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Abstract

In rotor-router aggregation on the square lattice Z2, particles starting at the ori-
gin perform deterministic analogues of random walks until reaching an unoccupied
site. The limiting shape of the cluster of occupied sites is a disk. We consider a
small change to the routing mechanism for sites on the x- and y-axes, resulting in
a limiting shape which is a diamond instead of a disk. We show that for a certain
choice of initial rotors, the occupied cluster grows as a perfect diamond.

1 Introduction

Recently there has been considerable interest in low-discrepancy deterministic analogues
of random processes. An example is rotor-router walk [PDDK96], a deterministic analogue
of random walk. Based at every vertex of the square grid Z2 is a rotor pointing to one of
the four neighboring vertices. A chip starts at the origin and moves in discrete time steps
according to the following rule. At each time step, the rotor based at the location of the
chip turns clockwise 90 degrees, and the chip then moves to the neighbor to which that
rotor points.

Holroyd and Propp [HP09] show that rotor-router walk captures the mean behavior
of random walk in a variety of respects: stationary measure, hitting probabilities and
hitting times. Cooper and Spencer [CS06] study rotor-router walks in which n chips
starting at arbitrary even vertices each take a fixed number t of steps, showing that
the final locations of the chips approximate the distribution of a random walk run for
t steps to within constant error independent of n and t. Rotor-router walk and other
low-discrepancy deterministic processes have algorithmic applications in areas such as
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broadcasting information in networks [DFS08] and iterative load-balancing [FGS10]. The
common theme running through these results is that the deterministic process captures
some aspect of the mean behavior of the random process, but with significantly smaller
fluctuations than the random process.

Rotor-router aggregation is a growth model defined by repeatedly releasing chips from
the origin o ∈ Z2, each of which performs a rotor-router walk until reaching an unoccupied
site. Formally, we set A0 = {o} and recursively define

Am+1 = Am ∪ {zm} (1)

for m > 0, where zm is the endpoint of a rotor-router walk started at the origin in Z2 and
stopped on exiting Am. We do not reset the rotors when a new chip is released.

It was shown in [LP08, LP09] that for any initial rotor configuration, the asymptotic
shape of the set Am is a Euclidean disk. It is in some sense remarkable that a growth
model defined on the square grid, and without any reference to the Euclidean norm
|x| = (x2

1 + x2
2)

1/2, nevertheless has a circular limiting shape. Here we investigate the
dependence of this shape on changes to the rotor-router mechanism.

The layered square lattice Ẑ2 (see Figure 2, left, below) is the directed multigraph
obtained from the usual square grid Z2 by reflecting all directed edges on the x- and
y-axes that point to a vertex closer to the origin. For example, for each positive integer n,
the edge from (n, 0) to (n − 1, 0) is reflected so that it points from (n, 0) to (n + 1, 0).
Thus the vertex (n, 0) of Ẑ2 has a pair of parallel directed edges to (n + 1, 0), and one
directed edge to each site (n,±1). All other edges of Z2, in particular those that do not
lie on the x- or y-axis, remain unchanged in Ẑ2.

Rotor-router walk on Ẑ2 is equivalent to rotor-router walk on Z2 with one modification:
the reflection of the edges of the lattice carries over to the rotors. Thus, the rotor directions
on the axes alternate between the directions of the two parallel edges of Ẑ2 and the two
perpendicular ones.

For n > 0, let
Dn =

{
(x, y) ∈ Z2 : |x|+ |y| 6 n

}
.

We call Dn the diamond of radius n. Our main result is the following.

Theorem 1. There is a rotor configuration ρ0, such that rotor-router aggregation (Am)m>0

on Ẑ2 with rotors initially configured as ρ0 satisfies

A2n(n+1) = Dn for all n > 0.

A formal definition of rotor-router walk on Ẑ2 and an explicit description of the rotor
configuration ρ0 are given below.

