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Abstract

Let Dk be the class of graphs for which every minor has minimum degree at
most k. Then Dk is closed under taking minors. By the Robertson-Seymour graph
minor theorem, Dk is characterised by a finite family of minor-minimal forbidden
graphs, which we denote by D̂k. This paper discusses D̂k and related topics. We
obtain four main results:

1. We prove that every (k + 1)-regular graph with less than 4
3(k + 2) vertices is

in D̂k, and this bound is best possible.

2. We characterise the graphs in D̂k+1 that can be obtained from a graph in D̂k

by adding one new vertex.

3. For k 6 3 every graph in D̂k is (k + 1)-connected, but for large k, we exhibit
graphs in D̂k with connectivity 1. In fact, we construct graphs in Dk with
arbitrary block structure.

4. We characterise the complete multipartite graphs in D̂k, and prove analogous
characterisations with minimum degree replaced by connectivity, treewidth,
or pathwidth.

1D.W. is supported by a QEII Research Fellowship from the Australian Research Council. An extended
abstract of this paper was published in: Proc. Topological & Geometric Graph Theory (TGGT ’08),
Electronic Notes in Discrete Mathematics 31:79-83, 2008.
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1 Introduction

The theory of graph minors developed by Robertson and Seymour [25] is one of the most
important in graph theory influencing many branches of mathematics. Let X be a minor-
closed class of graphs1. A graph G is a minimal forbidden minor of X if G is not in
X but every proper minor of G is in X . Let X̂ be the set of minimal forbidden minors
of X . By the graph minor theorem of Robertson and Seymour [25], X̂ is a finite set.
For various minor-closed classes the list of minimal forbidden minors is known. Most
famously, if P is the class of planar graphs, then the Kuratowski-Wagner theorem states
that P̂ = {K5, K3,3}. However, in general, determining the minimal forbidden minors for
a particular minor-closed class is a challenging problem.

Let δ(G) be the minimum degree of a graph G. Let Dk be the class of graphs G such

that every minor of G has minimum degree at most k. Then Dk is minor-closed. Let D̂k

be the set of minimal forbidden minors of Dk. By the graph minor theorem, D̂k is finite
for each k. The structure of graphs in D̂k is the focus of this paper. For small values of
k, it is known that D̂0 = {K2} and D̂1 = {K3} and D̂2 = {K4} and D̂3 = {K5, K2,2,2};
see Section 2. Determining D̂4 is an open problem.

The majority of this paper studies the case of general k rather than focusing on small
values. Our first main result shows that, in some sense, there are many graphs in D̂k. In
particular, every sufficiently small (k + 1)-regular graph is in D̂k. This result is proved in
Section 5.

Theorem 1.1. Every (k + 1)-regular graph with less than 4
3
(k + 2) vertices is in D̂k.

Moreover, for all k ≡ 1 (mod 3) there is a (k + 1)-regular graph on 4
3
(k + 2) vertices that

is not in D̂k.

Our second main result characterises the graphs in D̂k+1 that can be obtained from a
graph in D̂k by adding one new vertex.

Theorem 1.2. Let S be a set of vertices in a graph G ∈ Dk. Let G′ be the graph obtained
from G by adding one new vertex adjacent to every vertex in S. Then G′ ∈ D̂k+1 if and
only if S is the set of vertices of degree k + 1 in G.

Theorem 1.2 is proved in Section 6 along with various corollaries of Theorems 1.1 and
1.2.

1All graphs considered in this paper are undirected, simple, and finite.
To contract an edge vw in a graph G means to delete vw, identify v and w, and replace any parallel

edges by a single edge. The contracted graph is denoted by G/vw. If S ⊆ E(G) then G/S is the graph
obtained from G by contracting each edge in S (while edges in S remain in G). The graph G/S is called
a contraction minor of G.

A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from a subgraph of
G by contracting edges. That is, H can be obtained from G by a sequence of edge contractions, edge
deletions, or vertex deletions. For each vertex v of H, the set of vertices of G that are contracted into v
is called a branch set of H. A class X of graphs is minor-closed if every minor of every graph in X is
also in X , and some graph is not in X .

The join of graphs G and H, denoted by G ∗ H, is the graph obtained by adding all possible edges
between disjoint copies of G and H. Let G denote the complement of a graph G.
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It is natural to expect that graphs in D̂k are, in some sense, highly connected. For
example for k 6 3 all the graphs in D̂k are (k + 1)-connected. However, this is not true

in general. In Section 2 we exhibit a graph in D̂4 with connectivity 1. In fact, our third
main result, proved in Section 7, constructs graphs in D̂k (k > 9) with arbitrary block
structure.

Theorem 1.3. Let T be the block decomposition tree of some graph. Then for some k, T
is the block decomposition tree of some graph in D̂k.

A complete characterisation of graphs in D̂k is probably hopeless. So it is reasonable
to restrict our attention to particular subsets of D̂k. A graph is complete c-partite if
the vertices can be c-coloured so that two vertices are adjacent if and only if they have
distinct colours. Let Kn1,n2,...,nc be the complete c-partite graph with ni vertices in the

i-th colour class. Since every graph in D̂k for k 6 3 is complete multipartite, it is natural
to consider the complete multipartite graphs in D̂k. Our fourth main result characterises
the complete multipartite graphs in D̂k.

Theorem 1.4. For all k > 1, a complete multipartite graph G is in D̂k if and only if for
some b > a > 1 and p > 2,

G = K
a,b, . . . , b︸ ︷︷ ︸

p

,

such that k + 1 = a + (p− 1)b and if p = 2 then a = b.

Theorem 1.4 is proved in Section 8. Moreover, we prove that the same characterisation
holds for the minimal forbidden complete multipartite minors for the class of graphs for
which every minor has connectivity at most k. And Theorem 8.9 is an analogous result
for graphs of treewidth at most k and pathwidth at most k.

Finally, note that our results can be interpreted in terms of the contraction degeneracy
of a graph G, which is defined to be the maximum, taken over all minors H of G, of the
minimum degree of H. Thus, G ∈ D̂k if and only if the contraction degeneracy of G
is at most k. See [2, 3, 18, 31, 32] for results about the computational complexity of
determining the contraction degeneracy, and its relation to lower bounds on treewidth.

2 Basics and Small Values of k

This section gives some basic results about D̂k and reviews what is known about D̂k for
small values of k. We have the following characterisation of graphs in D̂k.

Lemma 2.1. G ∈ D̂k if and only if

(D1) δ(G) = k + 1,

(D2) every proper contraction minor of G has minimum degree at most k,

(D3) G is connected, and
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(D4) no two vertices both with degree at least k + 2 are adjacent in G.

Proof. (=⇒) Suppose that G ∈ D̂k. That is, δ(G) > k + 1 and every minor of G has
minimum degree at most k. In particular, every contraction minor of G has minimum
degree at most k, thus proving (D2). If G is not connected then each component of G is
a proper minor with minimum degree k + 1. This contradiction proves (D3). If adjacent
vertices v and w both have degree at least k + 2, then G − vw is a proper minor of G
with minimum degree at least k + 1. This contradiction proves (D4). In particular, some
vertex has degree k + 1. Thus δ(G) = k + 1 and (D1) holds.

(⇐=) Suppose that conditions (D1)–(D4) hold. Suppose on the contrary that some
proper minor of G has minimum degree at least k + 1. Let H be such a minor with the
maximum number of edges. Since G is connected, H can be obtained by edge contractions
and edge deletions only. (Deleting a non-isolated vertex v can be simulated by contracting
one edge and deleting the other edges incident to v.) Condition (D4) implies that every
edge has an endpoint with degree k + 1, implying that every proper subgraph of G
has minimum degree at most k. Hence at least one edge of G was contracted in the
construction of H. Since H was chosen with the maximum number of edges, no edges
were deleted in the construction of H. That is, H is a contraction minor. Condition
(D2) implies that H has minimum degree at most k. This contradiction proves that every
proper minor of G has minimum degree at most k. Thus condition (D1) implies that

G ∈ D̂k.

Observe that Lemma 2.1 immediately implies that for all k > 0,

Kk+2 ∈ D̂k . (1)

Now consider small values of k. Observe that D0 is the class of edgeless graphs, and
D̂0 = {K2}. Similarly D1 is the class of forests, and D̂1 = {K3}. Graphs in D2 are often

called series-parallel. D̂2 and D̂3 are easily determined; see Figure 1.

K4 K5 K2,2,2

Figure 1: Graphs in D̂2 and D̂3.

Proposition 2.2. D̂2 = {K4}.
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Proof. By (1), K4 ∈ D̂2. Consider G ∈ D̂2. By Lemma 2.1, G has minimum degree 3.
Dirac [9] proved that every graph with minimum degree at least 3 contains a K4-minor;
also see [16, 27, 33, 34].Thus G contains a K4-minor. If G 6∼= K4, then the K4-minor in G

is not proper, implying G 6∈ D̂2 by Lemma 2.1. Hence G ∼= K4.

Proposition 2.3. D̂3 = {K5, K2,2,2}.

