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Abstract

A matching of size 2n is a partition of the set [2n] = {1, 2, . . . , 2n} into n

disjoint pairs. A matching may be identified with a canonical sequence, which is
a sequence of integers in which each integer i ∈ [n] occurs exactly twice, and the
first occurrence of i precedes the first occurrence of i + 1. A partial pattern with k

symbols is a sequence of integers from the set [k], in which each i ∈ [k] appears at
least once and at most twice, and the first occurrence of i always precedes the first
occurrence of i + 1.

Given a partial pattern σ and a matching µ, we say that µ avoids σ if the
canonical sequence of µ has no subsequence order-isomorphic to σ. Two partial
patterns τ and σ are equivalent if there is a size-preserving bijection between τ -
avoiding and σ-avoiding matchings. In this paper, we describe several families of
equivalent pairs of patterns, most of them involving infinitely many equivalent pairs.
We verify by computer enumeration that these families contain all the equivalences
among patterns of length at most six. Many of our arguments exploit a close
connection between partial patterns and fillings of diagrams.

1 Introduction

A matching on a vertex set [2n] = {1, 2, . . . , 2n} is a partition of [2n] into disjoint blocks
of size two, or equivalently, a graph on [2n] in which every vertex has degree one. The
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number of edges of a matching µ will be referred to as the order of µ. The set of matchings
on [2n] is denoted by Mn.

In this paper, we identify a matching µ ∈ Mn with a sequence of 2n integers from the
set [n] such that each number i ∈ [n] appears exactly twice, and the first occurrence of i

precedes the first occurrence of j whenever i < j. Such a representation is the canonical
sequence [9] of µ. In this representation, vertices of a matching correspond to elements
of the canonical sequence, and two vertices are connected by an edge if and only if the
corresponding elements of the canonical sequence are equal. For example, the matching
in Figure 1 is represented by the canonical sequence 123321.

321 4 5 6

Figure 1: The matching 123321.

A partial pattern (or just pattern) of length m with k symbols is a sequence σ =
σ1σ2 · · ·σm of integers from the set [k], with the property that each number i ∈ [k]
appears at least once and at most twice in σ, and the first occurrence of a number i ∈ [k]
precedes the first occurrence of j ∈ [k] whenever i < j. Naturally, a matching is a special
case of a partial pattern.

Let s = s1s2 · · · sm and t = t1t2 · · · tm be two sequences of integers. We say that s

and t are order-isomorphic if for any i, j ∈ [m], the inequality si < sj holds if and only if
ti < tj holds.

We say that a matching µ contains a pattern σ, if µ has a subsequence that is order-
isomorphic to σ. If µ does not contain σ, we say that µ avoids σ or µ is σ-avoiding. We
let Mn(σ) denote the set of σ-avoiding matchings on [2n], and we let mn(σ) denote the
cardinality of Mn(σ). We say that two patterns σ and τ are equivalent, denoted by σ ∼ τ ,
if mn(σ) = mn(τ) for every n ∈ N.

The goal of this paper is to find families of equivalent patterns. Rather than construct-
ing single-purpose bijections between fixed pairs of pattern avoiding classes, we prefer to
focus on results involving infinite families of equivalent pairs of patterns.

In Section 2, we give a summary of previous results on equivalences between patterns,
including results have been obtained in the more general context of pattern avoidance of
set partitions. In Section 3, we prove several results that show how shorter patterns can
be combined into longer ones in a manner that preserves equivalence.

In Section 4, we deal with the relationship between pattern avoiding matchings and
fillings of diagrams. We first show that the concept of shape-Wilf equivalence, which has
been introduced in the context of pattern avoiding permutations, has direct implications
for pattern avoiding matchings. Specifically, we show that any pair of shape-Wilf equiva-
lent matrices gives rise to an infinite family of equivalent pairs of partial patterns. Next,
we provide a more complicated construction that establishes a correspondence between
fillings of stack diagrams and pattern avoidance in matchings. This correspondence allows
us to use results of Rubey [11] on diagonal-avoiding stack fillings to obtain new families
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of equivalent patterns. We also prove a new result about pattern avoiding stack fillings
which can be used for our purposes as well.

