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Abstract

Soares [J. Graph Theory 1992] showed that the well known upper bound 3
δ+1n+

O(1) on the diameter of undirected graphs of order n and minimum degree δ also
holds for digraphs, provided they are eulerian. In this paper we investigate if similar
bounds can be given for digraphs that are, in some sense, close to being eulerian. In
particular we show that a directed graph of order n and minimum degree δ whose
arc set can be partitioned into s trails, where s 6 δ − 2, has diameter at most
3(δ + 1− s

3)−1n + O(1). If s also divides δ − 2, then we show the diameter to be at

most 3(δ+1− (δ−2)s
3(δ−2)+s

)−1n+O(1). The latter bound is sharp, apart from an additive

constant. As a corollary we obtain the sharp upper bound 3(δ+1− δ−2
3δ−5 )−1n+O(1)

on the diameter of digraphs that have an eulerian trail.

Keywords: digraph, eulerian, semi-eulerian, diameter.

1 Introduction

While for undirected graphs bounds on the diameter have been well researched, much
less is known about the diameter of directed graphs. Most bounds on the diameter of
undirected graphs do not have a straightforward analogue for directed graphs. A case in
point, and the starting point of our investigation, is the following well-known bound on
the diameter on an undirected graph in terms of order and minimum degree.

Theorem 1 Let G be a connected graph of order n and minimum degree δ > 3. Then

diam(G) 6
3

δ + 1
n + O(1).

Apart from the additive constant, this bound is best possible.
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As shown by Soares [3], the above bound does not hold for digraphs. He constructed
graphs of order n, minimum degree δ (defined as the minimum over all in-degrees and all
out-degrees) and diameter n − 2δ + 1. His construction shows that for fixed δ there is
no constant aδ < 1 such that all strongly connected digraphs of minimum degree δ and
sufficiently large order have diameter at most aδn + O(1). On the other hand, Soares
showed that the bound in Theorem 1 does hold for eulerian digraphs, i.e., for digraphs in
which every vertex has the same in- and out-degree.

This raises the natural question if relaxations of the eulerian property still allow us to
give meaningful bounds on the diameter in terms of order and minimum degree. Two ways
of relaxing the eulerian property seem obvious candidates: (i) consider digraphs in which
the difference between in-degree and out-degree of a vertex is bounded by a constant, and
(ii) consider digraphs whose arc set is the union of a bounded number of trails. For both
relaxations we investigate if there exist constants aδ < 1 such that for all such digraphs
D of order n and minimum degree at least δ, we have

diam(D) 6 aδn + b

for some constant b. It will turn out that for the first relaxation there is no such bound
with aδ < 1, while for the second relaxation such a bound exists.

Let s be a nonnegative integer. We define a strong digraph D = (V, A) to be s-eulerian
if

∑

v∈V |d+(v)−d−(v)| 6 2s. So D is 0-eulerian if and only if D is eulerian, and for s > 1
D is s-eulerian if and only if the arc set of D can be decomposed into s trails. Note that
1-eulerian digraphs are often called semi-eulerian. For fixed s and δ > 0 we define cδ,s

to be the smallest constant such that for all s-eulerian digraphs of order n and minimum
degree δ

diam(D) 6 cδ,sn + b,

for some constant b. For eulerian digraphs, i.e., for s = 0, it follows from Soares’ result
that cδ,0 = 3

δ+1
. For general values of s, the determination of cδ seems to be non-trivial.

In this paper we show that

cδ,s 6 3
(

δ + 1 −
s

3

)

−1

if s 6 δ − 2.

If s divides δ − 2, then we give the exact value:

cδ,s = 3
(

δ + 1 −
(δ − 2)s

3(δ − 2) + s

)−1

if s divides δ − 2.

We note that the diameter of eulerian oriented graphs has been investigated in [2] and
[1].

