen and J.L.
Gross proved that a 2-connected simple graph with at least 9k edges has average genus
at least k+1

2
. In other words, we have:

Theorem 1.1. (See [3], Theorem 4.3) Let G be a 2-connected simple graph with minimum
degree at least 3, then the average genus γavg(G) is larger than c log(β(G)) for some
constant c > 0.

Note that each simple graph is a CF-graph. In [7], Chen improved this theorem as
follows:

Theorem 1.2. (See [7], Theorem 4.5) Let G be a CF-graph with minimum degree at least
3, Then the average genus γavg(G) is larger than c log(β(G)) for some constant c > 0.

In [9], we obtained the following result for the maximum genus of a CF-graph.

Theorem 1.3. (See [9]) Let G be a CF-graph with minimum degree at least 3. Then
lower bounds on the maximum genus are given in Table 1. The rows correspond to edge-
connectivity k = 1 or k > 2, respectively. The same bounds hold for vertex-connectivity k

and for graphs of arbitrarily large Betti number.

Table 1:
k γM(G)

k = 1 min{β(G)+2
4

,
⌊

β(G)
2

⌋

}

k > 2 min{β(G)+2
3

,
⌊

β(G)
2

⌋

}

Based on the above result, we will show a lower bound for the average genus of a
CF-graph which is a linear function of its Betti Number.

Theorem 1.4. Let G be a CF-graph with minimum degree at least 3. Then lower bounds
on the average genus are given in Table 2. The rows correspond to edge-connectivity k = 1
or k > 2, respectively. The same bounds hold for vertex-connectivity k and for graphs of
arbitrarily large Betti number.



Table 2:
Type Pseudograph Multigraph Simple

k = 1 β(G)
20

β(G)
12

β(G)
8

[8]

k > 2 β(G)
15

β(G)
9

β(G)
6

[2]

2 The joint tree method

By a polygon with r edges, we shall mean a 2-cell which has its circumference divided into
r arcs by r vertices. In fact, a surface can be obtained by pairing the edges of a polygon
and identifying the two edges in each pair. The following three operations [17, 19] on a
cyclic string representing such a polygon do not change genus of such a surface.

Operation 1: Aaa− ∼ A,

Operation 2: AabBab ∼ AcBc,

Operation 3: AB ∼ {(Aa), (a−B)},

A A

a a

A B

a b

b a

A B

c

c

A B A Bc c

Figure 4: Operation 1, Operation 2 and Operation 3 (From left to right).

where A and B are all linear order of letters.

Property 2.1. (See [18], Principle 2 of P263) Let A, B, C and D be linear order of
letters. Then CxABx−D ∼ DxBAx−C.

We have the following relation [17, 19].
Relation 1: AaBbCa−Db−E ∼ ADCBEaba−b−.

Proof. By Property 2.1,

AaBbCa−Db−E ∼ Db−EabCBa−A = EabCBa−ADb− ∼ ba−ADCBb−Ea

∼ a−b−EADCBab = aba−b−EADCB ∼ aba−b−ADCBE.

Relation 1 is also called handle normalization, In the above relation, A, B and C are
permitted to be empty. By Relation 1, we can obtain the normal form of an orientable
surface as one, and only one, of O0 = aa−, Om =

∏m

i=1 aibia
−
i b−i (m > 0).

The joint-tree approach [17] is an alternative to the Heffter-Edmonds algorithm for
calculating the genus of the surface associated with a given rotation system. The rotation
system is what combinatorializes the topological problem; a joint tree can be regarded as



the combination of a spanning tree and a rotation system. Given a spanning tree T and
a rotation system R of G, the associated joint tree, denoted by GT which is obtained by
splitting each co-tree edge e into two semi-edges e and e−. According to the rotation, all
lettered semi-edges of GT form a polygon P with β(G) pairs of edges. Then, we apply
Relation 1 and Operations 1,2 and 3 to normalize the polygon P and get the genus of the
embedding. Based on joint trees, the topological problem for determining embeddings of
a graph is transformed into a combinatorial problem. For more details, we can also refer
to [22, 23].