Let us remark on two features of Theorem 1. First, note that the rotor mechanism
on Ẑ2 is identical to that on Z2 except for sites on the x- and y-axes. Nevertheless,
changing the mechanism on the axes completely changes the limiting shape, transforming
it from a disk into a diamond. Second, not only is the aggregate close to a diamond, it is
exactly equal to a diamond whenever it has the appropriate size (Figure 1).
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Figure 1: The rotor-router aggregate of 5101 chips in the layered square lattice Ẑ2 is a
perfect diamond of radius 50. The colors encode the directions of the final rotors at the
occupied vertices: red = north, blue = east, gray = south and black = west.

Motivation and heuristic

In [KL10], we studied the analogous stochastic growth model, known as internal DLA,
defined by the growth rule (1) using random walk on Ẑ2. This random walk behaves like
a simple random walk on Z2 except on the axes, where it takes steps with probability 1/2
along the axis in the outward direction, and with probability 1/4 in each of the two
perpendicular directions. The walk has a uniform layering property : at any fixed time,
its distribution is a mixture of uniform distributions on the diamond layers

Lm =
{
(x, y) ∈ Z2 : |x|+ |y| = m

}
, m > 1.

It is for this reason that we call Ẑ2 the layered square lattice. The combinatorial feature
of Ẑ2 responsible for the uniform layering property is that each site in Lm has exactly two
incoming edges from Lm−1 and two incoming edges from Lm+1.

We have shown in [KL10] that, as a consequence of the uniform layering property,
internal DLA on Ẑ2 also grows as a diamond, but with random fluctuations at the bound-
ary. Theorem 1 thus represents an extreme of discrepancy reduction: passing to the
deterministic analogue removes all of the fluctuations from the random process, leaving
only the mean behavior.

This work grew out of the uniformly layered walks in wedges studied in [Ka07]. The
choice of transition probabilities on the axes — and hence the definition of the graph Ẑ2

— was motivated by the idea that the uniform layering property of these walks could be
extended to walks in the full plane.

Since the proof of Theorem 1 is a bit technical, we mention a heuristic that predicts the
diamond shape without extensive calculation. The uniform harmonic measure heuristic
says that a random walk started at the origin and stopped when it exits the cluster Am
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Figure 2: Left: The layered square lattice Ẑ2. Each directed edge is represented by an
arrow; parallel edges on the x- and y-axes are represented by double arrows. The origin o
is in the center. Right: The initial rotor configuration ρ0.

should be roughly equally likely to stop at any boundary point. Intuitively, if this were
not so, then those portions of the boundary more likely to be hit by the random walk
would fill up faster as the cluster grows, changing the overall shape.

While it is usually not possible to convert this heuristic directly into a proof, note
that it successfully predicts the limiting shape for growth models in both Z2 and Ẑ2:
simple random walk in Z2 has approximately uniform harmonic measure on a disk, while
random walk in Ẑ2 has exactly uniform harmonic measure on a diamond. This contrast
helps explain why we could expect a “no discrepancy” result like Theorem 1 for Ẑ2, as
opposed to the “low discrepancy” results for Z2.

Landau and Levine [LL09] prove a similar “no discrepancy” result to Theorem 1 when
the underlying graph is a regular tree instead of Ẑ2. The uniform harmonic measure
heuristic predicts this behavior correctly as well. Still, more examples are needed: In
other geometries, one expects that the shape may be controlled by a tradeoff between
volume growth and harmonic measure rather than harmonic measure alone.

Formal definitions

To formally define rotor-router walk on Ẑ2, write e1 = (1, 0), e2 = (0, 1) and let R =
( 0 −1

1 0 ) be clockwise rotation by 90 degrees. The layered square lattice Ẑ2 is the directed
multigraph with vertex set V = Z

2 and edge set E defined as follows. Every edge e ∈ E
is directed from its source vertex s(e) to its target vertex t(e). For every site z ∈ Z2

there are precisely 4 edges e0
z, e

1
z, e

2
z, e

3
z ∈ E whose source vertex is z. For the origin o, the

corresponding target vertices are t(ei
o) = Rie2, meaning that e0

o, e
1
o, e

2
o, e

3
o are respectively

directed north, east, south and west.
To specify the target vertices for z ∈ Z2 \ {o}, note that there is a unique choice of a

number j ∈ {0, 1, 2, 3} and a point w in the quadrant

Q =
{
(x, y) ∈ Z2 : x > 0, y > 0

}
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such that z = Rjw. Given j and w = (x, y), we set

t(ei
z) =

{
z + Rje2 if i = 2 and x = 0;

z + Ri+je2 otherwise.
(2)