Proof. By (1), K5 ∈ D̂3. Since K2,2,2 is planar, every proper minor of K2,2,2 is a planar
graph on at most five vertices, which by Euler’s Formula, has a vertex of degree at most
3. Thus K2,2,2 ∈ D̂3.

Consider G ∈ D̂3. By Lemma 2.1, G has minimum degree 4. In Appendix A we
prove that every graph with minimum degree at least 4 contains a 4-connected minor2.
Halin and Jung [17] proved that every 4-connected graph contains K5 or K2,2,2 as a minor.
Thus G contains K5 or K2,2,2 as a minor. Suppose on the contrary that G is isomorphic to
neither K5 nor K2,2,2. Then G contains K5 or K2,2,2 as a proper minor. Thus G contains

a proper minor with minimum degree 4, implying G 6∈ D̂4 by Lemma 2.1. Hence G is
isomorphic to K5 or K2,2,2.

Determining D̂4 is an open problem. But we do know nine graphs in D̂4, as illustrated
in Figure 2. One of these graphs is the icosahedron I, which is the unique 5-regular
planar triangulation (on twelve vertices). Mader [21] proved that every planar graph with
minimum degree 5 contains I as a minor. More generally, Mader [21] proved that every
graph with minimum degree at least 5 contains a minor in {K6, I, C5 ∗K3, K2,2,2,1 − e},
where e is an edge incident to the degree-6 vertex in K2,2,2,1. However, since K2,2,2,1 − e

has a degree-4 vertex, it is not in D̂4. Fijavž [11] proved that every graph on at most 9
vertices with minimum degree at least 5 contracts to K6, K2,2,2,1 or C5 ∗K3. The graphs
G1 and G2 are discussed further in Section 3. The graphs D1 and D3 are due to Fijavž
[11], while D2 is due to Mader [21]. Note that D1, D2 and D3 are not 5-connected. In fact,
D3 has a cut-vertex. It is an example of a more general construction given in Section 7.
In the language used there, D3 is obtained from two copies of the single-horned graph
G5,4 by identifying the two horns.

Proposition 2.4. {K6, I, C5 ∗K3, K1,2,2,2, G1, G2, D1, D2, D3} ⊆ D̂4.

Proof. This result was verified by computer. (The code is available from the authors upon
request.) We now give manual proofs for some of these graphs.

K6 ∈ D̂4 by (1).
I is not in D4 since it is 5-regular. Every proper minor of I is planar with at most

eleven vertices. By Euler’s Formula, every such graph has minimum degree at most 4,
and is thus in D4. Hence I ∈ D̂4.

2This result was attributed by Maharry [23] to Halin and Jung [17]. While the authors acknowledge
their less than perfect understanding of German, Halin and Jung actually proved that every 4-connected
graph contains K5 or K2,2,2 as a minor. This is confirmed by Tutte’s review of the Halin and Jung paper
in MathSciNet.
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I K6 C5 ∗ K3

K2,2,2,1 G1 G2

D1 D2 D3

Figure 2: The known graphs in D̂4; vertices with degree more than 5 are highlighted.

We now prove that C5∗K3 ∈ D4. Since C5∗K3 is 5-regular, conditions (D1), (D3) and
(D4) hold in Lemma 2.1. Suppose that C5 ∗ K3 contains a proper contraction minor H
with δ(H) > 5. Thus |V (H)| > 6, and H was obtained by at most two edge contractions.
Since every edge of C5 ∗ K3 is in a triangle with a degree-5 vertex, H was obtained by
exactly two edge contractions. Since each edge in the C5 part of C5 ∗ K3 is in three
triangles, no edge in the C5 part was contracted. Thus one contracted edge was vw where
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v ∈ C5 and w ∈ K3. Observe that vw is in two triangles vwx and vwy, where x and y are
the neighbours of v in C5. Since both x and y have degree 4 in G/vw, some edge incident
to x and some edge incident to y is contracted in H. This is impossible since x and y are
not adjacent, and only one contraction besides vw is allowed. This contradiction proves
that every proper contraction minor of G has minimum degree at most 4. Thus condition
(D2) holds for C5 ∗K3, and C5 ∗K3 ∈ D̂4.

That K1,2,2,2 is in D̂4 follows from Theorem 8.4 with a = 1 and b = 2 and p = 3.
We now prove that D3 ∈ D4. Observe that conditions (D1), (D3) and (D4) in

Lemma 2.1 hold for D3. Suppose that D3 contains a proper contraction minor H with
δ(H) > 5. Thus H = D3/S for some S ⊆ E(G) such that |V (H)| = 13−|S|. Let v be the
cut-vertex in D3. Let G1 and G2 be the subgraphs of D3 such that D3 = G1 ∪G2 where
V (G1)∩ V (G2) = {v}. Let Si := S ∩E(Gi). We have |Si| 6 |V (Gi)| − 1 = 6. Every edge
of D3 is in a triangle with a vertex distinct from v. Thus, if |Si| = 1 then some vertex in H
has degree at most 4, which is a contradiction. If 2 6 |Si| 6 5 then Gi/S has at least two
and at most five vertices, and every vertex in Gi/S (except possibly v) has degree at most
4, which is a contradiction. Thus |Si| ∈ {0, 6}. Now |S1| + |S2| = |S| 6 7, as otherwise
H has at most five vertices. Thus |S1| = 0 and |S2| = 6 without loss of generality. Hence
H ∼= G1, in which v has degree 4, which is a contradiction. Thus condition (D2) holds for

D3. Hence D3 ∈ D̂4.

3 A General Setting

The following general approach for studying minor-closed class was introduced by Fijavž
[11]. A graph parameter is a function f that assigns a non-negative integer f(G) to
every graph G, such that for every integer k there is some graph G for which f(G) > k.
Examples of graph parameters include minimum degree δ, maximum degree ∆, (vertex-)
connectivity κ, edge-connectivity λ, chromatic number χ, clique number ω, independence
number α, treewidth tw, and pathwidth pw; see [8] for definitions.

For a graph parameter f and a graph G, let f̂(G) be the maximum of f(H) taken over

all minors H of G. Then f̂ also is a graph parameter3. For example, ω̂(G) is the order of
the largest clique minor in G, often called the Hadwiger number of G. Let

Xf,k := {G : f̂(G) 6 k} .

That is, Xf,k is the class of graphs G such that f(H) 6 k for every minor H of G. Then

Xf,k is minor-closed, and the set X̂f,k of minimal forbidden minors is finite.

We have the following characterisation of graphs in X̂f,k, analogous to Lemma 2.1.

Lemma 3.1. G ∈ X̂f,k if and only if f(G) > k + 1 and every proper minor H of G has
f(H) 6 k.

3Let f(G) be the minimum of f(H) where G is a minor of H. Then the class of graphs G with
f(G) 6 k is minor-closed, and we can ask the same questions for f as for f̂ . For example, the minor
crossing number [4, 5, 6] fits into this framework.
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Proof. By definition, G ∈ X̂f,k if and only if G 6∈ Xf,k but every proper minor of G is in
Xf,k. That is, there exists a minor H of G with f(H) > k + 1, but every proper minor H
of G has f(H) 6 k. Thus the only minor H of G with f(H) > k + 1 is G itself.

Lemma 3.2. Let α and β be graph parameters such that α(G) 6 β(G) for every graph

G. Then Xβ,k ⊆ Xα,k and {G : G ∈ X̂β,k, α(G) > k + 1} ⊆ X̂α,k.

Proof. For the first claim, let G be a graph in Xβ,k. Then β(H) 6 k for every minor H
of G. By assumption, α(H) 6 β(H) 6 k. Hence G ∈ Xα,k, implying Xβ,k ⊆ Xα,k.

For the second claim, suppose that G ∈ X̂β,k and α(G) > k + 1. By Lemma 3.1
applied to β, β(G) > k+1 and every proper minor H of G has β(H) 6 k. By assumption,

α(H) 6 β(H) 6 k. Since α(G) > k+1, Lemma 3.1 applied to α implies that G ∈ X̂α,k.

Recall that δ and κ are the graph parameters minimum degree and connectivity.
Observe that Dk = Xδ,k. Let

Ck := Xκ,k

be the class of graphs for which every minor has connectivity at most k. For k 6 3, we
have Ck = Dk and Ĉk = D̂k. That is, Ĉ1 = {K3}, Ĉ2 = {K4}, and Ĉ3 = {K5, K2,2,2}.
Determining Ĉ4 is an open problem; Fijavž [11] conjectured that Ĉ4 = {K6, I, C5 ∗
K3, K1,2,2,2, G1, G2}.

Dirac [10] proved that every 5-connected planar graph contains the icosahedron as
a minor (which, as mentioned earlier, was generalised by Mader [21] for planar graphs

of minimum degree 5). Thus the icosahedron is the only planar graph in Ĉ4. Fijavž

[12] determined the projective-planar graphs in Ĉ4 to be {K6, I, G1, G2}. Fijavž [14]

determined the toroidal graphs in Ĉ5 to be {K7, K2,2,2,2, K3,3,3, K9 − C9}. See [13, 15] for
related results. Also relevant is the large body of literature on contractibility; see the
surveys [19, 22].