In Section 5, we give a different argument, based on the concept of ‘hybrid’ matchings,
which allows us to obtain more examples of equivalent patterns. Finally, in Section 6,
we summarize the implications of our results for patterns of length up to seven, and we
state several results on the enumeration of specific pattern avoiding classes. We verified
by computer enumeration that our results explain all the equivalences among patterns
of length at most six, while there are several patterns of length seven that seem to be
equivalent but are not covered by our results. We list these open cases at the end of the
paper, as Conjecture 6.2.

Let us fix several useful notational conventions that we will apply throughout this
paper. If s = s1s2 · · · sn is a sequence of integers and k is an integer, we let s + k denote
the sequence of integers (s1 + k)(s2 + k) · · · (sn + k). If s = s1 . . . sn and t = t1 · · · tm
are two sequences, then st is their concatenation s1 · · · snt1 · · · tm. In our arguments,
it often crucial to maintain the distinction between sequences of integers that represent
matchings, partitions and partial patterns, as opposed to arbitrary unrestricted sequences
of integers. To stress the distinction, we adopt the convention of using lowercase Greek
letters for matchings, partitions and patterns, while using lowercase Latin letters for
arbitrary sequences. A sequence over the alphabet [k] is any sequence of integers whose
elements all belong to [k] = {1, . . . , k}. Note that this does not imply that each element
of [k] must appear in the sequence. When referring to sequences, the notation ik denotes
the constant sequence i, i, . . . , i of length k.

2 Previous work

Several natural classes of matchings can be characterized in terms of pattern avoidance.
For instance, the classes Mn(1212) and Mn(1221) are known, respectively, as non-crossing
and non-nesting matchings. These matchings are enumerated by the Catalan numbers
Cn = 1

n+1

(
2n

n

)
(see, e.g., [14]).

More generally, for an integer k, the matchings that avoid the pattern 12 · · ·k12 · · ·k
are known as k-noncrossing matchings, and matchings avoiding the pattern 12 · · ·kk(k −
1) · · ·21 are known as k-nonnesting matchings. Chen et al. [2] have found a bijection
between these two classes of matchings, thus showing that the patterns 12 · · ·k12 · · ·k
and 12 · · ·kk(k − 1) · · ·21 are equivalent for any k. This result can be generalized to the
broader setting of set partitions (see Fact 2.1).

Another class of pattern avoiding matchings that has been previously studied is the
class Mn(123 · · ·k1), where k > 2 is an integer. Chen, Xin and Zhang [5] have shown
that the generating function

fk(x) =
∑

n>0

mn(12 · · ·k1)xn
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is rational for any k, and provided the following explicit formulas:

f3(x) =
1 − x

1 − 2x − x2
(2.1)

f4(x) =
1 − 2x − 2x2 − x3

1 − 3x − 2x2 − 5x3 − x4
. (2.2)

Apart from these general results, various authors have studied classes of matchings
avoiding a particular fixed pattern of small size. Jeĺınek, Li, Mansour and Yan [8] have
shown that the matchings avoiding 1123 correspond bijectively to a certain class of lattice
paths, and used this fact to obtain the formula

mn(1123) =
3

2n + 1

(
2n + 1

n − 1

)
.

Chen, Mansour and Yan [4] have shown that

mn(12312) =
1

2n + 1

(
3n

n

)

and they proved that the patterns 12312, 12321, 12231, 12213, 12132 and 12123 are all
equivalent. This too can be generalized to set partitions, see Fact 2.6.