Thus, for z ∈ Q (hence j = 0 and w = z) the edges e0
z, e

1
z, e

2
z, e

3
z are respectively directed

north, east, north, west when z is on the y-axis; and north, east, south, west when z is
off the y-axis. For z in another quadrant, the directions of e0

z, e
1
z, e

2
z, e

3
z are obtained by

rotational symmetry.
Figure 2, left, gives a picture of Ẑ2. Note that every vertex of Ẑ2 has out-degree 4,

and every vertex except for the origin and its immediate neighbors has in-degree 4. If
e = ei

z ∈ E, we will denote by e+ the next edge ei+1 mod 4
z emanating from z, using the cyclic

shift. Observe in particular that for z 6= o on an axis, this sequence of consecutive edges
alternates between the two parallel edges directed along the axis and the two perpendicular
ones.

The initial rotor configuration ρ0 appearing in Theorem 1 is given by

ρ0(z) = e0
z, z ∈ Z2. (3)

It has every rotor in the quadrant Q pointing north, and is chosen symmetric under R in
accordance with the expected limiting shape (Figure 2, right).

We may now describe rotor-router walk on Ẑ2 as follows. Given a rotor configuration ρ
with a chip at vertex z, a single step of the walk consists of changing the rotor ρ(z) to ρ(z)+,
and moving the chip to the vertex pointed to by the new rotor ρ(z)+. This yields a new
rotor configuration and a new chip location. Note that if the walk visits z infinitely many
times, then it visits all out-neighbors of z infinitely many times, and hence visits every
vertex of Ẑ2 (except for o) infinitely many times. It follows that rotor-router walk exits
any finite subset of Ẑ2 in a finite number of steps; in particular, rotor-router aggregation
terminates in a finite number of steps.

Outline

The rest of the paper proceeds as follows. In the next section we prove a “Strong Abelian
Property” of the rotor-router model, Theorem 2. This theorem holds on any finite di-
rected multigraph, and may be useful beyond its particular application to aggregation
in Ẑ2. Roughly speaking, the Strong Abelian Property allows us to reason about rotor-
router moves without regard to whether particles are actually available to perform those
moves. In Section 3, we prove Theorem 1 by applying the Strong Abelian Property to
the induced subgraph Dn of Ẑ2. Section 4 presents some open problems and discusses
possible extensions of our methods.

2 Strong Abelian Property

Let G = (V, E) be a finite directed multigraph (it may have loops and multiple edges).
Each edge e ∈ E is directed from its source vertex s(e) to its target vertex t(e). For a
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vertex v ∈ V , write
Ev = {e ∈ E : s(e) = v}

for the set of edges emanating from v. The outdegree dv of v is the cardinality of Ev.
Fix a nonempty subset S ⊂ V of vertices called sinks. Let V ′ = V \ S, and for each

vertex v ∈ V ′, fix a numbering e0
v, . . . , e

dv−1
v of the edges in Ev. If e = ei

v ∈ Ev, we denote
by e+ the next element ei+1 mod dv

v of Ev under the cyclic shift.
A rotor configuration on G is a function

ρ : V ′ → E

such that ρ(v) ∈ Ev for all v ∈ V ′. A chip configuration on G is a function

σ : V → Z.

Note that we do not require σ > 0. If σ(v) = m > 0, we say there are m chips at vertex v;
if σ(v) = −m < 0, we say there is a hole of depth m at vertex v.

Fix a vertex v ∈ V ′. Given a rotor configuration ρ and a chip configuration σ, the
operation Fv of firing v yields a new pair

Fv(ρ, σ) = (ρ′, σ′)

where

ρ′(w) =

{
ρ(w)+ if w = v;

ρ(w) if w 6= v;

and

σ′(w) =


σ(w)− 1 if w = v;

σ(w) + 1 if w = t(ρ(v)+);

σ(w) otherwise.