Let
Tk := {G : tw(G) 6 k} and Pk := {G : pw(G) 6 k}

respectively be the classes of graphs with treewidth and pathwidth at most k. Since
treewidth and pathwidth are minor-closed, Tk = Xtw,k and Pk = Xpw,k. We have

κ(G) 6 δ(G) 6 tw(G) 6 pw(G)

for every graph G; see [1, 8]. Thus Lemma 3.2 implies that

Pk ⊆ Tk ⊆ Dk ⊆ Ck,

and

{G : G ∈ D̂k, κ(G) > k + 1} ⊆ Ĉk (2)

{G : G ∈ T̂k, δ(G) > k + 1} ⊆ D̂k (3)

{G : G ∈ P̂k, tw(G) > k + 1} ⊆ T̂k. (4)

Thus the (k + 1)-connected graphs that we show are in D̂k are also in Ĉk. In particular,
Theorem 1.1 implies:
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Theorem 3.3. Every (k + 1)-connected (k + 1)-regular graph with less than 4
3
(k + 2)

vertices is in Ĉk.

The relationship between Ĉk and D̂k is an interesting open problem.

Open Problem 3.4. Is Ĉk ⊆ D̂k for all k? Is Ĉk = {G : G ∈ D̂k, κ(G) = k + 1} for all k?

Note that D̂4 6= Ĉ4 since there are graphs in D̂4 with connectivity 1; see Section 7.

4 General Values of k

Let G be a graph. A vertex of G is low-degree if its degree equals the minimum degree
of G. A vertex of G is high-degree if its degree is greater than the minimum degree of G.
Recall that every graph in D̂k has minimum degree k + 1. Thus a vertex of degree k + 1
in a graph in D̂k is low-degree; every other vertex is high-degree. Lemma 2.1 implies that
for every graph G ∈ D̂k, the high-degree vertices in G form an independent set.

Proposition 4.1. Every graph G ∈ D̂k has at least k + 2 low-degree vertices (of degree
k + 1).

Proof. Suppose on the contrary that G has at most k + 1 low-degree vertices. By
Lemma 2.1, each high-degree vertex is only adjacent to low-degree vertices. Since a high-
degree vertex has degree at least k + 2, there are no high-degree vertices. Thus G has at
most k+1 vertices. Thus G has maximum degree at most k, which is a contradiction.

For a set S of vertices in a graph G, a common neighbour of S is a vertex in V (G)−S
that is adjacent to at least two vertices in S. A common neighbour of an edge vw is a
common neighbour of {v, w}. Common neighbours are important because of the following
observation.

Observation 4.2. Let vw be an edge of a graph G with p common neighbours. Let H be
the graph obtained from G by contracting vw into a new vertex x. Then

degH(x) = degG(v) + degG(w)− p− 2.

For every common neighbour y of vw,

degH(y) = degG(y)− 1.

For every other vertex z of H,

degH(z) = degG(z).

Proposition 4.3. For every graph G ∈ D̂k, every edge vw of G has a low-degree common
neighbour.
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Proof. If k = 1 then G = K3 and the result is trivial. Now assume that k > 2.
Suppose on the contrary that for some edge vw of G, every common neighbour of vw

(if any) is high-degree. By Lemma 2.1, at least one of v and w is low-degree (with degree
k + 1). Thus v and w have at most k common neighbours. Let u1, . . . , up be the common
neighbours of v and w, where 0 6 p 6 k.

Let H be the graph obtained from G by contracting vw into a new vertex x. The
degree of each vertex of G is unchanged in H, except for v, w, and each ui. Since
degG(ui) > k + 2, we have degH(ui) > k + 1. By Observation 4.2,

degH(x) = degG(v) + degG(w)− p− 2 > 2(k + 1)− p− 2 = 2k − p .

Thus if p 6 k − 1 then degH(x) > k + 1 and H is a proper minor of G with minimum

degree at least k + 1, implying G 6∈ D̂k.
Otherwise p = k, implying both v and w are low-degree vertices whose only neighbours

are each other and the high-degree vertices u1, . . . , uk. Let J be the graph obtained from
G by contracting v, w, u1 into a new vertex y. Since each neighbour of v is high-degree and
each neighbour of w is high-degree, if a vertex (other than v, w, u1) is adjacent to at least
two of v, w, u1 then it is high-degree. Since no two high-degree vertices are adjacent, the
only vertices (other than v, w, u1) that are adjacent to at least two of v, w, u1 are u2, . . . , uk.
Thus every vertex in J (possibly except y) has degree at least k + 1. Now u1 has at least
k neighbours in G outside of {v, w, u2, . . . , uk}. Thus degJ(y) > k + (k − 1) > k + 1, and

J is a proper minor of G with minimum degree at least k + 1, implying G 6∈ D̂k.

The next result says that for graphs in D̂k, every sufficiently sparse connected induced
subgraph has a common neighbour.

Proposition 4.4. For every graph G ∈ D̂k, for every connected induced subgraph H of G
with n vertices and m 6 1

2
(k + 1)(n− 1) edges, there exists a vertex x in G−H adjacent

to at least degG(x)− k + 1 > 2 vertices in H.

Proof. Suppose that for some connected induced subgraph H with n vertices and m 6
1
2
(k +1)(n− 1) edges, every vertex x in G−H is adjacent to at most degG(x)−k vertices

in H. Let G′ be the graph obtained from G by contracting H into a single vertex v. The
degree of every vertex in G − H is at least degG(x) − (degG(x) − k) + 1 = k + 1 in G′.
Since G has minimum degree k + 1, we have

degG′(v) =

 ∑
w∈V (H)

degG(w)

− 2m > n(k + 1)− 2m > k + 1.

Thus G′ is a proper minor of G with minimum degree at least k +1. Hence G 6∈ D̂k. This
contradiction proves the result.

Corollary 4.5. For every graph G ∈ D̂k, for every clique C of G with at most k + 1
vertices, there exists a vertex in V (G)− C adjacent to at least two vertices of C.
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5 Small Regular Graphs are in D̂k

In this section we show that that every (k +1)-regular graph with sufficiently few vertices

is in D̂k. Moreover, the bound on the number of vertices is tight.

Lemma 5.1. Let G be a connected (k + 1)-regular graph on n vertices. If every edge of

G is in at least 2n− 2k − 5 triangles, then G ∈ D̂k.

Proof. By assumption, conditions (D1), (D3) and (D4) of Lemma 2.1 are satisfied by G.
Suppose on the contrary that H is a contraction minor of G with minimum degree at
least k+1. Let S be the set of vertices of G that are incident to an edge contracted in the
construction of H. Let vw be one such edge. We have |S| 6 2(n−|V (H)|) 6 2n−2k−4.
By assumption, there is a set T of vertices of G that are adjacent to both v and w, and
|T | > 2n − 2k − 5 > |S| − 1. Thus there is at least one vertex x ∈ T − (S − {v, w}),
which is a vertex of H. Since x is adjacent to both endpoints of the contracted edge vw,
degH(x) 6 k. This contradiction proves condition (D2) for G. Lemma 2.1 implies that

G ∈ D̂k.

Lemma 5.2. For every (k + 1)-regular graph G on n vertices, every edge vw of G is in
at least 2k + 2− n triangles.

Proof. Say vw is in t triangles. Thus v and w have t common neighbours. Thus v has
k − t neighbours not adjacent to w, and w has k − t neighbours not adjacent to v. Thus
n > 2 + t + 2(k − t) = 2k + 2− t, implying t > 2k + 2− n.

Theorem 5.3. Every (k + 1)-regular graph G with n < 4
3
(k + 2) vertices is in D̂k.

Proof. Every disconnected (k + 1)-regular graph has at least 2k + 4 vertices. Since n <
2k + 4 we can assume that G is connected. By Lemma 5.2, every edge of G is in at least
2k + 2− n triangles. Now 2k + 2− n > 2n− 2k− 5 since n 6 1

3
(4k + 7). Thus every edge

of G is in at least 2n− 2k − 5 triangles. By Lemma 5.1, G ∈ D̂k.

Theorem 5.3 is best possible in the following sense.

Proposition 5.4. For all k ≡ 1 (mod 3) there is a (k+1)-regular graph G on n = 4
3
(k+2)

vertices that is not in D̂k.

Proof. Let p := 1
3
(k + 2). Then p ∈ Z. Let G be the graph whose complement G is the

disjoint union of Kp,p and Kp,p. Then G has 4p = n vertices, and every vertex has degree
n − 1 − p = k + 1. Observe that G contains a matching M of p edges (between the two
Kp,p subgraphs in G), such that every vertex is adjacent to at least one endpoint of every
edge in M . Contracting each edge in M we obtain a K3p-minor in G, which has minimum

degree k + 1. Thus G 6∈ D̂k.

Theorem 5.3 can be rewritten in terms of complements.

Corollary 5.5. If G is an r-regular graph on n > 4r + 1 vertices, then G ∈ D̂n−r−2.
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6 A Construction

We now describe how a graph in D̂k+1 can be constructed from a graph in D̂k. Let G+

be the graph obtained from a graph G by adding one new vertex that is adjacent to each
vertex of minimum degree in G. If G ∈ D̂k then the vertices of minimum degree are the
low-degree vertices.