2.1 The relationship between matchings and set partitions

Since a matching is a special case of a set partition, many results on pattern avoiding set
partitions are relevant to the study of pattern avoiding matchings. A set partition of the
set [n] is a set of disjoint nonempty sets {B1, . . . , Bk}, called blocks, whose union is [n].
We assume that the blocks are numbered in such a way that the smallest element of a
block Bi is smaller than the smallest element of Bj whenever i < j. A set partition may
be identified with a canonical sequence π = π1 · · ·πn, defined by putting πj = i when
j ∈ Bi. In the special case when all the blocks have size two, this definition of canonical
sequence coincides with the definition we gave in the introduction.

We say that a partition π contains a partition ρ if the canonical sequence of π has a
subsequence order-isomorphic to the canonical sequence of ρ. Otherwise we say that π

avoids ρ. This concept of pattern avoidance has been introduced by Sagan [12] and later
studied by the authors of this paper [7].

Let Pn(τ) be the set of all the partitions of [n] that avoid the pattern τ . Furthermore,
if a1, . . . , am is a sequence of numbers whose sum is n, let P (τ ; a1, . . . , am) be the set of
all the partitions from Pn(τ) that have m blocks and their i-th block has size ai. The
cardinality of Pn(τ) and P (τ ; a1, . . . , am) will be denoted by pn(τ) and p(τ ; a1, . . . , am).

We say that two partitions τ and σ are partition-equivalent, if pn(τ) = pn(σ) for each n.
We say that the two partitions are strongly partition-equivalent, if p(τ ; a1, . . . , am) =
p(σ; a1, . . . , am) for every sequence of natural numbers a1, . . . , am.

A set partition whose blocks all have size 1 or 2 is a partial matching. In par-
ticular, a pattern is a partial matching. Two patterns σ and τ are partial-matching
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equivalent if p(σ; a1, . . . , am) = p(τ ; a1, . . . , am) for each sequence a1, . . . , am with ai ∈
{1, 2}. Clearly, strongly partition-equivalent patterns are partial-matching equivalent, and
partial-matching equivalent patterns are equivalent. There exist pairs of patterns (e.g.,
123134 and 123413) that are partial-matching equivalent but not partition-equivalent.
There are also pairs of patterns, like 1231 and 1232, which are partition-equivalent but
not equivalent.

In [7], several classes of partition-equivalent patterns are presented. Although the
paper does not deal with strong partition equivalence explicitly, some of the proofs im-
mediately yield strong partition-equivalence of the corresponding patterns. In particular,
from [7] we may obtain the following results (the references in brackets point to the
corresponding statements in [7]).

Fact 2.1 (Lemma 9, Theorem 18, Corollary 18). For every k and every partition τ the
two partitions 12 · · ·k(τ +k)12 · · ·k and 12 · · ·k(τ +k)k(k−1) · · ·1 are strongly partition-
equivalent.

Fact 2.2 (Lemma 11, Corollary 21). For every k and every partition τ the two partitions
12 · · ·k12 · · ·k(τ + k) and 12 · · ·kk(k − 1) · · ·1(τ + k) are strongly partition-equivalent.

Fact 2.3 (Corollary 40). For every p, q > 0, for every k > 0, and for every parti-
tion τ , 12 · · ·k(τ + k)2p12q is strongly partition-equivalent to 12 · · ·k(τ + k)2p+q1, and
12 · · ·k2p12q(τ + k) is strongly partition-equivalent to 12 · · ·k2p+q1(τ + k).

Fact 2.4 (Theorem 41). For every partition τ with m > 0 blocks, for every p > 1 and
q > 0, the partitions τ(m + 1)p(m + 2)(m + 1)q and τ(m + 1)p+q(m + 2) are strongly
partition-equivalent.

Fact 2.5 (Theorem 42). For every sequence s over the alphabet [m], for every p > 1 and
q > 0, the partitions 12 · · ·m(m + 1)p(m + 2)(m + 1)qs and 12 · · ·m(m + 1)p+q(m + 2)s
are strongly partition-equivalent.

Fact 2.6 (Theorem 48). For every k, all the partitions of length k that start with 12 and
that contain two occurrences of the symbol 1, one occurrence of the symbol 3, and all their
remaining symbols are equal to 2, are mutually strongly partition-equivalent.