In words, Fv first rotates the rotor at v, then sends a single chip from v along the new
rotor ρ(v)+. We do not require σ(v) > 0 in order to fire v. Thus if σ(v) = 0, i.e., no chips
are present at v, then firing v will create a hole of depth 1 at v; if σ(v) < 0, so that there
is already a hole at v, then firing v will increase the depth of the hole by 1.

Observe that the firing operators commute: FvFw = FwFv for all v, w ∈ V ′. Denote
by N the nonnegative integers. Given a function

u : V ′ → N

we write
F u =

∏
v∈V ′

F u(v)
v

where the product denotes composition. By commutativity, the order of the composition
is immaterial.
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A rotor configuration ρ is acyclic on the set U ⊂ V ′ if the spanning subgraph (V, ρ(U))
has no directed cycles or, equivalently, if for every nonempty subset A ⊂ U there is a vertex
v ∈ A such that t(ρ(v)) /∈ A.

In the following theorem and lemmas, for functions f, g defined on a set of vertices
A ⊂ V , we write “f = g on A” to mean that f(v) = g(v) for all v ∈ A, and “f 6 g on A”
to mean that f(v) 6 g(v) for all v ∈ A.

Theorem 2 (Strong Abelian Property). Let ρ be a rotor configuration and σ a chip
configuration on G. Given two functions u1, u2 : V ′ → N, write

F ui(ρ, σ) = (ρi, σi), i = 1, 2.

If σ1 = σ2 on V ′, and ρi is acyclic on the support of ui for i = 1, 2, then u1 = u2.

Remark. If ρi is not acyclic on the support of ui, one can always reduce ui so that ρi

becomes acyclic on its support without affecting σi, by a procedure called reverse cycle-
popping, which is explained towards the end of the paper.

Note that the equality u1 = u2 in Theorem 2 implies that ρ1 = ρ2, and that σ1 = σ2

on all of V . For a similar idea with an algorithmic application, see [FL10, Theorem 1].
In a typical application of Theorem 2, we take σ1 = σ2 = 0 on V ′, and u1 to be the

usual rotor-router odometer function

u1(v) = #{1 6 j 6 k : vj = v}

where v1, v2, . . . , vk is a complete legal firing sequence for the initial configuration (ρ, σ);
that is, a sequence of vertices which, when fired in order, causes all chips to be routed to
the sinks without ever creating any holes. The resulting rotor configuration is necessarily
acyclic on A = {v ∈ V ′ : u1(v) > 0}: indeed, for any nonempty subset B of A, the rotor
at the last vertex of B to fire points to a vertex not in B.

The usual abelian property of rotor-router walk [DF91, Theorem 4.1] says that any
two complete legal firing sequences have the same odometer function. The Strong Abelian
Property allows us to drop the hypothesis of legality: any two complete firing sequences
whose final rotor configurations are acyclic on the set of vertices that have fired at all
have the same odometer function, even if one or both of these firing sequences temporarily
creates holes.

In our application to rotor-router aggregation on the layered square lattice, we take
V = Dn and S = Ln. We will take σ to be the chip configuration consisting of 2n(n+1)+1
chips at the origin, and ρ to be the initial rotor configuration ρ0. Letting the chips at the
origin in turn perform rotor-router walk until finding an unoccupied site defines a legal
firing sequence (although not a complete one, since not all chips reach the sinks). In the
next section, we give an explicit formula for the corresponding odometer function, and
use Theorem 2 to prove its correctness. The proof of Theorem 1 is completed by showing
that each nonzero vertex in Dn receives exactly one more chip from its neighbors than
the number of times it fires.

To prove Theorem 2 we start with the following lemma.
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Lemma 3. Let u : V ′ → N, and write

F u(ρ, σ) = (ρ1, σ1).

If σ = σ1, and u is not identically zero, then ρ1 is not acyclic on the support A = {v ∈
V ′ : u(v) > 0}.