Lemma 6.1. If G ∈ D̂k then G+ ∈ D̂k+1.

Proof. Let v be the vertex of G+ − G. Every low-degree vertex in G has degree k + 1,
and thus has degree k +2 in G+. Every high-degree vertex in G has degree at least k +2,
which is unchanged in G+. By Proposition 4.1, G has at least k + 2 low-degree vertices.
Thus v has degree at least k + 2 in G+. Thus G+ has minimum degree k + 2. Suppose on
the contrary that G ∈ D̂k but G+ 6∈ D̂k+1. Thus there is a proper minor H of G+ with
minimum degree at least k + 2. If v is not in a branch set of H, then H is a minor of G,
implying H has minimum degree at most k + 1, which is a contradiction. Now assume
that v is in some branch set B of H. (Think of B simultaneously as a vertex of H and as
a set of vertices of G+.) Now H −B is a minor of G. If H −B is G, then B = {v} and H

is not a proper minor of G+. Thus H −B is a proper minor of G. Since G ∈ D̂k, H −B
has a vertex X of degree at most k. Thus X has degree at most k + 1 in H, which is a
contradiction.

We also have a converse result.

Lemma 6.2. Let S be a set of vertices in a graph G ∈ Dk. Let G′ be the graph obtained
from G by adding one new vertex v adjacent to every vertex in S. If G′ ∈ D̂k+1 then S is
the set of low-degree vertices in G.

Proof. Suppose that G′ ∈ D̂k+1. If some low-degree vertex x of G is not in S, then
degG′(x) = k + 1 and G′ 6∈ D̂k+1. Now assume that every low-degree vertex of G is in S.
Suppose on the contrary that some high-degree vertex y of G is in S. Thus degG(y) > k+2,
implying degG′(y) > k +3. By Proposition 4.1 there are at least k +2 low-degree vertices
of G, all of which are adjacent to v in G′. Thus degG′(v) > k + 3. Hence v and y are

adjacent vertices of degree at least k + 3 in G′. Therefore G′ 6∈ D̂k+1 by Lemma 2.1. This
contradiction proves that no high-degree vertex of G is in S. Therefore S is the set of
low-degree degree vertices.

Observe that Lemmas 6.1 and 6.2 together prove Theorem 1.2. Lemma 6.1 generalises
as follows. For a non-negative integer p, let G+p be the graph obtained from a graph G
by adding p independent vertices, each adjacent to every vertex in G.

Lemma 6.3. Let G be a (k+1)-regular n-vertex graph in D̂k. Then G+p ∈ D̂k+p whenever
0 6 p 6 n− k − 1.

Proof. Every vertex of G has degree k +1+ i in G+i. Every vertex of G+i−G has degree
n in G+i. Thus, if n > k + 1 + i then the vertices of minimum degree in G+i are exactly
the vertices of G. Thus G+i = (G+(i−1))+ whenever 1 6 i 6 n − k − 1. By induction on

i, applying Lemma 6.1 at each step, we conclude that G+i ∈ D̂k+i and G+p ∈ D̂k+p.
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Theorem 5.3 and Lemma 6.3 imply:

Corollary 6.4. Let G be a (k + 1)-regular graph with n < 4
3
(k + 2) vertices. Then

G+p ∈ D̂k+p whenever 0 6 p 6 n− k − 1.

Corollary 6.4 implies:

Lemma 6.5. Let L(G) denote the set of minimum degree vertices in a graph G. Let
p := |G− L(G)|. Suppose that

• the minimum degree of G is k + 1, and

• |L(G)| < 4
3
(k + 2− p), and

• V (G)− L(G) is an independent set of G, and

• every vertex in V (G)− L(G) dominates L(G).

Then G ∈ D̂k.

Proof. Let X be the subgraph of G induced by the vertices of degree k + 1. Thus X is
(r+1)-regular, where r = k−p. Say X has n vertices. By assumption, n < 4

3
(k+2−p) =

4
3
(r + 2). The high-degree vertices of G have degree n, and the low-degree vertices of G

have degree r +1+ p. Thus n > r +1+ p. That is, p < n− r− 1. Thus, by Corollary 6.4,
we have G = X+p ∈ D̂r+p = D̂k.

7 Block Structure

In this section we show that graphs in D̂k can have an arbitrary block decomposition tree4.
Theorems 7.7 and 7.8 are the main results. Note that every graph in D̂k has no cut-edge
(except K2), since a cut-edge can be contracted without decreasing the minimum degree.

A low-high tree is a tree T that admits a bipartition V (T ) = V` ∪ Vh, such that every
vertex in V` has degree at most 2, and every vertex in Vh has degree at least 2. Vertices
in V` are called low, and vertices in Vh are called high. Since every leaf in a low-high tree
is low, every low-high tree is a block decomposition tree.

In the following discussion, let T be a low-high tree. Let L be the set of leaves in T .
Let r be an arbitrary high vertex of T , called the root. For each edge vw ∈ E(T ), let
dist(r, vw) := min{dist(r, v), dist(r, w)}. Let B be the set of edges of T at even distance

4Let G be a connected graph. Let B denote the set of blocks of G (that is, cut-edges and maximal
2-connected components). Let C denote the set of cut-vertices of G. The block decomposition tree of G is
the tree T where V (T ) = B ∪ C, and bc ∈ E(T ) whenever the block b contains c. A block decomposition
tree is a tree that is isomorphic to a block decomposition tree of some graph. The bipartition of a tree T
is the partition of V (T ) obtained from a proper 2-colouring of T . Since every cut-vertex is contained in
at least two blocks, every leaf of a block decomposition tree T belongs to the same bipartition class of T .
Conversely, if a tree T admits a bipartition of its vertices such that all leaves lie in the same bipartition
class, then T is a block decomposition tree.
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from r. Call these edges blue. Similarly let R := E(T )− B be the set of red edges in T .
Since r is high and each leaf is low, each leaf is at odd distance from r. Thus each edge
incident with a leaf is blue.

Lemma 7.1. The number of blue edges |B| and the number of red edges |R| do not depend
on the choice of r.

Proof. It is enough to show that |B| and |R| do not change if we choose an alternative
root r′ at distance 2 from r. Let R′ and B′ be the sets of red and blue edges with respect
to r′. Let x be the common neighbour of r and r′. Thus rx ∈ B − B′ and r′x ∈ B′ − B.
Apart from these edges, B and B′ do not differ. Hence |B| = |B′|, and also |R| = |R′|.

Define
d := 4|L|+ 2|R| .

Since T has at least two leaves, d > 8. By Lemma 7.1, d does not depend on the choice
of r.

For each edge e = vw of T such that dist(r, v) = dist(r, w)− 1, let Te be the maximal
rooted subtree of T containing vw, and no other neighbour of v.

Define the function ϕ : E(T ) → N as follows. For each blue edge e in T , define

ϕ(e) := 4|L ∩ E(Te)|+ 2|R ∩ E(Te)| . (5)

Now consider a red edge vw in T with dist(r, v) = dist(r, w) − 1. Thus dist(r, v) is odd,
v is low, and deg(v) = 2. Let uv be the blue edge incident to v. Define

ϕ(vw) := d + 2− ϕ(uv) . (6)

4 4 4 4 4 4 4 4

36 36 36 36

101010 10

2424

2222

r

∈ B

∈ R

∈ B

∈ R

∈ B

Figure 3: An example of the edge labelling ϕ with |R| = 6 and |B| = 14 and |L| = 8 and
d = 2 · 6 + 4 · 8 = 44. Red edges are drawn thick.

The next lemma immediately follows from (6).
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Lemma 7.2. If v is a low vertex of degree 2 and v is incident with edges e and f , then
ϕ(e) + ϕ(f) = d + 2.

The sum of ϕ values around a high vertex is also constant.

Lemma 7.3. Let v be a high vertex and let Ev be the set of edges incident with v. Then∑
e∈Ev

ϕ(e) = d.

Proof. First suppose that v = r. Then∑
rx∈Er

ϕ(rx) =
∑

rx∈Er

4|L ∩ E(Trx)|+ 2|R ∩ E(Trx)| = 4|L ∩ E(T )|+ 2|R ∩ E(T )| = d .

Now assume that v 6= r. Since v is high, dist(v, r) is even, and v is incident to one red
edge uv (where u is the neighbour of v closer to r than v). Thus u is low, and deg(u) = 2.
Let t be the other neighbour of u. Let e1, . . . , ek be the blue edges incident to v. Then

∑
e∈Ev

ϕ(e) = ϕ(uv) +
k∑

i=1

ϕ(ei)

= d + 2− ϕ(tu) +
k∑

i=1

ϕ(ei)

= d + 2− 4|L ∩ E(Ttu)| − 2|R ∩ E(Ttu)|+
k∑

i=1

4|L ∩ E(Tei
)|+ 2|R ∩ E(Tei

)| .