Fact 2.7 (Theorem 54). For every p, q > 0, the following pairs of partitions are strongly
partition-equivalent:

• 1232p142q and 12312p42q

• 1232p412q and 1232p42q1

• 123p+1413q and 12343p13q

• 123p+1143q and 123p+113q4
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3 Longer patterns from short ones

Before we deal with non-trivial results, we first state, without proof, three easy observa-
tions.

Observation 3.1. A matching avoids the pattern 123 · · ·k if and only if it has fewer
than k edges. The same is true for the pattern 12 · · ·kk. Consequently, mn(12 · · ·k) =
mn(12 · · ·kk) = (2n − 1)!!δn<k, where δn<k is equal to 1 if n < k and 0 otherwise, while
(2n − 1)!! = 1 · 3 · 5 · · · · · (2n − 1).

Observation 3.2. For any n, the only matching of order n avoiding the pattern 112 is
the matching 12 · · ·nn(n− 1) · · ·1, and the only matching of order n avoiding the pattern
121 is the matching 112233 · · ·nn.

Observation 3.3. A matching µ of order n avoids the pattern 1122 if and only if µ has the
form 12 · · ·ns1s2 · · · sn, where s1 · · · sn is a permutation of [n]. Therefore, mn(1122) = n!
for every n.

In the rest of this section, we present several results showing how from a given pair of
equivalent patterns we can construct new equivalent pairs of longer patterns.

Lemma 3.4. For any pattern τ , we have mn(1(τ +1)) = (2n−1)mn−1(τ). Consequently,
σ ∼ τ implies 1(σ + 1) ∼ 1(τ + 1).

Proof. Let µ be a matching of order n, and let µ′ be a matching of order n−1 obtained by
removing from µ the edge incident to the leftmost vertex. Notice that µ avoids 1(τ + 1)
if and only if µ′ avoids τ . Moreover, any τ -avoiding matching µ′ of order n − 1 can
be extended into 2n − 1 different 1(τ + 1)-avoiding matchings of order n by inserting
into µ′ a new edge adjacent to a new leftmost vertex. This shows that mn(1(τ + 1)) =
(2n−1)mn−1(τ). This proves the first claim of the lemma. The second claim follows from
the first.

Observations 3.1 and 3.2 together with Lemma 3.4 are sufficient to enumerate the
matchings avoiding a pattern of length 3.

Table 1: Values of mn(τ), where τ is a pattern of length 3.

τ n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 Reference
122 1 0 0 0 0 0 0 Observation 3.1
123 1 3 0 0 0 0 0 Observation 3.1
112,121 1 1 1 1 1 1 1 Fact 2.4

Lemma 3.5. If τ is a pattern that contains two occurrences of the letter 1, then the
number of matchings on [2n] that avoid 11(τ + 1) is given by the formula

mn(11(τ + 1)) =

n∑

ℓ=1

ℓ!

(
2n − ℓ − 1

ℓ − 1

)
mn−ℓ(τ).
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Proof. Let µ be an arbitrary matching on 2n vertices. In the matching µ, an edge i

connects a pair of vertices li < ri, called left vertex and right vertex of i, respectively. We
assume that the edges are numbered in such a way that li < li+1 for each i < n.

Let x be the edge that is incident to the leftmost right vertex of µ. In other words,
x is such that rx < ry for every y 6= x. We say that an edge i of µ is leftist if li < rx

and an edge is rightist otherwise. Note that every leftist edge i satisfies li < rx 6 ri. In
particular, each two leftist edges either nest or cross.