2 Results

Before considering s-eulerian digraphs, we first show that there exist digraphs of order n,
minimum degree δ, and diameter n−δ2 + δ +1, in which the in-degree and the out-degree
of every vertex differ by not more than 1. This shows
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Proposition 1 For each δ > 1 there exist infinitely many strong digraphs D with the
property

|d+(v) − d−(v)| 6 1 for all vertices v,

and
diam(D) > n − δ2 − δ + 1,

where n is the order of D.

Proof. Let D be the directed graph of order n obtained from the disjoint union of two
copies H1 and H2 of the complete digraph K(δ

2)
and a directed path P = v1, v2, . . . , vn−δ2+δ,

with arcs added from each vi to its δ predecessors vi−1, vi−2, . . . , vi−δ if i > δ + 1, and
to vi−1, vi−2, . . . , v1 if i 6 δ, as follows. Add arcs between the first δ − 1 vertices of P
and H1 such that each of the δ − 1 vertices of P has in-degree and out-degree equal to δ,
and each vertex of H1 is incident to at most one arc joining it to P and at most one arc
joining it from P . Similarly add arcs between the last δ − 1 vertices of P and H2. It is
easy to verify that the resulting digraph is strong and has diameter at least n−δ2−δ+1. 2

This example shows that even if the in-degree and out-degree of every vertex differ by
not more than 1, then no aδ < 1 exists such that the diameter is bounded from above by
aδn + O(1).

We now turn our attention to s-eulerian digraphs.

Theorem 2 Let D be a strong s-eulerian digraph of order n and minimum degree δ.
(a) If s 6 δ − 2 then

diam(D) 6 3
(

δ + 1 −
s

3

)−1

n + O(1).

(b) If s divides δ − 2 then

diam(D) 6 3
(

δ + 1 −
(δ − 2)s

3(δ − 2) + s

)

−1

n + O(1).

Proof. We fix a vertex v of out-eccentricity d = diam(D). If i an integer, then we
let Vi be the ith distance layer, i.e., the set of vertices at distance exactly i from v. By
V>i and V6i we mean the set of vertices at distance at least and at most i, respectively,
from v. We also let ni = |Vi| and ni = ni−1 + ni + ni+1. We define the deficiency fi of a
distance layer Vi by

fi = δ + 1 − ni.

Note that a vertex in Vi has at least fi out-neighbours outside the set Vi−1 ∪ Vi ∪ Vi+1.

Claim 1: for all i ∈ {1, 2, . . . , d − 1} we have s > max{nifi + ni+1fi+1, nifi}.

Consider a vertex wi ∈ Vi. Since wi has out-neighbours only in V6i+1, we have

|N+(wi) ∩ V6i−1| > d+(wi) − ni+1 − (ni − 1) > δ − ni + ni−1 + 1 = fi + ni−1.
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Similarly for each wi+1 ∈ Vi+1,

|N+(wi+1) ∩ V6i−1| > d+(wi+1) − ni+1 + 1 > δ + 1 − ni+1 = fi+1.

Combining the two inequalities yields

q(V>i, V6i−1) > q(Vi ∪ Vi+1, V6i−1) > ni(fi + ni−1) + ni+1fi+i.

On the other hand we have

q(V6i−1, V>i) = q(Vi−1, Vi) 6 ni−1ni.

Since D is s-eulerian, we obtain

s > q(V>i, V6i−1) − q(V6i−1, V>i)

> ni(fi + ni−1) + ni+1fi+i − ni−1ni

= nifi + ni+1fi+1

and so s > nifi + ni+1fi+1. Similarly we prove s > nifi.

Claim 2: If ni = 1 then
(a) if 0 6 i 6 d − 2 then fi+1 > fi+2 and fi+2 6 0,
(b) if 2 6 i 6 d then fi−1 > fi−2 and fi−2 6 0.

(a) From ni+2 = ni+1 − ni + ni+3 > ni+1 we immediately get fi+2 6 fi+1. Now suppose to
the contrary that fi+2 > 0. Then fi+1 > 0, and we obtain the contradiction

s > ni+1fi+1+ni+2fi+2 > (ni+1−1)(fi+1−1)+ni+1+fi+1−1+ni+2 > ni+1−2+fi+1 = δ−1.