Proof. Since u is not identically zero, A is nonempty. Suppose for a contradiction that
ρ1 is acyclic on A. Then there is a vertex v ∈ A whose rotor ρ1(v) points to a vertex not
in A. The final time v is fired, it sends a chip along this rotor; thus, at least one chip
exits A. Since the vertices not in A do not fire, no chips enter A, hence∑

v∈A

σ1(v) <
∑
v∈A

σ(v)

contradicting σ = σ1.

Theorem 2 follows immediately from the next lemma.

Lemma 4. Let u1, u2 : V ′ → N, and write

F ui(ρ, σ) = (ρi, σi), i = 1, 2.

If ρ1 is acyclic on the support of u1, and σ2 6 σ1 on V ′, then u1 6 u2 on V ′.

Proof. Let
(ρ̂, σ̂) = Fmin(u1,u2)(ρ, σ).

Then (ρ1, σ1) is obtained from (ρ̂, σ̂) by firing only vertices in the set A = {v ∈ V ′ :
u1(v) > u2(v)}, so

σ̂ 6 σ1 on V − A.

Likewise, (ρ2, σ2) is obtained from (ρ̂, σ̂) by firing only vertices in V − A, so

σ̂ 6 σ2 6 σ1 on A.

Thus σ̂ 6 σ1 on V . Since
∑

v∈V σ̂(v) =
∑

v∈V σ1(v) it follows that σ̂ = σ1. Taking

u = u1 −min(u1, u2)

in Lemma 3, since F u(ρ̂, σ̂) = (ρ1, σ1) and the support of u is contained in the support
of u1, we conclude that u = 0.
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Figure 3: Left: the odometer u12 in the first quadrant and along the axes. Right: the
corresponding rotor configuration ρ12. The sets C2 and C3 are depicted in blue and purple,
respectively. The rotor configuration is acyclic since following the rotors from any point
of C2 or the layer above it produces an alternating south-east path to the x-axis, while
following the rotors from any point of C3 or the layer below it produces an alternating
north-west path to the y-axis.

3 Proof of Theorem 1

Consider again the rotor-router model on the layered square lattice Ẑ2. We will work with
the induced subgraph Dn of Ẑ2, taking the sites in the outermost layer Ln as sinks.

Recall our notation
Q =

{
(x, y) ∈ Z2 : x > 0, y > 0

}
for the first quadrant of Z2. We have Z2 = {o} ∪

(⋃3
i=0 RiQ

)
, where R = ( 0 −1

1 0 ) is
clockwise rotation by 90 degrees. Fix n, and for z = (x, y) ∈ Dn write

`z = n− |x| − |y|.

Then `z is the number of the diamond layer that z is on, where Ln is counted as layer 0,
Ln−1 as layer 1, and so on. Consider the sets

C2 =
{
(x, y) ∈ Q ∩Dn−1 : x > 0, y > 2, `(x,y) ≡ 2 mod 4

}
C3 =

{
(x, y) ∈ Q ∩Dn−1 : x > 0, y > 1, `(x,y) ≡ 3 mod 4

}
the electronic journal of combinatorics 17 (2010), #R152 9



ρ3ρ2 ρ4 ρ5

ρ6 ρ7 ρ8 ρ9

Figure 4: The rotor configurations ρ2, ρ3, . . . , ρ9 on the set of vertices {(x, y) : 0 6 x, y 6
5}. On the axes, the black arrows correspond to the directed edge e0

z in (2), and open-
headed arrows to e2

z.

and

C =
3⋃

i=0

Ri(C2 ∪ C3).

Define un : Dn−1 → N by
un = u′n − 1C (4)

where

u′n(z) =

{
2n(n + 1) if z = o;

`z(`z + 1) if z 6= o;
(5)

and 1C(z) is the indicator function which is 1 for z ∈ C and 0 for z /∈ C. See Figure 3,
left, for a picture of the odometer u12 and the set C.

Let ρ0 be the initial rotor configuration (3), and define the rotor configuration ρn

on Dn−1 and chip configuration σn on Dn by setting

F un(ρ0, (2n
2 + 2n + 1)δo) = (ρn, σn).