Let τ be a pattern with two occurrences of the letter 1. We claim that a matching µ

avoids 11(τ +1) if and only if the submatching of µ induced by the rightist edges avoids τ .
To see this, note that if the rightist edges of µ contain the pattern τ , then the rightist

edges together with the edge x contain the pattern 11(τ + 1). To prove the converse,
assume that µ is a matching that contains a k-tuple of edges e1 < e2 < · · · < ek that
induce the pattern 11(τ + 1). Since τ has two occurrences of the symbol 1, we know
that both vertices incident to e2 appear to the right of the two vertices incident to e1.
In particular, e2 is a rightist edge. It follows that all the k − 1 edges e2, e3, . . . , ek are
rightist, and these k − 1 rightist edges contain the pattern τ . This proves the claim from
the previous paragraph.

To see that the claim implies the formula in the lemma, it suffices to observe that in
Mn(11(τ +1)) there are exactly ℓ!

(
2n−ℓ−1

ℓ−1

)
mn−ℓ(τ) matchings with ℓ leftist edges. Indeed,

the factor ℓ! counts the possible mutual positions of the leftist edges, the factor mn−ℓ(τ)
counts the possible mutual positions of the rightist edges, and

(
2n−ℓ−1

ℓ−1

)
is the number

of ways to insert the right vertices of the ℓ − 1 leftist edges different from x among the
2(n − ℓ) vertices incident with the rightist edges. The lemma follows.

The following claim is a direct consequence of the previous lemma.

Corollary 3.6. If σ and τ are two equivalent patterns that both have two occurrences of
the symbol 1, then 11(σ + 1) and 11(τ + 1) are equivalent as well.

In the previous corollary, the assumption that both σ and τ have two occurrences of
the symbol 1 cannot be omitted. For instance, the two patterns 12 and 122 are equivalent
(as shown by Observation 3.1), but the patterns 1123 and 11233 are not.

The next lemma is a generalization of Corollary 3.6.

Lemma 3.7. Let σ and τ be two equivalent patterns that both have two occurrences of
the symbol 1. Let ρ be a pattern with k distinct letters. Then the two patterns ρ(σ + k)
and ρ(τ + k) are also equivalent.

Proof. Let σ′ and τ ′ denote the patterns ρ(σ + k) and ρ(τ + k), respectively. We will
describe a procedure g that bijectively transforms a σ′-avoiding matching into a τ ′-avoiding
matching of the same length. Let µ ∈ Mn be a matching, represented by its canonical
sequence µ1µ2 · · ·µ2n.

Let q = q(µ) be the smallest integer such that the prefix µ1µ2 · · ·µq of µ contains ρ. If
µ avoids ρ, we define q = 2n. Let us also define r = r(µ) = max{µ1, µ2, . . . , µq}. Notice
that each of the integers 1, 2, . . . , r must appear at least once in µ1, . . . , µq. Let µ>r be
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the subsequence of µ formed by all the numbers in µ that are greater than r. Note that
µ>r is a sequence over the alphabet {r + 1, r + 2, . . . , n} in which each symbol appears
exactly twice. Furthermore, µ>r − r is a canonical sequence representing a matching with
n − r edges. Note also that all the elements of µ>r are to the right of µq.

We claim that µ contains σ′ if and only if µ>r contains σ. It is clear that if µ>r

contains σ, then µ contains σ′. To prove the converse, assume that µ contains σ′. Let ℓ

be the length of σ′, and let s = s1s2 · · · sℓ be the subsequence of µ that is order-isomorphic
to σ′. Since the pattern σ has two occurrences of the symbol 1, the pattern σ′ has two
occurrences of (k + 1). Let si and sj be the two elements of s that correspond to the two
occurrences of (k + 1) in σ′, with i < j. This means that the sequence s1, s2, . . . , si−1 is
order-isomorphic to ρ, while si, si+1, . . . , sℓ is order-isomorphic to σ. In particular, all the
elements si, . . . , sℓ appear strictly to the right of µq in µ. Since each number from the
set {1, . . . , r} appears at least once among µ1, . . . , µq, and since si and sj both appear
to the right of µq, we conclude that si > r. Since si is the minimum of the sequence
si, si+1, . . . , sℓ, we see that all the elements of this sequence belong to µ>r, hence µ>r

contains σ, as claimed. By the same argument, µ contains τ ′ if and only if µ>r contains τ .
We now describe the bijection between σ′-avoiding and τ ′-avoiding matchings. Let