(b) The proof uses the inequality s > ni−1fi−1 + ni−2fi−2 and is analogous to part (a).

Claim 3: Let i ∈ {1, 2, . . . , d− 4}. If ni = 1 then either fi + fi+1 + fi+2 + fi+3 6 s or we
have, with Fi := fi + fi+1 + fi+2 and a := ni−1,

Fi 6 s, ni+1 6 δ − a − Fi, ni+2 > a + Fi.

Moreover, Fi = s only if fi−1 6 0 and ni+3 = 1.

First note that fi+2 6 0 by Claim 2. We consider two cases.

Case 1: fi+1 6 0.

By Claim 1, s > nifi = fi, so Fi = fi + fi+1 + fi+2 6 s since fi+1, fi+2 are non-positive.
If Fi = s then fi = s and so, by s > ni−1fi−1 + nifi we conclude that fi−1 6 0. Also
fi+1 = fi+2 = 0, and so ni+3 = ni = 1.
Let ni−1 = a. From the definition of the nj and fj we immediately get ni+1 = δ−a−fi 6

δ − a − Fi and ni+2 = a + fi − fi+1 > a + Fi, as desired.

Case 2: fi+1 > 0.

the electronic journal of combinatorics 17 (2010), #R157 4



If ni+1 = 1, then fi+3 6 0 by Claim 2. Claim 1 now yields

s > nifi + ni+1fi+1 > fi + fi+1 + fi+2 + fi+3,

as desired. So we assume that ni+1 > 2. Then ni+3 = ni+2−ni+1 +ni+4 > ni+2−ni+1 +1.
Hence we have fi+3 6 fi+2 +ni+1 − 1 6 ni+1 − 1. We also have fi +ni+1fi+1 6 s and thus

fi + fi+1 = fi + ni+1fi+1 − (ni+1 − 1)fi+1 6 s − ni+1 + 1.

In total we obtain

fi + fi+1 + fi+2 + fi+3 6 (s − ni+1 + 1) + 0 + ni+1 − 1 = s,

as desired.

Claim 4: Let i ∈ {1, 2, . . . , d−4}. If ni = 2 and fi > 0, then at least one of the following
holds:
(i) fi + fi+1 + fi+2 6

2
3
s,

(ii) fi + fi+1 + fi+2 + fi+3 6 s,
(iii) fi + fi+1 + fi+2 = 1

2
s + 1, s ∈ {2, 4} and fi = 1

2
s, fi+1 = 0, fi+2 = 1, ni = 2, ni+1 > 2,

ni+2 > 2, ni+3 = 1

First note that fi > 0 implies that s > nifi > 2 by Claim 1 and ni+2 > 2 by Claim 2.

Case 1: ni+1 = 1.

Then fi+3 6 0 and ni+1 > 5 by Claim 2. If fi+2 > 2, then we obtain the contradiction

s > ni+1fi+1 + ni+2fi+2 > fi+1 + 2ni+2 = δ + 1 − ni+1 + 2(ni+1 − 3) > δ,

so fi+2 6 1. Then fi+2 6 fi, and thus

s > nifi + ni+1fi+1 = 2fi + fi+1 > fi + fi+1 + fi+2 + fi+3.

Case 2: ni+1 > 2.