Example 2.2. Given a graph G=(V, E), V = {v1, v2, v3, v4}, E = {a, b, c, d, e, f}, a, b and
d are edges on T, c, e and f are co-tree edges. The rotation system R at each vertex is
counterclockwise: v1(dea), v2(afb), v3(bec), v4(cfd). We travel along on GT according to
the rotation system and obtain the polygon c−cfef−e− ∼ fef−e−, which is an embedding
of G into the torus (See Figure 2).

v4 v3

v1 v2

c

a

d b
e f

v4 v1 v2 v3

d a b

c

f e f−

c−

e−

Figure 5: The graph G and it’s joint tree GT .

Note that the polygon P is described by a linear order of letters, we say these letters
are elements of P.

Definition 2.3. Let Ω be a finite set. We call a polygon P on Ω if every element of P

belongs to Ω.

Definition 2.4. Let P be the polygon obtained from a joint tree GT . Assume that P is
a polygon on a finite set Ω. Two elements x, y ∈ Ω are said to be interlaced on P if it can
be expressed as the form P = AxByCx−Dy−E, otherwise they are parallel on P.

Lemma 2.5. (See [17], Theorem 5.3) If any two elements are parallel on P, then there
exists an element x ∈ Ω such that P = Axx−B, where A and B are two linear orders of
letters on Ω.

Proof. Suppose x ∈ Ω, and P = A1x1B1x
−
1 C1 where A1, B1 and C1 are three linear

orders of letters on Ω. If B1 is empty, the theorem is true. Otherwise B1 is nonempty,
for any x2 ∈ B1, on the basis of orientability and x2 and x1 parallel, the only possibility
is x−

2 ∈ B1. From the known condition, there is also a linear order B2 on Ω such that
B1 = A2x2B2x

−
2 C2 where A2 and C2 are linear orders of letters on B1. If B2 is empty, the

result follows. Otherwise B2 is nonempty, and by the fact that the set of elements of P is
finite, we only repeat the above process finitely often and get the desired result.



Lemma 2.6. (see [17], Theorem 5.4) Let P be a polygon on Ω. If P ∼ Ok (k > 1), then
there exist two elements x, y ∈ Ω that are interlaced.

Proof. By contradiction, any elements of P on Ω are parallel. By Lemma 2.1, we know
that there exists an element x ∈ Ω such that P = Axx−B, where A and B are linear
orders of letters on Ω. By Operation 1, P = Axx−B ∼ AB. Since any elements of AB

are parallel too, by lemma 2.5, there exists an element y ∈ Ω such that AB = Cyy−D,

where C and D are linear orders of letters on Ω. By applying Operation 1 again, we have
AB = Cyy−D ∼ CD. Since the elements of P is finite, at last we have P ∼ O0. This
contradicts P ∼ Ok (k > 1).

Lemma 2.7. Let P be a polygon on Ω. If P = ABC ∼ Ok, P1 = xyAx−By−C ∼ Ol and
P2 = yxAx−By−C ∼ On, then l > k + 1 or n > k + 1.

Proof. We prove the lemma by induction on number k. If k = 0, by Relation 1, P1 ∼
BACxyx−y− ∼ Ol. Since l > 1, it’s true in this case. Now we suppose the result is true
for k = m > 1. If we prove the theorem for k = m + 1, then we complete the proof. Since
P = ABC ∼ Ok (k > 1), by Lemma 2.6, there exist two elements a, b ∈ Ω are interlaced,
i.e., P = A1aB1bC1a

−D1b
−E1 where A1, B1, C1, D1, and E1 are linear orders of letters

on Ω. So we can denote P1 = xyA1aB1bC1a−D1b−E1 and P2 = yxA1aB1bC1a−D1b−E1

where A1, B1, C1, D1, and E1 are linear orders of letters on Ω ∪ {x−, y−}. By Relation 1,
we have

P ∼ A1D1C1B1E1aba−b−,

P1 ∼ xyA1D1C1B1E1aba−b−,

P2 ∼ yxA1D1C1B1E1aba−b−.

If we denote P
′

= A1D1C1B1E1 = A
′

B
′

C
′

, two forms of P
′

1 and P
′

2 are discussed.

1. Case 1: P
′

1 = xyA1D1C1B1E1 = xyA
′

x−B
′

y−C
′

and P
′

2 = yxA1D1C1B1E1 =
yxA

′

x−B
′

y−C
′

2. Case 2: P
′

1 = xyA
′

y−B
′

x−C
′

and P
′

2 = yxA
′

y−B
′

x−C
′

.