From the formula (4) it follows that in the quadrant Q, all rotors of ρn point east on
the set C2 (since `z ≡ 2 mod 4 there), while the rotors on the diagonal above C2 point
south (see Figure 3, right). Thus, starting from any of these points, the rotors form
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an alternating south-east path to the x-axis. Likewise, from any point in the set C3

or the diagonal below it, the rotors form an alternating north-west path to the y-axis.
Since the rotors on the axes all point in their initial directions (`z(`z + 1) being even),
it follows that the rotor configurations ρn are acyclic for all n > 1. Figure 4 shows how
these rotor configurations develop; the periodicity mod 4 is apparent here by comparing
a configuration in the upper row with the one below it.

Lemma 5. For all n > 1, we have σn = 1Dn.

Proof. Recall that we work in the induced subgraph Dn of Ẑ2, where we take the sites in
the outermost layer Ln as sinks. The origin o has no incoming edges in Ẑ2, so it receives
no chips from its neighbors. Since un(o) = 2n2 + 2n, the origin is left with exactly one
chip after firing. The sink vertices Ln do not fire and only receive chips. Since un(z) = 2
for all z ∈ Ln−1, it follows from (2) and (3) that exactly one chip is sent to each sink
vertex.

It remains to show that σn(z) = 1 for each vertex z ∈ Dn−1 \{o}, i.e., that the number
of chips sent to z by its neighbors is one more than the number of times z is fired (that
is, 1 + un(z)). To show this, write

F u′
n(ρ0, (2n

2 + 2n + 1)δo) = (ρ′n, σ
′
n)

where u′n is given by (5). We will argue that σ′n(z) = 1 and that σn(z) = σ′n(z). By
symmetry, it suffices to consider points z = (x, y) in Dn−1 ∩ Q. We argue separately in
the two cases x = 0 and x > 0 (on the axis and off the axis).

Case 1: x = 0. Under F u′
n , the site z fires `z(`z + 1) times. If y > 1, its neighbor

z − e2 fires (`z + 1)(`z + 2) times, and from (2) and (3) we see that it sends a chip to z
every even time it is fired. Since (`z + 1)(`z + 2) is even, it follows that z − e2 sends
1
2
(`z + 1)(`z + 2) chips to z. The same is true if y = 1, since then `z = n − 1, and the

origin o = z − e2 sends 1
2
n(n + 1) chips to z.

The only other vertices that send chips to z under F u′
n are its left and right neighbors

z± e1. Since `z±e1 = `z − 1, these neighbors fire `z(`z − 1) times. We claim that together
they send 1

2
`z(`z − 1) chips to z. To see this, note that if we fire these two vertices in

parallel, they send one chip to z every two times we fire. We therefore conclude that

σ′n(z) = 1
2
(`z + 1)(`z + 2) + 1

2
`z(`z − 1)− `z(`z + 1) = 1.

To show that σn(z) = σ′n(z), note first that neither z nor z − e2 is in C because
x = 0. The right neighbor z + e1 might be in C, but since `z(`z − 1) is even, the last
chip sent from z + e1 by F u′

n does not move to z. The left neighbor z − e1 is in C only
if `z−e1 = `z − 1 ≡ 3 mod 4, which implies `z(`z − 1) ≡ 0 mod 4. Hence if z − e1 is in C,
the last chip sent from z − e1 by F u′

n moves west. It follows that F un and F u′
n fire z the

same number of times and send the same number of chips to z, hence σn(z) = σ′n(z) = 1.
Case 2: x > 0. To argue that σ′n(z) = 1, as an initial step we unfire every vertex on

the positive x-axis B = {(m, 0) ∈ Z2 : m > 0} once. Since all initial rotors on B point
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east, this turns all these rotors north without affecting the number of chips at z (nor at
any other vertex of Q).

Now we apply F u′
n . By firing the four neighbors of z in parallel, it is easy to see

from (2) that they send one chip to z every firing round, since after every round exactly
one of their rotors points to z. Hence, firing these neighbors `z(`z − 1) times each sends
`z(`z − 1) chips to z. Since `z−e1 = `z−e2 = `z + 1, the two neighbors z − e1 and z − e2

each fire
(`z + 1)(`z + 2)− `z(`z − 1) = 4`z + 2

additional times under F u′
n . Considering what happens when they are fired in parallel

shows that they send one chip to z every two times they fire, meaning that 2`z + 1
additional chips are sent to z.