Then ni+2 > 2 by Claim 2 and fi > 0.
If ni+3 > 2, then we obtain the claim by adding the inequalities s > nifi + ni+1fi+1 >

2(fi + fi+1) and s > ni+2fi+2 + ni+3fi+3 > 2(fi+2 + fi+3), so we assume that ni+3 = 1. By
Claim 2 this implies fi+1 6 0. Note that fi+2 = fi+1 + ni − ni+3 = fi+1 + 1.
By Claim 1 we have s > nifi = 2fi, so fi 6 s/2. Now either fi+1 = 0 or fi+1 6 −1. If
fi+1 6 −1, then fi+2 6 0 and fi + fi+1 + fi+2 6

1
2
s − 1 < 2

3
s, as desired. If fi+1 = 0,

then fi+2 = 1, and thus fi + fi+1 + fi+2 6
1
2
s + 1. If the last inequality is strict, then

fi + fi+1 + fi+2 6 ⌊s+1
2
⌋ 6

2
3
s. (Note that s > 2.) But if fi + fi+1 + fi+2 = 1

2
s + 1, then s

is even and s < 6 since otherwise s
2

+ 1 6
2
3
s.

Claim 5: Let i ∈ {1, 2, . . . , d − 4}. If ni > 3 and fi > 0 then either fi + fi+1 6
1
3
s or

fi + fi+1 + fi+2 + fi+3 6 s.

We can assume that fi+1 > 0 since otherwise s > nifi > 3fi yields fi + fi+1 6 s/3. We
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also have, by fi > 0 and Claim 2, that ni+2 > 2.

Case 1: ni+1 = 1.

Then fi+3 6 0 by Claim 2. We can assume that fi+2 > 0 since otherwise s > nifi +
ni+1fi+1 > fi + fi+1 + fi+2 + fi+3 yields Claim 5. Now Claim 1 yields the inequalities

s > 3fi + fi+1 and s > fi+1 + 2fi+2.

If fi+2 6 2fi, then the first inequality leads to s > fi + fi+1 + fi+2. Otherwise 2fi < fi+2

and thus fi < fi+2, and now the second inequality yields this bound.

Case 2: ni+1 > 2.

By our above assumption fi+1 > 0, Claim 2 yields ni+3 > 2. Adding the two inequalities

s > nifi + ni+1fi+1 > 2(fi + fi+1), and s > ni+2fi+2 + ni+3fi+3 > 2(fi+2 + fi+3)

now yields Claim 5.

The following claim follows immediately from Claims 3 to 5.

Claim 6: For each i ∈ {1, 2, . . . , d − 4} at least one of the following statements holds:
(i) fi 6 0,
(ii) fi + fi+1 6

1
3
s,

(iii) fi + fi+1 + fi+2 6
2
3
s,

(iv) fi + fi+1 + fi+2 + fi+3 6 s
(v) fi + fi+1 + fi+2 = 1

2
s + 1 and s ∈ {2, 4}, ni = 2, ni+1 > 2, ni+2 > 2, ni+3 = 1, fi = 1

2
s,

fi+1 = 0, fi+2 = 1,
(vi) ni = 1 and, with Fi := fi + fi+1 + fi+2 and a := ni−1,

Fi 6 s, ni+1 6 δ − a − Fi, ni+2 > a + Fi,

and Fi = s only if fi−1 6 0 and ni+3 = 1.

Let I = {a, a+1, . . . , b−1} be an interval. We will say that I is of type (i) (type (ii), (iii),
(iv),( v), (vi)) if, with i = a, statement (i) (statement (ii), (iii), (iv), (v), (vi)) holds and
|I| = 1 (|I| = 2, 3, 4, 3, 3). The following claim shows that each j ∈ {1, 2, . . . , d} which is
not too close to d, is a left end point of an interval J for which

∑

i∈J fi 6 (|J | − 1) s
3
.

Claim 7: If s 6 δ − 2 then
∑d

i=1 fi 6
ds
3

+ 2s.

Repeated application of Claim 6 shows that we can partition the set {1, 2, . . . , d} into
intervals I(1), I(2), . . . , I(k) such that each interval, except possibly I(k), is of one of the
types in Claim 6, and I(k) has at most 3 elements.

It follows from Claim 6 and 1
2
s + 1 6 s for s > 2, that for each interval I(m),

m ∈ {1, 2, . . . , k − 1},
∑

i∈I(m)

fi 6
s

3
|I(m)|.
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Since fi 6 s for each i ∈ I(k), we have

∑

i∈I(k)

fi 6 s|I(k)| 6
s

3
|I(k)| + 2s.