By symmetry, we need only to discuss case 1. Since P
′

∼ Om, P
′

1 ∼ Ol−1 and
P

′

2 ∼ On−1, by induction hypothesis, we have l − 1 > m or n − 1 > m. So we get
P ∼ Om+1, P1 ∼ Ol and P2 ∼ On where l > m + 1 or n > m + 1.

3 The technique of vertex-splitting for a graph

In this section, a special form of vertex-splitting of [16] is generalized.

Definition 3.1. Suppose the graph G = (V, E) is simple. Let u be a vertex of G of
valence d(u) = d + 1 > 3 and v, v1, v2, . . . , vd be its neighbors. We denote the edge uvi by
ei, for i = 1, 2, . . . , d, and the edge uv by f. The graph Gi1,i2,...,ik is called a k-degree proper
splitting of G at u if it can be obtained from G−u by adjoining v, vi1 , vi2 , . . . , vik to a new
vertex x, adjoining all the other ex-neighbors of u to a new vertex y (il ∈ {1, 2, . . . , k},
for l = 1, 2, . . . , k and d > k > 1), and finally adjoining x and y.



The new vertex x is (k+2)-valent for each Gi1,i2,...,ik and the new vertex y is (d−k+1)-
valent. Let Λ be the set of all graphs Gi1,i2,...,ik , then the number of elements in Λ is

(

d

k

)

.

It is obvious that each graph Gi1,i2,...,ik has the same the Betti number as that of G, and
they can contract the new edge xy to get the graph G. Figure 6
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v
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v
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Figure 6: The 2-degree proper splitting of G at u with a designate neighbor v

gives an example of a 2-degree proper splitting of G at u.

Suppose the rotation system R of G at vertex u is

u. ei1ei2 . . . eidf

where ij ∈ {1, 2, . . . , d}, for j = 1, 2, . . . , d and f is the edge uv. Let Ri1,i2,...,ik be the
rotation system of the graph Gi1,i2,...,ik with rotations

x. fei1 . . . eike and y. eeik+1
. . . eid

and all other vertex rotations as in R. e is the new edge in Gi1,i2,...,ik that connects the
new vertex x and y. Let Rid−k+1,...,id be the rotation system of the graph Gid−k+1,...,id with
rotations

x. feeid−k+1
eid−k+2

. . . eid and y. eei1 . . . eid−k

and all other vertex rotations as in R. Similarly Rij ,...,id,i1,...,ij+k−d−1
be the rotation system

of Gij ,...,id,i1,...,ij+k−d−1
, for j = d − k + 2, . . . , d. with rotations

x. eij . . . eidfei1 . . . eik+j−d−1
e and y. eeik+j−d

. . . eij−1

and all other vertex rotations as in R.

Definition 3.2. The rotation systems Ri1,i2,...,ik , Rid−k+1,...,id and Rij ,...,id,i1,...,ij+k−d−1
, for

j = d− k + 2, . . . , d, are said to be obtained by a k-degree proper splitting at the vertex u

in the rotation system R with the designated neighbor v



Note that the rotation system R can be obtained by contracting the rotation sys-
tem Ri1,i2,...,ik , Rid−k+1,...,id or Rij ,...,id,i1,...,ij+k−d−1

, for j = d − k + 2, . . . , d, on the edge e.

Furthermore we have:

Lemma 3.3. Let G be a connected simple graph with a vertex u of valence d + 1 (d > 3)
and a neighbor v. Let R be a rotation system of G. Then there are exactly k + 1 systems
of the k-degree proper splittings of G at u with designated neighbor v that are k-degree
proper splittings of R. Moreover, every rotation system of a k-degree proper splitting of G

is uniquely contractible on the edge xy to a rotation system of G.

Proof. Suppose the rotation system R at vertex u is

u. ei1ei2 . . . eidf

where ij ∈ {1, 2, . . . , d}, for j = 1, 2, . . . , d and f is the edge uv. By the definition, R can
be obtained only by contracting the edge e in the rotation systems Ri1,i2,...,ik , Rid−k+1,...,id

or Rij ,...,id,i1,...,ij+k−d−1
, for j = d−k+2, . . . , d, which are defined above. Furthermore, each

of them is uniquely contractible on e to the rotation system R.