µ be a σ′-avoiding matching that contains ρ. Let q, r and µ>r be as above. We know
µ>r−r is a canonical sequence representing a matching µσ that avoids σ. Since σ and τ are
equivalent, there is a function f that maps σ-avoiding matchings bijectively to τ -avoiding
matchings of the same length. Define µτ = f(µσ). Let µ′

>r be the sequence µτ + r. Let µ′

be the matching obtained from µ by replacing each symbol in the subsequence µ>r with
the corresponding symbol from µ′

>r. Note that the two matchings µ and µ′ have the same
prefix of length q. In particular, q(µ) = q(µ′) and r(µ) = r(µ′). It is then clear that the
mapping µ 7→ µ′ is the required bijection.

For a matching µ on the set [2n], we let µ denote the reversal of µ, i.e., the matching µ

contains the edge ij if and only if µ contains the edge (n− i+1)(n− j +1). For instance,
the reversal of 112323 is 121233.

Observation 3.8. If µ and ν are matchings, then µ contains ν if and only if µ contains
ν. Consequently, a matching µ is equivalent to its reversal µ.

Lemma 3.9. If τ is a matching on the set [2k−2], then the pattern 11(τ +1) is equivalent
to the pattern τkk.

Proof. It suffices to notice that τkk = 11(τ + 1), and use Observation 3.8 and Corol-
lary 3.6.

Combining Lemma 3.9 with Lemma 3.5, we observe that if τ and σ are two equivalent
matchings with k − 1 edges, then τkk and σkk are equivalent matchings with k edges.

The next lemma extends this observation to more general cases. Its proof is based on
similar ideas as the proof of Lemma 3.7.

Lemma 3.10. Let σ and τ be two partial-matching equivalent patterns over the alphabet
[k], both of them containing each symbol from [k] at least once. Let ρ be a pattern that
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has two occurrences of the symbol 1. Then the two patterns σ(ρ + k) and τ(ρ + k) are
equivalent.

Proof. Let us write σ′ = σ(ρ + k) and τ ′ = τ(ρ + k). Let µ = µ1µ2 · · ·µ2n be a matching.
Let q = q(µ) be the largest integer such that the suffix µq, µq+1, . . . , µ2n of µ contains ρ.
If µ avoids ρ, we define q = q(µ) = 1. Define r = r(µ) = µq. Since ρ has two occurrences
of 1, there must be two occurrences of r in µq, µq+1, . . . , µ2n.

Let µ− denote the sequence µ1, µ2, . . . , µq−1. Notice that µ− is a partial matching over
the alphabet [r − 1]. It is easy to observe that µ contains σ′ if and only if µ− contains
σ, and µ contains τ ′ if and only if µ− contains τ . We now define the bijection between
σ′-avoiding and τ ′-avoiding matchings. Since σ and τ are assumed to be partial-matching
equivalent, there is a bijection f between σ-avoiding and τ -avoiding partial matchings
that preserves the sizes of the blocks. Let µ be a σ′-avoiding matching. Then µ− is a
σ-avoiding partial matching. Define µ′

−
= f(µ−). Let µ′ be the matching obtained from

µ by replacing the prefix µ− with the prefix µ′

−
. It is routine to check that the mapping

µ 7→ µ′ is the required bijection.

In Lemma 3.10, unlike in Lemma 3.7, it is not enough to assume that σ and τ are
equivalent. For instance, the patterns 12 and 122 are equivalent, while the patterns 1233
and 12233 are not. The assumption that ρ has two occurrences of the symbol 1 cannot be
omitted either, since 121 and 112 are partial-matching equivalent, while 1213 and 1123
are not equivalent.

4 Partial matchings and fillings of diagrams

There is a very close relationship between canonical sequences and 01-fillings of diagrams.
In this subsection, we will introduce the relevant terminology, and we will show how
results on partial matchings can be seen as a consequence of results on pattern avoiding
diagram fillings.