Hence
d

∑

i=1

fi =
k

∑

m=1

∑

i∈I(m)

fi 6

k
∑

m=1

|I(m)|
s

3
+ 2s =

ds

3
+ 2s,

as desired.

Claim 7 now implies part (a) of the theorem as follows. Clearly,

d
∑

i=0

ni = 3n − n0 − nd 6 3n.

On the other hand,

d
∑

i=0

ni =
d

∑

i=0

(δ + 1 − fi)

> (d + 1)(δ + 1) −
ds

3
− 2s.

Combining the inequalities and solving for d now yields part (a) of the theorem.

Claim 8: Let s divide δ − 2. If j is fixed, 1 6 j 6 d − 3 δ−2
s

, then there exists an integer
k with k 6 j + 3 δ−2

s
such that

k
∑

i=j

fi 6 (k − j)
s

3
.

There exist integers j1, j2, . . . , jr+1 with j = j1 < j2 < . . . < jr+1 and jr < j +3 δ−2
s

6 jr+1

such that for each m the interval I(m) := {jm, jm + 1, jm + 2, . . . , jm+1 − 1} is of one of
the six types described in Claim 6. It follows from Claim 6 and 1

2
s+1 6 s for s > 2, that

∑

i∈I(m)

fi 6

{

1
3
s(|I(m)| − 1) if I(m) is of type (i), (ii), (iii), or (iv),

1
3
s|I(m)| if I(m) is of type (v) or (vi).

(1)

Case 1: I(1) is of type (v).

First consider the case s = δ−2. If s = 2 then δ = 4, but ni+ni+1+ni+2 > 2+2+2 > 6 >
δ+1 by Claim 4, contradicting fi+1 = 0. If s = 4 then δ = 6 and, by Claim 4, fi = 1

2
s = 2.

Hence, ni+1 = 2 since otherwise, if ni+1 > 2 we have the contradiction ni > 6 = δ+1. But
then fi+2 = 1 implies ni+2 = 3. By Claim 1 we get 4 = s > ni+2fi+2 +ni+3fi+3 = 3+fi+3,
so fi+3 = 1. Hence we have fi + fi+1 + fi+2 + fi+3 6 4 = s, and Claim 8 holds with
k = j + 3.
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Now consider the case s < δ − 2. Consider I(2). By Claim 4 we have ni+3 = 1, so I(2) is
not of type (v). If I(2) is of type (i), (ii), (iii), or (iv), then (1) implies

∑

i∈I(1)∪I(2)

6 (|I(1) ∪ I(2)| − 1)
s

3
,

and Claim 8 follows with k = j3 − 1. If I(2) is of type (vi), then it follows from Claim 3
and fj+2 = 1 that fj+3 + fj+4 + fj+5 6 s − 1, and so

j+5
∑

i=j

fi 6
1

2
s + 1 + s − 1 6 5

s

3
,

and Claim 8 holds with k = j + 5.

Case 2: I(1), I(2), . . . , I(m− 1) are of type (vi) and I(m) is of type (v) for some m with
2 6 m 6 r.

Consider I(m − 1). Since njm
= 2, it follows by Claim 3 that

∑

i∈I(m−1) 6 s − 1. Hence,

jm+1−1
∑

i=j

fi 6 s(m − 1) + s − 1 +
1

2
s + 1 6 (jm+1 − 1 − j)

s

3
,

and Claim 8 follows with k = jm+1 − 1.

Case 3: I(m) is of type (i), (ii), (iii) or (iv) for some m 6 r.

Let I(m) be the first interval of type of type (i), (ii), (iii), or (iv). By (1) we have

jm+1−1
∑

i=j

fi =
m−1
∑

k=0

∑

i∈I(k)

fi +
∑

i∈I(m)

fi 6

m−1
∑

k=0

|I(k)|
s

3
+ (|I(m)| − 1)

s

3
= (jm+1 − 1 − j)

s

3
.