Finally, to obtain σ′n we must fire every vertex in B once more. But since F u′
n fires

each vertex in B an even number of times, their rotors are now pointing either north or
south, so firing them once more does not affect the number of chips at z. Hence

σ′n(z) = `z(`z − 1) + (2`z + 1)− `z(`z + 1) = 1.

To finish the proof, we now argue that σn(z) = σ′n(z). First note that since `v(`v + 1)
is even for all v ∈ Dn−1, it follows from (2) that the last chips sent from z ± e1 by F u′

n

do not move to z. However, consider the neighbor z + e2. If `z+e2 = `z − 1 ≡ 3 mod 4,
its final rotor points north after firing `z(`z − 1) times, while if `z − 1 ≡ 2 mod 4, its
final rotor points south. It therefore follows from the definition of C, that F un sends one
fewer chip from z + e2 to z than F u′

n in case `z ≡ 3 mod 4 and y + 1 > 2. Likewise, F un

sends one fewer chip from z − e2 to z than F u′
n in case `z ≡ 2 mod 4 and y − 1 > 1. But

these are precisely the two cases when z ∈ C, hence F un also fires z once fewer than F u′
n .

Therefore, σn(z) = σ′n(z) = 1.

We remark that the rotor configuration ρn is obtained from ρ′n by reverse cycle-popping :
that is, for each directed cycle of rotors in ρ′n, unfire each vertex in the cycle once. Reverse
popping a cycle causes each vertex in the cycle to send one chip to the previous vertex,
so there is no net movement of chips. Repeat the procedure if necessary until the rotor
configuration is acyclic on the odometer’s support. This is bound to happen after a finite
number of steps, since reverse popping a cycle decreases the odometer on the cycle by 1.
Let ρ′′n be the rotor configuration obtained from reverse cycle-popping, and let

u′′n = u′n − cn

where cn(z) is the number of times z is unfired during reverse cycle-popping. Then

F u′′
n(ρ0, (2n

2 + 2n + 1)δo) = (ρ′′n, 1Dn).

By Lemma 5, we have

F un(ρ0, (2n
2 + 2n + 1)δo) = (ρn, 1Dn).

By the Strong Abelian Property (Theorem 2), it follows that u′′n = un. In particular,
cn = 1C and ρ′′n = ρn.
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Proof of Theorem 1. For 0 6 m 6 3, let rm = 1, and for m > 4, let rm be the unique
integer n such that

2n(n− 1) 6 m < 2n(n + 1).

Consider a modified rotor-router aggregation defined by the growth rule

Ãm+1 = Ãm ∪ {z̃m}

where z̃m is the endpoint of a rotor-router walk started at the origin in Ẑ2 and stopped
on exiting Ãm ∩ Drm−1. For z ∈ Z2, let vm(z) be the number of times this walk visits z
strictly prior to stopping at z̃m.

Now fix n > 1, and define ũn : Dn−1 → N by setting

ũn(z) =

2n(n+1)−1∑
m=0

vm(z).

In other words, ũn(z) is the total number of times z fires during the formation of the

cluster Ã2n(n+1). We will induct on n to show that un = ũn for all n > 1. Since un = ũn

implies A2n(n+1) = Ã2n(n+1) = Dn by Lemma 5, this proves the theorem.
The base case of the induction is immediate: u1 = ũ1 = 4δo. For n > 2, in the induced

subgraph Dn of Ẑ2 with sink vertices Ln we have

F un(ρ0, (2n
2 + 2n + 1)δo) = (ρn, 1Dn)

by Lemma 5. On the other hand,

F eun(ρ0, (2n
2 + 2n + 1)δo) = (ρ̃n, σ̃n)

for some rotor configuration ρ̃n on Dn−1 and chip configuration σ̃n on Dn. By the inductive
hypothesis, Ã2n(n−1) = Dn−1. For all m such that 2n(n−1) 6 m < 2n(n+1), since rm = n,
it follows that z̃m is the endpoint of a rotor-router walk in Ẑ2 stopped on exiting Dn−1.
This implies that σ̃n = 1 on the set Dn−1. Moreover, since ρ0 is acyclic, ρ̃n is acyclic (each
rotor points in the direction a chip last exited). The Strong Abelian Property (Theorem 2)
now gives un = ũn, which completes the inductive step.