In the genus polynomial gG(x) =
∑

k>0

gkx
k of G, the coefficient of xk is the number of

distinct embeddings of the graph G on the oriented surface of genus k. Note that when a
graph G is non-simple, we can subdivide the multiple edges and loops of G and obtain a
simple graph. Since they have the same genus polynomial, by Lemma 3.3, we have:

Lemma 3.4. Let G be a connected graph with a vertex u of valence d + 1(d > 3), and let
Gi1,i2,...,ik (ij ∈ {1, 2, . . . , d}) be graphs obtained by k-degree properly splitting at vertex u,

and Λ be the sets of all the graphs Gi1,i2,...,ik . Then we have

gG(x) =
1

k + 1

∑

Gi1,i2,...,ik
∈Λ

gGi1,i2,...,ik
(x).

It is routine to check the following corollary by the definition of average genus and
lemma 3.4.

Corollary 3.5. Let G be a connected graph with a vertex u of valence d + 1(d > 3),
and let Gi1,i2,...,ik (ij ∈ {1, 2, . . . , d}) be graphs obtained by k-degree properly splitting
at vertex u, and Λ be the sets of all the graphs Gi1,i2,...,ik . Then we have γavg(G) =
1

(d
k)

∑

Gi1,i2,...,ik
∈Λ

γavg(Gi1,i2,...,ik).

4 Lower bound for the average genus of a graph

In [6] it was shown that the average genus of a 3-regular graph is at least half its maximum
genus, we will obtain a more general result in this section. Let G

′

be a subgraph of a



graph G and R be a rotation system on G. The induced rotation system R
′

on G
′

is
obtained by deleting all edges of G−G

′

from the rotation system R. Let Γ and Γ
′

be the
sets of rotation systems on G and G

′

respectively. We denote ΓR
′ the set of all rotation

systems on G that induce rotation system R
′

on G
′

. The following Lemma is obtained
from [6].

Lemma 4.1. (see [6]) Let G
′

be a subgraph of a graph G. Then the set Γ of all rotation
systems on G is a disjoint union of the sets ΓR

′ , taken over all rotation systems R
′

on
G

′

. Moreover, |Γ| = |Γ
′

| · |ΓR
′ |, for any rotation system R

′

on the graph G
′

.

Lemma 4.2. (see [6]) Let G be a graph of maximum genus greater than 0. Then there
exist a pair of adjacent edges {e, f} such that the graph G

′

= G − e − f is a connected
spanning subgraph of G and γM(G) = γM(G

′

) + 1.

Now we have the following theorem:

Theorem 4.3. Let G be a graph of maximum degree at most d. Then γavg(G) >
γM (G)
d−1

.

Proof. We prove the Theorem by induction on the number γM(G). If γM(G) = 0, by
the definition of average genus, we know that the average genus of G is also 0. Now we
suppose that the graph G has maximum genus not less than 1. By Lemma 4.2, there exist
a pair of adjacent edges {e, f} in G such that the graph G

′

= G − e − f is a connected
spanning subgraph of G and γM(G) = γM(G

′

) + 1. Suppose e and f are incident with a
common vertex v. Without loss of generality, we let e = uv and f = vw where u, v and w

are distinct vertices of G (when G is a non-simple graph, we can subdivide the loops and
multiple edges of G). It is evident that the maximum degree of G

′

is also at most d. By

our inductive hypothesis, the average genus of G
′

is not less than γM (G
′
)

d−1
. i.e.,

γavg(G
′

) >
γM(G

′

)

d − 1
=

γM(G) − 1

d − 1
=

γM(G)

d − 1
−

1

d − 1
. (1)

Let R be a rotation system on G and R
′

be a rotation system on G
′

. Let Γ and Γ
′

be the sets of rotation system on G and G
′

respectively. We denote ΓR
′ the set of

all rotation systems on G that induce rotation system R
′

on G
′

. It is easy to see that
|ΓR

′ | = (dG(v) − 1)(dG(v) − 2)(dG(u) − 1)(dG(w) − 1). Note that the genus polynomial
gG(x) is independent of the choice of the spanning tree T. To the rotation system R