To prove Claim 8 for this case it remains to show that jm+1 − 1 6 j + 3 δ−2
s

. Since
intervals I(1), I(2), . . . , I(m) have 3 elements each, we have jm = j + 3(m− 1), and thus
jm ≡ j + 3 δ−2

s
(mod 3). By jm < j + 3 δ−2

s
we obtain jm 6 j + 3 δ−2

s
− 3. Since jm+1 has

at most four elements, we have jm+1 6 jm + 4 6 j + 3 δ−2
s

+ 1, as desired.

Case 4: I(m) is of type (vi) for m = 0, 1, . . . , r.

Since each interval contains exactly 3 numbers, we have r = δ−2
s

and so jr+1 = j + 3 δ−2
s

.
As in Claim 3 we let Fi = fi + fi+1 + fi+2. Then we have

j+3 δ−2

s
−1

∑

i=j

fi =

δ−2

3
∑

i=0

Fj+3i.

Clearly nj−1 > 1. Applying statement (vi) iteratively, we obtain nj+2 > nj−1+Fj > 1+Fj,
nj+5 > nj+2 + Fj+3 > 1 + Fj + Fj+3, and so on. Finally,

nj+3 δ−2

s
−1 > 1 +

δ−2

s
−1

∑

i=0

Fj+3i = 1 +

j+3 δ−2

s
−1

∑

i=j

fi.
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Hence, since each distance layer has at least one vertex,

nj+3 δ−2

s
−1 > 3 +

j+3 δ−2

s
−1

∑

i=j

fi,

and so

fj+3 δ−2

s
6 δ − 2 −

j+3 δ−2

s
−1

∑

i=j

fi,

or equivalently,
j+3 δ−2

s
∑

i=j

fi 6 δ − 2 = 3
δ − 2

s

s

3
,

and Claim 8 follows with k = j + 3 δ−2
s

.

Claim 9: If s divides δ − 2 then
∑d

i=0 fi 6 d 3(δ−2)
3(δ−2)+s

+ s(δ−2)
3(δ−2)+s

+ 2s.

We partition most of the interval {1, 2, . . . , d} into subintervals to which we apply Claim 8.
Repeated application of Claim 8 now shows that there exist integers k(0) < k(1) . . . < k(t)
such that k(0) = 1, k(t) > d− 3 δ−2

s
, k(j + 1)− k(j) 6 3 δ−2

s
+ 1 for j = 0, 1, . . . , t− 1, and

k(j+1)−1
∑

i=k(j)

fi 6 (k(j + 1) − k(j) − 1)
s

3
.

Summation over all j ∈ {0, 1, . . . , t − 1} yields

k(t)−1
∑

i=1

fi 6 (k(t) − 1)
s

3
− t

s

3
. (2)

Since k(j + 1) − k(j) 6 3 δ−2
s

+ 1, we bound t from below by

t >

(

k(t) − 1
)[

3
δ − 2

s
+ 1

]−1

>

(

d − 3
δ − 2

s

) s

3(δ − 2) + s

= d
s

3(δ − 2) + s
−

3(δ − 2)

3(δ − 2) + s
. (3)

We now bound the sum of the remaining fi at the left and right end of the set {0, 1, . . . , d}.
We have f0 6 0 since N+(v) ⊆ V0 ∪ V1 and so n0 = n0 + n1 > δ + 1. We partition the set
{k(t), k(t)+1, . . . , d} into intervals F1, F2, . . . , Fr such that each Fj , j 6 r−1, is of one of
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the types in Claim 6, and Fr has at most 3 elements. As in (1), we have
∑

i∈Fj
fi 6 |Fj|

s
3

for j 6 r − 1. Also
∑

i∈Fr
fi 6 |Fr|s. Hence we obtain

d
∑

i=k(t)

fi 6 (d + 1 − k(t))
s

3
+ 2s = d

3(δ − 2)

3(δ − 2) + s
+

s(δ − 2)

3(δ − 2) + s
+ 2s, (4)

which is Claim 9.