We will use the term diagram to refer to any finite set of the cells of the two-dimensional
square grid. To fill a diagram means to assign a value of 0 or 1 to each cell.

We will number the rows of diagrams from bottom to top, so the “first row” of a
diagram is its bottom row, and we will number the columns from left to right. We will
apply the same convention to matrices and to fillings. We always assume that each row
and each column of a diagram is nonempty. Thus, for example, when we refer to a diagram
with r rows, it is assumed that each of the r rows contains at least one cell of the diagram.
Note that there is a (unique) empty diagram with no rows and no columns.

A diagram ∆ is row-convex, if it has the property that for any two of its cells c1 and c2

belonging to the same row, all the cells between c1 and c2 belong to ∆ as well. A column-
convex diagram is defined analogously. A diagram is convex if it is both row-convex and
column-convex.

A convex diagram is said to be bottom-justified if its bottom row intersects each of its
columns, and it is said to be right-justified if its rightmost column intersects each of its
rows.
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For our purposes, we need to deal with two types of diagrams, known as Ferrers
diagrams and stack diagrams. A Ferrers diagram (also known as Ferrers shape) is a
convex diagram that is bottom-justified and right-justified. A stack diagram is a convex
bottom-justified diagram.

Our convention of drawing Ferrers diagrams as right-justified rather than left-justified
shapes is different from standard practice; however, our definition will be more intuitive
in the context of our applications.

Clearly, every Ferrers diagram is also a stack diagram. On the other hand, a stack
diagram can be regarded as a union of a Ferrers diagram and a vertically reflected copy
of another Ferrers diagram.

A filling of a diagram ∆ is an assignment that inserts into each cell of the diagram a
value 0 or 1. In such filling, a 0-cell is a cell that is filled with value 0, and a 1-cell is
filled with value 1. A filling is a transversal if each of its columns and each of its rows
contains exactly one 1-cell. A filling is sparse if every column and every row has at most
one 1-cell. A column of a filling is a zero column if it contains no 1-cell. A zero row is
defined analogously.

A matrix with entries equal to 0 or 1 will be considered as a special case of a filling,
whose underlying diagram is a rectangle. We will now introduce a correspondence between
sequences of integers and matrices. This correspondence will provide a link between
pattern avoidance in matchings and pattern avoidance in fillings.

Let s = s1s2 · · · sn be a sequence of positive integers, none of them greater than k. We
let M(s, k) denote the 0-1 matrix with k rows and n columns with the property that the
column i has a unique 1-cell, and this 1-cell appears in row si.

In the special case when s is a permutation of order n, then M(s, n) is known as the
permutation matrix of s.

Let us stress that in the definition of M(s, k), we do not assume that s contains all
the integers 1, . . . , k. Thus, the matrix M(s, k) might have zero rows.

Among several possibilities to define pattern avoidance in fillings, the following ap-
proach seems to be the most useful and most common.

Definition 4.1. Let M = (mij ; i ∈ [r], j ∈ [c]) be a matrix with r rows and c columns
with all entries equal to 0 or 1, and let F be a filling of a diagram ∆. We say that F

contains M if F contains r distinct rows i1 < · · · < ir and c distinct columns j1 < · · · < jc

with the following two properties.

• Each of the rows i1, . . . , ir intersects all columns j1, . . . , jc in a cell of ∆.

• If mkℓ = 1 for some k and ℓ, then the cell in row ik and column jℓ of F is a 1-cell.

If F does not contain M , we say that F avoids M . We will say that two 01-matrices M

and M ′ are shape-Wilf equivalent (denoted by M
sW
∼ M ′) if for every Ferrers diagram ∆,

there is a bijection φ between M-avoiding and M ′-avoiding sparse fillings of ∆, with the
property that an M-avoiding filling F has the same zero rows and zero columns as its
image φ(F ).
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If p and q are permutations of the same order n, we say that p and q are shape-Wilf
equivalent if their corresponding permutation matrices M(p, n) and M(q, n) are shape-
Wilf equivalent.