Observe that L ∩ E(Ttu) =
⋃

i L ∩ E(Tei
) and R ∩ E(Ttu)−

⋃
i R ∩ E(Tei

) = {uv}. Thus∑
e∈Ev

ϕ(e) = d + 2− 2 = d .

Observe that, in principle, the definition of ϕ depends on the choice of r. However,
this is not the case.

Lemma 7.4. Let r and r′ be high vertices of T , and let ϕ and ϕ′ be the functions defined
above using r and r′ as roots, respectively. Then ϕ = ϕ′.

Proof. Since T is connected, it is enough to show that ϕ = ϕ′ whenever dist(r, r′) = 2.
Let x be the common neighbour of r and r′. Let B′ be the set of blue edges with respect to
r′. Now B and B′ (as well as R and R′) differ only in rx and r′x. Since (5) only considers
ϕ and ϕ′ values of blue edges away from the root, ϕ(e) = ϕ′(e) for each e ∈ B ∩B′. Since
each edge incident with r or r′ apart from rx and r′x is in B∩B′, and since d is invariant,
(6) shows that ϕ and ϕ′ match on every edge in R ∩R′. Finally Lemma 7.3 implies that
ϕ and ϕ′ also match on edges between rx and r′x.

the electronic journal of combinatorics 17 (2010), #R151 15



Lemma 7.5. ϕ(e) > 4 for every edge e ∈ E(T ).

Proof. While the colour of an edge e may depend on the choice of r, Lemma 7.4 says that
ϕ(e) does not depend on the choice of r. Every edge can be made blue for an appropriate
choice of r, and ϕ(e) > 4 for every blue edge e by (5).

And now for something completely different. Let e = u1u2 and f = u3u4 be two
independent edges in the complete graph Kd+1, where d > 4. The single-horned graph
Gd,4 is obtained from Kd+1 by adding a new vertex x, connecting x to u1, u2, u3, and u4

and removing edges e and f . Observe that deg(x) = 4. Call x the horn of Gd,4. Call the
remaining vertices the original vertices of Gd,4, which all have degree d.

Let a, b > 4 be even integers such that d = a + b− 2. Choose matchings Ma and Mb

with a
2

and b
2

edges, respectively, that cover all the vertices of Kd+1. Hence Ma and Mb

share exactly one vertex. Take two new vertices xa and xb and join xa to every vertex
of Ma and xb to every vertex of Mb. Next delete the edges of Ma and Mb. The resulting
graph is called the double-horned graph Gd,a,b. As above, xa and xb are called the horns
of Gd,a,b, and the remaining vertices, all of degree d, are the original vertices.

Let e = uv be an edge in a single- or double-horned graph G. If u or v is a horn in G,
then the vertex uv is a horn in G/e and is original otherwise. Inductively, we can define
horns and original vertices for every contraction minor of a horned graph.

Lemma 7.6. Let G′ be a proper contraction minor of a horned graph Gd,4 or Gd,a,b. If
G′ contains an original vertex, then some original vertex of G′ has degree less than d.

Proof. We shall leave the proof for Gd,4 to the keen reader. Let G be the doubly horned
graph Gd,a,b, and let F ⊆ E(G) such that G/F = G′. If |F | > 3, then G′ has at most d
vertices, and all its vertices have degree less than d. Now assume that |F | 6 2.

Let e = uv be an edge connecting a pair of original vertices. There are at least
7 6 a + b − 1 original vertices in G and at least three original vertices are connected
with both u and v. Thus G/e has at least three original vertices of degree less than d,
which cannot all be eliminated by a single additional contraction. Hence every edge in F
is incident with a horn. Let x be a horn incident with e. At least two neighbours of x
(which are original vertices) have degree less than d in G/e, yet by the above argument,
the edge between them cannot be contracted.

We are now ready to state the first theorem of this section.

Theorem 7.7. For every low-high tree T , there is an integer d and a graph G such that:

(G1) G is d-regular,

(G2) T is the block decomposition tree of G,

(G3) 8 6 d 6 4|E(T )|, and

(G4) G ∈ D̂d+1.
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Proof. Adopt the above notation. Let d := 4|L| + 2|R|. By construction, d > 8. Note
that d 6 4|E(T )| with equality only if T is a star.

For every leaf u of T , let Gu be a copy of the single-horned graph Gd,4. For every non-
leaf low vertex v of T incident with edges e and f , let Gv be a copy of the double-horned
graph Gd,a,b, where a := ϕ(e) and b := ϕ(f). Note that a, b > 4 by Lemma 7.5.

Observe that there is a natural correspondence between the set of horns in the above
graphs and their degrees, and between E(T ) and their ϕ values. As illustrated in Figure 4,
identifying horns wherever the edges in T have a common (high) end-vertex gives rise to
a d-regular graph G (by Lemma 7.3). Hence G satisfies (G1), (G2) and (G3).

K21 −M10 −M12K21 −M10 −M12

K21 −M4

K21 −M4

K21 −M4

K21 −M4

10 12
4

4

1012
4

4

r

Figure 4: The graph G produced from the given low-high tree with d = 4 · 4 + 2 · 2 = 20.
Shaded regions represent cliques minus the dashed matchings.

Since G is connected and d-regular, Lemma 2.1 implies that to establish (G4) it suffices
to show that every proper contraction minor of G has a vertex of degree less than d.
Suppose on the contrary that there is a proper contraction minor G′ = G/E ′ of G with
δ(G) > d. Take such a G′ with the minimum number of vertices. Thus G′ has no
cut-edges, since contracting a cut-edge does not decrease δ (since G′ 6∼= K2).

Let H be an arbitrary block of G and consider H/E ′. Suppose that H/E ′ is not
contracted to a single vertex. Now H/E ′ 6∼= K2 (as this would either be a nonexistent
cut-edge in G′ or would imply that G′ has a vertex of degree 1 which is also absurd). But
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if H/E ′ has at least three vertices and H/E ′ is a proper minor of H, then by Lemma 7.6,
H/E ′ has an inner vertex of degree less than d. Hence H/E ′ is either trivial or is left
intact in a contraction.

So we may assume that G′ is obtained by shrinking several blocks of G to single
vertices. We may assume that G′ is obtained by first contracting ki > 0 inner blocks of
G, and later contracting ke > 0 end-blocks of G, where ki + ke > 1. Let G∗ be the graph
obtained after contracting the inner blocks.

Now ki > 0, as otherwise G′ is a proper subgraph of G. By shrinking ki inner blocks we
have reduced the number of cut-vertices by ki, and also reduced the sum of their degrees
by ki(d + 2); see Lemmas 7.2 and 7.3. Hence G∗ has at least one cut-vertex v of degree
less than d, and since G′ 6= G∗, at least one contraction of an end-block follows. Finally,
contracting an end-block cannot increase deg(v). This contradiction completes the proof
of (G4).

We now prove that minor-minimal minimum-degree graphs can have arbitrary block
structure.

Theorem 7.8. For every block decomposition tree T , there is an integer d and a graph
G such that

(H1) T is the block decomposition tree of G,

(H2) δ(G) 6 8|E(T )|, and

(H3) G ∈ D̂d+1 where d = δ(G).

Proof. Let Vc ∪ Vb be the bipartition of V (T ), such that every leaf of T is in Vb. Let Hb

denote the set of vertices in Vb with degree at least 3 in T . Thus T is low-high if and only
if Hb = ∅. By Theorem 7.7 we may assume that T is not low-high, and Hb 6= ∅. Choose
an arbitrary vertex x ∈ Hb.

Let T ′ be the tree obtained from T by subdividing each edge that is incident with a
vertex in Hb once. Each such subdivision vertex and each vertex in Vb−Hb has degree at
most 2 in T ′. Each vertex in Vc ∪Hb has degree at least 2 in T ′. Thus T ′ is low-high. In
particular, x is a high vertex of T ′.

Now |E(T ′)| < 2|E(T )| since at least one edge of T is incident with a leaf and did
not get subdivided in the construction of T ′. By Theorem 7.7 there exists an integer
d′ 6 4E(T ′) < 8E(T ) and a d′-regular graph G′ ∈ D̂d′+1 such that T ′ is the block
decomposition tree of G′. In order to keep the arguments below as simple as possible,
assume that G′ is the graph obtained by the construction in the proof of Theorem 7.7.
Observe that every block of G′ contains at least 12 vertices, since T has at least one vertex
in Hb. Note that the cut-vertices of G′ come in two flavours: ones that correspond to
vertices of Vc, and ones that correspond to vertices of Hb. Similarly, every non-cut-vertex
of G′ corresponds to a vertex of Vb −Hb.

Now define a partition of V (G′) into bags {By : y ∈ Vb} labelled by vertices Vb,
satisfying the following conditions:
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(C1) for every y ∈ Hb the bag By contains the cut-vertex c that corresponds to y as well
as the interior vertices of every block that contains c,

(C2) for every y ∈ Vb − Hb the bag By contains every interior vertex of a block that
corresponds to y ∈ Hb.

We have so far partitioned every vertex of G′ that is not a cut-vertex corresponding to a
vertex in Vc.