Part (b) of the theorem now follows exactly as part (a) does after Claim 7. 2

We now show that the coefficient in the above bound is best possible. Let a > 0 be an
integer. By Ka we mean the complete directed graph on a vertices and a(a− 1) arcs. For
vertex disjoint digraphs D1, D2, . . . , Dk we define the sequential sum D1 + D2 + . . . + Dk

to be the digraph obtained from the union of the Di by joining each vertex in Di to and
from each vertex in Di+1 for i = 1, 2, . . . , k − 1.

Let δ, s be given, and let s divide δ − 2. From the following digraph H ′, which is a
sequential sum of 3 δ−2

s
+ 2 complete digraphs, we will obtain the main building block.

H ′ = K1 + Kδ−1−s + K1+s + K1 + Kδ−1−2s + K1+2s + K1 + Kδ−1−3s + K1+3s

+ . . . + K1 + K1+s + Kδ−1−s + K1 + K1 + Kδ−1 + K1 + K1.

Let the digraph H be obtained from H ′ as follows. Denote the complete digraphs in
the above sequential sum by D0, D1, . . . , D3 δ−2

s
+1. For j = 0, 1, 2, . . . , δ−2

s
− 2 let v3j

be the vertex in D3j , and choose distinct vertices u3j+1
1 , u3j+1

2 , . . . , u3j+1
s ∈ D3j+1 and

w3j+2
1 , w3j+2

2 , . . . , w3j+2
s ∈ D3j+2. Also let v3 δ−2

s
−2 and v3 δ−2

s
+1 be the vertex in D3 δ−2

s
−2

and D3 δ−2

s
+1, respectively. For i = 1, 2, . . . , s remove the arc w3j+2

i u3j+1
i and add the arcs

v3j+3u3j+1
i and w3j+2

i v3j . Furthermore, join vertex v3 δ−2

s
+1 to s distinct vertices in D3 δ−2

s
−1

and join these to vertex v3 δ−2

s
−3. It is easy to see that for each vertex in H its in-degree

equals its out-degree, and both are at least δ, except for v0 and v3 δ−2

s
+1. The diagram

shows the digraph H for δ = 8 and s = 2. An undirected edge between two vertices a
and b stands for the two arcs ab and ba. Note that each Di is complete, but arcs between
vertices of the same Di are not shown.

Now let H1, H2, . . . , Hk be disjoint copies of H . Let ai and bi be vertex v0 and v3 δ−2

s
+1,

respectively, of H . We define the digraph D as the graph obtained from the union of
H1, H2, . . . , Hk and two complete digraphs K ′

δ+1 and K ′′

δ+1, by identifying bi with ai+1 for
i = 1, 2, . . . , k − 1, and joining vertex a1 to and from all vertices in K ′

δ+1, and bk to and
from all vertices in K ′′

δ+1.
It is easy to verify that the obtained digraph D has minimum degree δ and that it is

s-eulerian, and that, for large k and constant s and δ,

diam(D) = 3
(

δ + 1 −
(δ − 2)s

3(δ − 2) + s

)−1

n + O(1).
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Corollary 1 Let D be a strong semi-eulerian digraph of order n and minimum degree δ.
Then

diam(D) 6

(

δ + 1 −
δ − 2

3δ − 5

)

−1

n + O(1).

Apart from the additive constant this bound is best possible.
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Remark (i) Theorem 2(b) and the above example show that cδ,s = 3(δ+1− (δ−2)s
3(δ−2)+s

)−1

if s divides δ−2. Theorem 2 (a) only yields the upper bound cδ,s 6 3(δ +1− s
3
)−1. We do

not believe that equality holds, but we were unable to determine the exact value of cδ,s.
(ii) The determination of the values for cδ,s for s > δ−2 will be considered elsewhere. We
just state here, without proof, that cδ,s < 1 if and only if s 6

(

δ

2

)

− 2.
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