′

on G
′

,

by joint-tree method, we can obtained a joint tree G
′

T and a polygon P
′

. Similarly, To the
rotation system R of ΓR

′ , we also can get a joint tree GT and a polygon P. By the relation
between R

′

and R, if we denote P
′

= ABCD, we can express P = eAfBe−Cf−D or
P = fAeBe−Cf−D. It is easy to see that there are λ = (dG(v)−2)(dG(u)−1)(dG(w)−1)
pairs of {efBe−Cf−D, feBe−Cf−D}( i.e, A is empty). By Lemma 2.7, for each pair
{efBe−Cf−D, feBe−Cf−D} of polygon, one of the genus {efBe−Cf−D, feBe−Cf−D}
is greater than that of BCD by one. Consequently, at least λ

|Γ
R
′ |

= 1
dG(v)−1

rotation

systems in the set ΓR
′ have genus at least γ(R

′

)+1 and no rotation system in the set ΓR
′

has genus less than γ(R
′

). According to Lemma 4.1 and Inequality (1), we have



γavg(G) =

∑

R∈Γ

γ(R)

|Γ|
=

∑

R
′∈Γ′

∑

R∈Γ
R
′

γ(R)

|Γ|
>

∑

R
′
∈Γ

′

(|ΓR
′ |γ(R

′

) +
|ΓR

′ |

dG(v) − 1
)

|Γ|

=

∑

R
′∈Γ′

(γ(R
′

) +
1

dG(v) − 1
)

|Γ′|
= γavg(G

′

) +
1

dG(v) − 1
> γavg(G

′

) +
1

d − 1

>
γM(G)

d − 1
.

5 The proof of Theorem 1.4

Proof. Let the number of vertices with maximum degree △(G) is n. We prove the theorem
by induction on the number n + △(G).

Case 1: G is a multigraph.
Subcase a: κ1(G) = 1. If the maximum degree △(G) of G is less than 5, by Theorem

1.3 and Theorem 4.3, we have

γavg(G) > min

{

β(G) + 2

12
,
⌊β(G)

2
⌋

3

}

=

{ 1
3
, β(G) = 3

β(G)+2
12

, β(G) > 4
>

β(G)

12
.

Otherwise △(G) > 5, the following two different cases are discussed. (In this case, we
have β(G) > 5).

(1). △(G) = 5. Let u be a vertex of degree △(G). Then the edge set E(u) = {uv :
uv ∈ E(G)} is isomorphic to one of the seven cases in Figure 7.

Figure 7: Seven cases.

To each case, we construct four graphs G2, G3, G4 and G5 by a 1-degree proper splitting
at the vertex u with a designated neighbor such that the red edge incident with. It is a
routine task to check that each graph Gi, for i = 2, 3, 4, 5, is a CF-graph and the minimum



degree of Gi is at least 3. Note that each graph Gi, for i = 2, 3, 4, 5, has the same Betti
number as that of G. By our inductive hypothesis, all the graphs G2, G3, G4, and G5 have
average genus at least β(G)

12
. By Corollary 3.5,

γavg(G) =
1

4

5
∑

i=2

γavg(Gi) >
1

4

5
∑

i=2

β(G)

12
=

β(G)

12
.

(2). △(G) > 6. Let u be a vertex of degree △(G). We construct
(

△(G)−1
2

)

graphs
G1, G2, . . . , G(△(G)−1

2 ) by a 2-degree proper splitting at the vertex u with a designated

neighbor (any vertex adjacent to u). Let Λ be the set of graphs G1, G2, . . . , G(△(G)−1
2 ).

Since each graph Gi, for i = 1, 2, . . . ,
(

△(G)−1
2

)

, is a CF-graph and the minimum degree
of Gi is at least 3, by our inductive hypothesis, all the graphs G1, G2, . . . , G(△(G)−1

2 ) have

average genus at least β(G)
12

. By Corollary 3.5,

γavg(G) =
1

(

△(G)−1
2

)

∑

G∈Λ

γavg(G) >
β(G)

12
.

Subcase b: κ1(G) > 2. In this case have a similar discussion as in subcase a.
Case 2: G is a pseudograph.
Subcase 1: κ1(G) = 1. If the maximum degree △(G) of G is less that 7, by Theorem

1.3 and Theorem 4.3, we know that the theorem is true. Otherwise △(G) > 7, the
following two different cases are discussed.

(1). △(G) = 7. Let u be a vertex of degree △(G). Then the edge set E(u) = {uv :
uv ∈ E(G)} is isomorphic to one of twenty six cases in Figure 8.

Figure 8: Twenty six cases.