(C3) if c is a cut-vertex corresponding to a vertex of Vc, then let cx be its neighbour on
some shortest c–x path in G′, and put c in the bag B that already contains cx.

Observe that every block of G′ contains d′ + 1 interior vertices, hence every bag By

contains at least d′ + 1 vertices.
Finally we obtain G from G′ by adding for each bag By of G′ a new vertex ỹ which

is made adjacent to every vertex of its bag By. Now G′ is a subgraph of G and every
v ∈ V (G′) has degree equal to d′ + 1, and new vertices have degree at least d′ + 1. Call
this process bag extension and let d := d′ + 1.

Now G contains two types of blocks: small blocks that contain interior vertices of
exactly one block of G′, and big blocks that contain interior vertices of several blocks of
G′. Observe that every big block B contains a separating set of size two comprised of its
new vertex and a vertex from Hb.

Let B′ (respectively, B) be an end-block of G′ (G) and let c be a cut-vertex that
separates B′ (B) from the rest of G′ (G). By the construction of G′ there are exactly four
edges incident with c whose other end-vertex is in B′(B).

Let e be an arbitrary edge of G that is not one of the four edges incident to some
cut-vertex of an end-block. Assume that e belongs to block B of G. Then there are at
least six vertices of degree d in G that are all adjacent to both end-vertices of e. This
implies that G/e contains at least six vertices of degree less than d, and no contraction of
an additional two edges of B can eliminate all the vertices of degree less than d.

First observe that an end-block of G contains exactly d + 2 vertices and the other
small blocks contain exactly d + 3 vertices. Every big block on the other hand contains a
pair of vertices: the new vertex and a cut-vertex of G′ corresponding to a vertex in Hb.

It remains to prove that G ∈ D̂d+1. Since every edge has an end-vertex of degree d,
no edge-deleted subgraph of G has minimum degree at least d.

Hence we only have to consider contraction minors of G. Let F ⊆ E(G) be a nonempty
edge set and let G∗ = G/F . We may split F = F ′ ∪ F ∗ so that F ′ ⊆ E(G′).

A block B of G may either get contracted to a single vertex, get partially contracted,
or survive the contraction of F without changes.

First assume that B/F gets partially contracted. If B′ is an end-block, then B/F has
exactly d + 1 vertices obtained by contracting a single edge. This is not possible as a
vertex of degree less than d would be created. If B is a small block, then contracting any
edge of B leaves at least six vertices of degree less than d in B. Since B has d+3 vertices
in the beginning, an additional two contractions decrease the vertex count below d + 1,
which is absurd.
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Let B be a big block that gets partially contracted. If contraction identifies the new
vertex n of B and a cut-vertex c of G′ corresponding to a vertex in Hb then B/nc contains
at least six vertices of degree less than d in every block B′ of G′ that is a subgraph of
B. Since B′ contains d + 2 vertices, B′/F is trivial for every B′ ⊆ B, which is nonsense.
Otherwise assume that B′ ⊆ B is a block of G′ that gets partially contracted. The d + 1
interior vertices of B′ are separated from the rest of G by three vertices. This implies
that at most three edges are contracted in order to contract B′ partially. Yet a single
contraction produces six vertices of degree less than d in B′, so that an additional two
contractions do not suffice.

Hence no block of G gets partially contracted in G/F . Now G/F may be obtained
from G′/F by extension of bags, where G′/F is a contraction of G′ that either identifies
a block of G′ or leaves it unchanged. In this case, G′/F contains a vertex of degree less
than d′, and bag extension can only increase its degree by one. This completes the proof
of Theorem 7.8.

Open Problem 7.9. By the Robertson-Seymour graph minor theorem, D̂k is finite for
each fixed k. Let f(k) be the maximum number of vertices in a graph in D̂k. No reasonable
bounds on f(k) are known.

• It would be interesting to obtain a simple proof of the finiteness of D̂k, and to obtain
good upper bounds on f(k).

• By Theorem 7.7 with T = K1,s, there is a graph G ∈ D̂4s+1 with 1 + s(4s + 1)

vertices. Does every graph in D̂k have O(k2) vertices?

• By Theorem 7.7 with T = P2s+1, there is a graph G ∈ D̂2s+7 with diameter 2s. Does
every graph in D̂k have O(k) diameter?

8 Complete Multipartite Graphs

This section characterises the complete multipartite graphs in D̂k, in Ĉk, in T̂k, and in P̂k.
See [7, 20, 24] for other results on treewidth obstructions. We first prove three lemmas
about complete multipartite graphs. The first says that complete multipartite graphs are
highly connected.

Lemma 8.1. Every complete multipartite graph G with minimum degree k is k-connected.
Moreover, if vw is an edge of G such that both v and w have degree at least k + 1, then
G− vw is k-connected.

Proof. Let x and y be distinct vertices in G. It suffices to prove that there is a set of
k internally disjoint paths between x and y that avoid vw. Let R be the set of vertices
coloured differently from both x and y.

First suppose that x and y have the same colour. Then deg(x) = deg(y) > k, and
P := {xry : r ∈ R} is a set of deg(x) internally disjoint paths between x and y. If vw is
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in some path in P , then without loss of generality v = x, implying deg(x) > k + 1, and
at least k paths in P avoid vw.

Now assume that x and y are coloured differently. Let S := {x1, x2 . . . , xp} be the
colour class that contains x, where x = xp. Let T := {y1, y2 . . . , yq} be the colour class
that contains y, where y = yq. Without loss of generality, n−p = deg(x) 6 deg(y) = n−q,
implying q 6 p. Thus

P := {xy} ∪ {xry : r ∈ R} ∪ {xyixiy : i ∈ [q − 1]}

is a set of deg(x) internally disjoint paths between x and y. If deg(x) > k + 1 then at
least k paths in P avoid vw. Now assume that vw is in some path in P , but deg(x) = k.
Since each vertex xi has the same degree as x, and v and w both have degree at least
k + 1, the only possibility is that v = y and w = r for some r ∈ R (or symmetrically
w = y and v = r). Thus deg(x) < deg(y) and q < p. Replace the path xry in P by the
path xrxp−1y, which is internally disjoint from the other paths in P .

Lemma 8.2. Let G be a complete multipartite graph on n vertices. Then

κ(G) = δ(G) = tw(G) = pw(G) = n− α(G).

Proof. The degree of a vertex v equals n minus the size of the colour class that contains v.
Since every independent set is contained within a colour class, the size of the largest colour
class equals α(G). Thus δ(G) = n − α(G). We have κ(G) 6 δ(G) 6 tw(G) 6 pw(G)
for every graph G; see [1, 8]. By Lemma 8.1, κ(G) > δ(G). Thus it suffices to prove
that δ(G) > pw(G) for every complete multipartite graph G. Let S = {v1, . . . , vα(G)}
be a largest colour class in G. Let X := V (G) − S. Observe that (X ∪ {v1}, X ∪
{v2}, . . . , X ∪ {vp}) is a path decomposition of G with width |X| = n − α(G) = δ(G).
Thus pw(G) 6 δ(G).

Lemma 8.3. If H is a minor of a complete multipartite graph G, then H can be obtained
from G by a sequence of edge contractions, vertex deletions, and edge deletions, such
that each operation does not increase the minimum degree, connectivity, treewidth, or
pathwidth.

Proof. Every minor of a graph can be obtained by a sequence of edge contractions and
vertex deletions, followed by a sequence of edge deletions. Contracting an edge or deleting
a vertex in a complete multipartite graph produces another complete multipartite graph.
Edge deletions do not increase the minimum degree, connectivity, treewidth, or pathwidth.
Thus by Lemma 8.2, it suffices to prove that edge contractions and vertex deletions in
complete multipartite graphs do not increase the minimum degree.

Say G = Ka1,...,ap has n vertices. Then G has minimum degree n−maxi ai. Let G′ be
the graph obtained from G by contracting an edge. Then G′ is a complete multipartite
graph K1,a′1,...,a′p with n− 1 vertices, where ai − 1 6 a′i 6 ai. Thus

δ(G′) = n− 1−max
i

a′i 6 n− 1−max
i

(ai − 1) = n−max
i

ai = δ(G) .
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Now let G′ be the graph obtained from G by deleting a vertex. Then G′ is a complete
multipartite graph Ka′1,...,a′p with n − 1 vertices, where ai − 1 6 a′i 6 ai. By the same
argument as before, δ(G′) 6 δ(G).

We now state and prove our first characterisation.

Theorem 8.4. For all k > 1, the following are equivalent for a complete multipartite
graph G:

(a) G ∈ Ĉk

(b) G ∈ D̂k

(c) for some b > a > 1 and p > 2 such that k + 1 = a + (p− 1)b,

G = K
a,b, . . . , b︸ ︷︷ ︸

p

,

and if p = 2 then a = b.

Proof. (b) =⇒ (a): Say G ∈ D̂k. By Lemma 2.1, δ(G) = k + 1. By Lemma 8.2,

κ(G) = k + 1. By (2), G ∈ Ĉk.