4 Concluding Remarks

Theorems 1 and 2 raise several further questions. We treat these in order of increasing
generality (and, we suspect, increasing difficulty!).

Intermediate cluster shapes

It is natural to ask about the shape of the cluster Am when m is not of the form 2n(n+1).
As m increases from 2n(n − 1) to 2n(n + 1), the sites in layer Ln appear to fill up in a
predictable order.

the electronic journal of combinatorics 17 (2010), #R152 13



General rotor configurations

We believe that for a general initial rotor configuration ρ on the layered square lattice Ẑ2,
the shape of the aggregate remains very close to a diamond. How close? Does there exist
an absolute constant c such that for all ρ and n,

Dn−c ⊂ A2n(n+1) ⊂ Dn+c ?

As evidence that the initial rotor configuration should not change the shape by very
much, consider the following modification of our aggregation model: stop each chip when
it reaches either an empty site or a site containing just one other chip. That is, in the
modified model it is legal to fire a vertex only if it contains at least 3 chips. The proof
of Lemma 5 shows that starting with 4n2 + 4n + 2 chips at the origin, the odometer 2u′n
leads to the chip configuration 2 · 1Dn . But observe that 2u′n fires every vertex in Dn−1 a
multiple of 4 times. Therefore, the final chip configuration does not depend on the initial
rotor configuration, and the initial and final rotor configurations are equal. Following the
proof of Theorem 1, the Strong Abelian Property now implies that for any acyclic initial
rotor configuration, the odometer for any complete legal firing sequence is 2u′n. Hence,
the aggregate grows as a perfect diamond of height 2.

In fact, using reverse cycle-popping as in the remark following Lemma 5, one can show
that the modified aggregation model yields a perfect diamond of height 2 for any initial
rotor configuration.

Conceptual proofs

The Strong Abelian Property (Theorem 2) can be viewed as a tool for converting simu-
lations into proofs. Specifically, if simulation of a rotor-router aggregation model reveals
an odometer function with simple structure, yielding a conjectural explicit formula based
on the behavior for small values of n, then the Strong Abelian Property provides a way of
proving that this formula holds for all n. Unfortunately, the proofs produced in this way
tend to be unenlightening. They provide formal verification, but not understanding. One
would like to have a way of predicting the behavior of a growth model that does not rely
on first explicitly simulating it; or an approach that provides a conceptual explanation
of its behavior rather than a technical verification. In what other situations should we
expect a “zero discrepancy” result like Theorem 1?

Local regularities

A final challenge concerns the (more typical) case when the odometer function reveals
intriguing local regularities, but is beyond the reach of a global explicit formula. The
odometer function of the usual rotor-router aggregation in Z2 has this character. Simu-
lations indicate that near certain special points (the preimages of a square lattice in the
complex plane under the conformal map z 7→ 1/z2) the odometer is exactly equal to a
quadratic function of the coordinates. These points are visible in the image produced re-
cently by a new large-scale simulation algorithm [FL10]. They lie in regions of the picture
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where the final rotors all point in the same direction (or more generally, alternate in a
simple periodic fashion).

The abelian sandpile model has a similar phenomenon, wherein the final state and
odometer function appear to have a simple behavior near the boundary but increasingly
complex and intractable behavior as one moves toward the origin [FLP10]. Simulations
show the power of rotor-router and sandpile systems to form large-scale regular structures
using simple local rules, but the underlying mechanism for this kind of pattern forma-
tion remains poorly understood. Extending the methods used here to prove local rather
than global exact formulas for the odometer function would be a possible approach to
understanding pattern formation in these systems.
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