To each case, we construct six graphs G2, G3, . . . , G7 by a 1-degree proper splitting at
the vertex u with a designated neighbor which the red edge is incident with. It is a routine



task to check that each graph Gi, for i = 2, 3, . . . , 7, is a CF-graph and the minimum degree
of Gi is at least 3. By inductive hypothesis, all the graphs G2, G3, . . . , G7 have average
genus at least β(G)

20
. Then from Corollary 3.5,

γavg(G) =
1

6

7
∑

i=2

γavg(Gi) >
1

6

7
∑

i=2

β(G)

20
=

β(G)

20
.

(2). △(G) > 8. Let u be a vertex of degree △(G). We construct
(

△(G)−1
3

)

graphs
G1, G2, . . . , G(△(G)−1

3 ) by a 3-degree proper splitting at the vertex u with a designated

neighbor (any vertex adjacent to u). Let Λ be the set of graphs G1, G2, . . . , G(△(G)−1
3 ).

Since each graph Gi, for i = 1, 2, . . . ,
(

△(G)−1
3

)

, is a CF-graph and the minimum degree of
Gi is at least 3, by our inductive hypothesis, all the graphs Gi have average genus at least
β(G)
20

. By Corollary 3.5,

γavg(G) =
1

(

△(G)−1
3

)

∑

G∈Λ

γavg(G) >
β(G)

20
.

Subcase 2: κ1(G) > 2. In this case have a similar discussion as in subcase 1.

6 Some additional results

In [3] it was proved that the distribution of average genus of simple graphs is sparse in the
real line R. By Theorem 1.4, we know that simple graphs can be replaced by CF-graphs.

Theorem 6.1. Let r be a positive real number, then only finitely many real numbers less
than r are possible values of average genus for CF-graphs.

Theorem 6.2. (see [15]) The average genus of a graph is not less than the average genus
of any of its subgraphs.

Let e ∈ E(G), if we insert two vertices u and v and double the edge between them,
we say we attach an open ear to the interior of e. Similarly, if the vertices u = v, then
we say we attach a closed ear to the interior of e. The two vertices u and v are called
the ends of the ear. We say r open ears and s closed ears are attached serially to the
edge e, if all ends of the ears are distinct. A sequence G1, G2, G3, . . . , of graphs is called
strictly monotone sequence if no pair of graphs in the sequence are homeomorphic and
each Gi is homeomorphic to a subgraph of Gi+1 for all i > 1. In [4] it was proved that
the values of the average genus for 2-connected graphs have limit points. Note that the
average genus for bar-amalgamation of a cactus and the graph G equals to the average
genus of G. By Theorem 1.4, the limit points for average genus may not be bounded in
2-connected graphs. We have the following result as a generalization.

Theorem 6.3. Let G1, G2, G3, . . . , be a strictly monotone sequence of connected graphs
such that the values of the average genus of the graphs approach a finite limit point. Then
there exists an index N such that all but a finite number of graphs in the sequence can be
obtained by attaching ears serially or by bar-amalgamation of a cactus to GN .



Proof. Suppose the values of the average genus of the graphs approach a finite limit point
L, i.e.,

lim
i→∞

γavg(Gi) = lim
β(Gi)→∞

γavg(Gi) = L.

By Theorem 6.2, we have γavg(Gi) > γavg(Gi−1) (i > 2). By Theorem 1.4, Gn (n is
sufficiently large) must not be a CF-graph. Since G1, G2, G3, . . . , be a strictly monotone
sequence of connected graphs, there must exist an index N such that each graph Gi can
be obtained by attaching ears serially or by bar-amalgamation of a cactus to GN

The authors of [5] discussed a Kuratowski type theorem for average genus of graphs.
They obtained the structure of average genus less than 1 with the help of computer,
and also posed a problem to characterize the structure of average genus less than a fixed
constant c systematically.

Theorem 6.4. (see [5]) A cactus-free graph G has average genus less than 1 if and only
if either G is a necklace or homeomorphic to one of finitely many exceptions.

Actually, the above theorem can also be extended to the general case. We have the
following generalized Kuratowski type theorem of [5].

Theorem 6.5. A cactus-free graph G has average genus less than c if and only if either
G is obtained by attaching ears or G is homeomorphic to one of finitely many exceptions.

Proof. Let G be a graph whose average genus less than c. If G is a CF-graph, by Theorem
1.4, there are finitely many CF-graphs with average genus less than c, then the theorem
is true. Otherwise, by Theorem 1.4, it can be obtained by attaching ears to one of finitely
many CF-graphs.
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