(a) =⇒ (c): Consider a complete multipartite graph G ∈ Ĉk. Thus κ(G) > k + 1 by

Lemma 3.1. If κ(G) > k + 2 then κ(G− e) > k + 1 for any edge e of G, implying G 6∈ Ĉk

by Lemma 3.1. Now assume that κ(G) = k + 1. Thus δ(G) = k + 1 by Lemma 8.2.
Suppose on the contrary that adjacent vertices v and w in G both have degree at

least k + 2. By Lemma 8.1, G− vw is k-connected, implying G 6∈ Ĉk. This contradiction
proves that no two high-degree vertices in G are adjacent. If two vertices in a complete
multipartite graph have distinct degrees, then they are adjacent. Thus the high-degree
vertices in G have the same degree, and the vertices of G have at most two distinct
degrees. Since the degree of each vertex v equals |V (G)| minus the number of vertices in
the colour class that contains v, the colour classes of G have at most two distinct sizes.
Hence for some b > a > 1 and p, q > 1,

G = Ka, . . . , a︸ ︷︷ ︸
q

,b, . . . , b︸ ︷︷ ︸
p

.

Hence κ(G) = aq + b(p − 1) = k + 1. If a = b then, taking q = 1, we are done. Now
assume that a < b. Thus q = 1 as otherwise two high-degree vertices are adjacent. Thus

G = K
a,b, . . . , b︸ ︷︷ ︸

p

.

Suppose on the contrary that p = 1. Then G = Ka,b and κ(G) = a. Contracting one

edge in G gives K1,a−1,b−1, which by Lemma 8.2 also has connectivity a, implying G 6∈ Ĉk.
This contradiction proves that p > 2.

Now suppose that p = 2. Then G = Ka,b,b and κ(G) = a + b. Contracting one edge
gives K1,a,b−1,b−1, which by Lemma 8.2 also has connectivity a + b (since a < b), implying

G 6∈ Ĉk. This contradiction proves that if p = 2 then a = b.
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(c) =⇒ (b) Let
G = K

a,b, . . . , b︸ ︷︷ ︸
p

,

for some b > a > 1 and p > 2, such that k+1 = a+(p−1)b and if p = 2 then a = b. Thus

G has minimum degree k + 1 by Lemma 8.2. Suppose on the contrary that G 6∈ D̂k. By
Lemma 3.1, G has a proper minor H with δ(H) > k + 1. By Lemma 8.3, every minor of
G in the sequence from G to H has minimum degree at most k + 1. Thus we can assume
that H was obtained from G by a single edge contraction, a vertex deletion, or an edge
deletion. In each case we prove that δ(H) 6 k, which is the desired contradiction.

First suppose that H is obtained from G by an edge contraction. Then

(i) H = K
1,a−1,b−1b, . . . , b︸ ︷︷ ︸

p−1

or (ii) H = K
1,a,b−1,b−1,b, . . . , b︸ ︷︷ ︸

p−2

.

In case (i), δ(H) = 1 + (a − 1) + (b − 1) + (p − 2)b = k. In case (ii) with p > 3,
δ(H) = 1+a+2(b−1)+(p−3)b = k. Now consider case (ii) with p = 2. By assumption,
a = b. Thus H = K1,a,a−1,a−1 has minimum degree 1 + 2(a− 1) = k.

Now suppose that H is obtained from G by a vertex deletion. Then

(i) H = K
a−1,b, . . . , b︸ ︷︷ ︸

p

or (ii) H = K
a,b−1,b, . . . , b︸ ︷︷ ︸

p−1

.

In case (i), δ(H) = (a− 1) + (p− 1)b = k. In case (ii), δ(H) = a + (b− 1) + (p− 2)b = k
(since p > 2).

In G, every edge is incident to a vertex of degree k + 1. Thus, if H is obtained from
G by an edge deletion, then δ(H) 6 k.

The remainder of this section is devoted to characterising the complete multipartite
graphs in T̂k and in P̂k. We start with a lemma about independent sets in complete
multipartite graphs.

Lemma 8.5. For every edge vw in a complete multipartite graph G, every independent
set in G− vw is either {v, w} or is also independent in G. Thus if α(G) > 2 (that is, G
is not a complete graph) then α(G− vw) = α(G).

Proof. Let G′ := G − vw. Let I be an independent set in G′ that is not independent in
G. Thus both v and w are in I. Let S be the colour class containing v. Every vertex not
in S ∪ {w} is adjacent to v in G′. Thus I ⊆ S ∪ {w}. Every vertex in S −{v} is adjacent
to w in G′. Thus I := {v, w}. Hence every independent set in G′ is either {v, w} or is
also independent in G. Thus α(G′) = α(G) whenever α(G) > 2.

To prove lower bounds on treewidth we use the following idea. Let G be a graph. Two
subgraphs X and Y of G touch if X ∩ Y 6= ∅ or there is an edge of G between X and
Y . A bramble in G is a set of pairwise touching connected subgraphs. The subgraphs
are called bramble elements. A set S of vertices in G is a hitting set of a bramble B if S
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intersects every element of B. The order of B is the minimum size of a hitting set. The
following ‘Treewidth Duality Theorem’ shows the intimate relationship between treewidth
and brambles.

Theorem 8.6 (Seymour and Thomas [26]). A graph G has treewidth at least k if and
only if G contains a bramble of order at least k + 1.

For example, say G is a complete multipartite graph on n vertices. Let S be a set
of vertices in G, one from each colour class; that is, S is a maximum clique in G. Then
it is easily seen that B := E(G) ∪ S is a bramble of order n − α(G) + 1, and thus
tw(G) > n − α(G) by Theorem 8.6 (confirming Lemma 8.2). The next two lemmas give
circumstances when an edge can be deleted from a complete multipartite graph without
decreasing the treewidth.

Lemma 8.7. Let G be a complete multipartite graph with α(G) > 3, such that at least
two colour classes contain at least two vertices. Let vw be an edge, where both v and w
are in colour classes that contain at least two vertices. Then tw(G− vw) = tw(G).

Proof. Say G has n vertices. Let G′ := G − vw. By Lemmas 8.2 and 8.5, tw(G) =
n − α(G) = n − α(G′). Clearly tw(G′) 6 tw(G). Thus it suffices to prove that tw(G′) >
n− α(G′).

Since v and w are in colour classes that contain at least two vertices, there is a set S
of vertices, such that both v and w are not in S, and each colour class has exactly one
vertex in S. Thus S is a maximum clique in G and in G′. Let B := E(G′) ∪ S.

We now prove that B is a bramble in G′. Each element of B induces a connected
subgraph in G′. Every pair of vertices in S are adjacent. Say x ∈ S and pq ∈ E(G′).
Since p and q have distinct colours, x is coloured differently from p or q, and thus x is
adjacent to p or q (since x 6= v and x 6= w). Hence x touches pq. Say pq ∈ E(G′) and
rs ∈ E(G′). If {p, q} ∩ {r, s} 6= ∅ then pq and rs touch. So assume that p, q, r, s are
distinct. Thus there are at least two edges in G between {p, q} and {r, s}, one of which
is not vw. Hence pq touches rs. Therefore B is a bramble in G′.

Let H be a minimum hitting set of B. If |H| > n − α(G′) + 1, then B has order at
least n−α(G′) + 1, implying tw(G′) > n−α(G′) by Theorem 8.6, and we are done. Now
assume that |H| 6 n− α(G′).

Since every edge of G′ is in B, H is a vertex cover of G′, and V (G′) − H is an
independent set of G′. Thus n− |H| 6 α(G′). Hence |H| = n− α(G′), and V (G′)−H is
a maximum independent set of G′. By Lemma 8.5, every independent set of G′ is {v, w}
or is an independent set of G. Since α(G′) > 3, {v, w} is not a maximum independent
set. Hence V (G)−H is a maximum independent set of G. That is, V (G)−H is a colour
class in G, which implies that H does not contain one vertex in S, and H is not a hitting
set of B. This is the desired contradiction.

Lemma 8.8. Let G be a complete multipartite graph with α(G) > 2, and at least one
singleton colour class. Let vw be an edge, where v is in a singleton colour class, and w is
in a colour classes that contains at least two vertices. Then tw(G− vw) = tw(G).
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Proof. Say G has n vertices. Let G′ := G − vw. By Lemmas 8.2 and 8.5, tw(G) =
n − α(G) = n − α(G′). Clearly tw(G′) 6 tw(G). Thus it suffices to prove that tw(G′) >
n− α(G′).

By assumption, there is a set S of vertices, such that w 6∈ S, and every colour class
has exactly one vertex in S. Thus v ∈ S. Note that S is a maximum clique in G and in
G′. Let B := E(G′) ∪ S.

We now prove that B is a bramble in G′. Each element of B induces a connected
subgraph in G′. Every pair of vertices in S are adjacent. Consider v ∈ S and pq ∈ E(G′).
Since v is in a singleton colour class, v is adjacent to both p and q in G, and thus v is
adjacent to p or q in G′. Hence v touches pq. Now consider x ∈ S − {v} and pq ∈ E(G′).
Since p and q have distinct colours, x is coloured differently from p or q, and thus x is
adjacent to p or q (since x 6= v and x 6= w). Hence x touches pq. Finally consider two
edges pq ∈ E(G′) and rs ∈ E(G′). If {p, q} ∩ {r, s} 6= ∅ then pq and rs touch. So assume
that p, q, r, s are distinct. Thus there are at least two edges in G between {p, q} and {r, s},
one of which is not vw. Hence pq touches rs. Therefore B is a bramble in G′.

Let H be a minimum hitting set of B. If |H| > n − α(G′) + 1, then B has order at
least n−α(G′) + 1, implying tw(G′) > n−α(G′) by Theorem 8.6, and we are done. Now
assume that |H| 6 n− α(G′).

Since every edge of G′ is in B, H is a vertex cover of G′, and V (G′) − H is an
independent set of G′. Thus n− |H| 6 α(G′). Hence |H| = n− α(G′), and V (G′)−H is
a maximum independent set of G′. By Lemma 8.5, every independent set of G′ is {v, w}
or is an independent set of G. If V (G′)−H = {v, w} then H does not contain v, and H
is not a hitting set of B, which is a contradiction. Otherwise, V (G) − H is a maximum
independent set of G. That is, V (G) − H is a colour class in G, which implies that H
does not contain some vertex in S, and H is not a hitting set of B. This is the desired
contradiction.

Theorem 8.9. For all k > 1, the following are equivalent for a complete multipartite
graph G:

(a) G ∈ T̂k

(b) G ∈ P̂k

(c) G = Kk+2, or k > 3 is odd and G = K2, . . . , 2︸ ︷︷ ︸
(k+3)/2

.

Proof. (b) =⇒ (a): Say G ∈ P̂k. By Lemma 3.1, pw(G) = k + 1. By Lemma 8.2,

tw(G) = k + 1. By (4), G ∈ T̂k.

(a) =⇒ (c): Say G ∈ T̂k. By Lemma 3.1, tw(G) > k + 1. If tw(G) > k + 2 then

tw(G − v) > k + 1 for any vertex v of G, implying G 6∈ T̂k by Lemma 3.1. Now assume

that tw(G) = k + 1. Thus δ(G) = k + 1 by Lemma 8.2, and G ∈ D̂k by (3). By
Theorem 8.4,

G = K
a,b, . . . , b︸ ︷︷ ︸

p

,

for some b > a > 1 and p > 2, such that k + 1 = a + (p− 1)b and if p = 2 then a = b.
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Case. b = 1: Then a = 1 and G = Kk+2, and we are done.
Case. b = 2: Then k + 3 = a + 2p. If a = 1, then by Lemma 8.8, tw(G− e) = tw(G)

for some edge e of G, implying G 6∈ Tk by Lemma 3.1. Otherwise a = 2. Thus k = 2p− 1
is odd, and k > 3 since p > 2. Hence

G = K2, . . . , 2︸ ︷︷ ︸
(k+3)/2

.

Case. b > 3: Then α(G) > 3. Since p > 2, there are at least two colour class that
contain at least two vertices, and by Lemma 8.7, tw(G − e) = tw(G) for some edge e of
G, implying G 6∈ Tk by Lemma 3.1.

(c) =⇒ (b): If G = Kk+2 then G ∈ P̂k by Lemma 3.1. Now assume that k > 3 is odd
and

G = K2, . . . , 2︸ ︷︷ ︸
(k+3)/2

.

Thus pw(G) = k+1 by Lemma 8.2. Suppose on the contrary that G 6∈ P̂k. By Lemma 3.1,
G has a proper minor H with pw(H) > k + 1. By Lemma 8.3, every minor of G in the
sequence from G to H has pathwidth at most k + 1. Thus we can assume that H was
obtained from G by a single edge contraction, a vertex deletion, or an edge deletion. Since
an edge contraction or a vertex deletion produce another complete multipartite graph, and
the minimum degree of a complete multipartite graph equals its pathwidth (Lemma 8.2),
the same proof used in Theorem 8.4 shows that pw(H) 6 k. Now assume that H = G−vw
for some edge vw of G. Let x be the other vertex in the colour class that contains v. Let
y be the other vertex in the colour class that contains w. Let S := V (G) − {v, w, x, y}.
Then (S∪{v, y}, S∪{x, y}, S∪{x, w}) is a path decomposition of H with width k, which
is the desired contradiction.

Open Problem 8.10. Complete multipartite graphs have diameter 2. Are there gener-
alisations of Theorems 8.4 and 8.9 for all diameter-2 graphs in D̂k or in T̂k?
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A Graphs with Minimum Degree Four

In this appendix we prove the following result.

Theorem A.1. Every graph with minimum degree at least 4 contain a 4-connected minor.

The following stronger result enables an inductive proof of Theorem A.1.

Lemma A.2. Let G be a graph with at least 5 vertices, such that the vertices of degree at
most 3 induce a clique. Then G contains a 4-connected minor.

Proof. Let G be a counterexample with the minimum number of vertices. Let K =
{v1, . . . , v|K|} denote the (possibly empty) clique of vertices of degree at most 3.

In each case below we exhibit a proper minor G′ of G, for which it is easy to verify
that the vertices of degree at most 3 induce a clique. Moreover, |V (G′)| > 5 since there is
a vertex of degree at least 4 in G, whose degree does not decrease in G′. Thus G′ satisfies
the conditions of the lemma, which contradicts the minimality of G.

If e is an edge incident to a vertex of degree at most 2, then let G′ := G/e. Now
assume that δ(G) > 3.

Let S be a minimal separator in G, and let {G1, G2} be the corresponding separation,
so that S = V (G1∩G2). Without loss of generality, K ⊆ G1. If |S| = 1, then let G′ := G2.
If |S| = 2, say S = {s1, s2}, then there exists an s1–s2 path in G1, and so G′ := G2 + s1s2

is the desired minor.
Thus G is 3-connected and each vertex in K has degree 3. Let N(K) denote the

subgraph induced by the neighbours of K.
First suppose that |K| = 2. Both v1 and v2 have at least two neighbours in N(K). If

|N(K)| > 3, then at most one vertex is adjacent to both v1 and v2. Let G′ := G/v1v2. If,
on the other hand, N(K) = {u1, u2}, then let G′ be obtained from G by contracting the
triangle v1v2u1. Since G has a vertex of degree at least 4 other than u1, u2, so does G′.

If |K| = 1 or |K| = 3 then |N(K)| = 3. Every vertex of N(K) is adjacent to exactly
one vertex of K, so G has more than |K| + |N(K)| vertices. If N(K) induces a clique,
then let G′ := G − V (K). Otherwise let u1 be a vertex whose degree in N(K) is as
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small as possible (is at most 1) and let v1 be its unique neighbour in K. In this case, let
G′ := G/u1v1. Therefore we may assume that G is 3-connected with δ(G) > 4.

Suppose that G contains a 3-separation {G1, G2} with separator S = {s1, s2, s3} =
V (G1 ∩ G2). Consider the subgraph G1. Each vertex in S has degree at least 1 in G1.
Now V (G1 − S) 6= ∅ and every vertex in G1 − S has degree at least 4 in G1. A forest
that contains a vertex of degree at least 4 has at least 4 leaves. Thus G1 is not a forest.
Hence G1 contains a cycle C. By Menger’s Theorem, there are three disjoint C–S paths
in G1. By contracting C together with these three paths to a triangle on S, observe that
G′ := G2 + s1s2 + s1s3 + s2s3 is the desired minor. Hence G has no 3-separation and is
thus 4-connected.

For completeness we include a proof of the following theorem of Halin and Jung [17]
based on classical results by Wagner, Whitney and Tutte.

Theorem A.3 ([17]). Every 4-connected graph contains K5 or K2,2,2 as a minor.

Proof. Suppose that G is 4-connected and has no K5-minor. Thus G is planar by Wagner’s
characterisation of graphs with no K5-minor [29]. Fix a plane embedding of G. Let v be
any vertex of G. Let w1, w2, w3, w4 be four of the neighbours of v in cyclic order around
v. Let C be the facial cycle in the induced plane embedding of G − v, such that the
interior of C contains v. Whitney [30] proved that every 3-connected planar graph has a
unique plane embedding. Moreover, Tutte [28] proved that the faces of this embedding
are exactly the induced nonseparating cycles. Since G− v is 3-connected, each face in the
induced plane embedding of G− v is an induced nonseparating cycle. In particular, C is
induced and nonseparating in G−v. Since C is separating, (G−v)−C is connected. Since
C is induced, each vertex wi has exactly two neighbours in C, and at least one neighbour
in (G− v)− C. Hence, contracting (G− v)− C to a single vertex, and contracting C to
the 4-cycle (w1, w2, w3, w4) produces a K2,2,2-minor in G.

Note that Theorem A.3 can also be concluded from a theorem of Maharry [23], who
proved that every 4-connected graph with no K2,2,2 minor is isomorphic to the square of
an odd cycle, which is easily seen to contain a K5-minor. Theorems A.1 and A.3 imply:

Corollary A.4. Every graph with minimum degree at least 4 contains K5 or K2,2,2 as a
minor.
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