It is not hard to see that if M and M ′ have no zero rows and zero columns, then M

and M ′ are shape-Wilf equivalent if and only if for each Ferrers diagram ∆ there is a
bijection between M-avoiding and M ′-avoiding transversals of ∆.

The concept of shape-Wilf equivalence (restricted to permutations) has been applied
in the study of pattern avoidance in permutations [1, 13].

4.1 Partial matchings and fillings of Ferrers diagrams

The idea that a filling of a Ferrers diagram could be used to represent a matching is not
new. It has been shown by A. de Mier [6] that matchings are in bijection with transversals
of Ferrers shapes, and Krattenthaler [10] has used fillings of Ferrers diagram as a tool to
construct a bijection between k-nonnesting and k-noncrossing matchings. We push the
idea further, and show how to apply the concept of shape-Wilf equivalence to obtain
bijections between more general pattern avoiding classes.

Lemma 4.2. Let k > 0 be an integer. Let ρ be a (possibly empty) canonical sequence
representing a partial matching. Let s and s′ be two sequences over the alphabet [k],
such that each symbol from [k] appears at most once in s and at most once in s′. If the
matrices M(s, k) and M(s′, k) are shape-Wilf equivalent, then the two partial matchings
π = 12 · · ·k(ρ + k)s and π′ = 12 · · ·k(ρ + k)s′ are equivalent.

The main argument used in the proof of Lemma 4.2 is inspired by an idea that has
been previously used by the authors in the study of pattern avoiding set partitions [7].
However, the previous arguments required stronger assumptions about s and s′ than just
shape-Wilf equivalence. In fact, some partial patterns whose equivalence follows from
Lemma 4.2 (e.g., 1234213 and 1234132) are not partition-equivalent.

Proof of Lemma 4.2. Let ℓ be the largest element of ρ. Define the matrix R = M(ρ, ℓ).
Let µ = µ1µ2 · · ·µ2n be a matching with n edges. Consider the matrix M = M(µ, n).

We will distinguish two types of cells of M , which we will call the red cells and the green
cells. A cell in row i and column j is green, if it satisfies the following two conditions:

1. The submatrix of M induced by the rows i+1, i+2, . . . , n and the columns 1, . . . , j−1
contains R.

2. At least one 1-cell in row i appears strictly to the left of column j.

A cell is red if it is not green. Notice that if ρ is a nonempty sequence (and hence
R is a nonempty matrix), then the first of the two conditions above actually implies the
second one, because of the properties of canonical sequences. On the other hand, if ρ

is empty, then the first condition holds trivially for any cell, and the second condition
guarantees that the green cells of a given row i are exactly the cells that are to the right
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of the leftmost 1-cell in row i. In both cases, the leftmost 1-cell in a given row is never
green, so each row has at most one green 1-cell.

Observe that the green cells of M form a sparse filling of a (possibly empty) Ferrers
diagram. Let G(M) denote this ‘green’ filling. Let s and s′ be sequences satisfying the
assumptions of the lemma. It can be routinely checked that the filling G(M) avoids the
matrix M(s, k) if and only if µ avoids the pattern π = 12 · · ·k(ρ + k)s.

Let us now describe the bijection between π-avoiding and π′-avoiding matchings. Sup-
pose that the matrices S = M(s, k) and S ′ = M(s′, k) are shape-Wilf equivalent via a
bijection φ that transforms S-avoiding sparse fillings to S ′-avoiding sparse fillings of the
same diagram, while preserving the zero rows and zero columns.

Consider a π-avoiding matching µ ∈ Mn(π). Define the matrix M and the filling
G = G(M) as above. We know that G avoids S. Consider now the S ′-avoiding filling
G′ = φ(G). Create a matrix M ′ from M by inserting the values of G′ into the green
cells of M . By construction, each row of M ′ has two 1-cells, and each column has one
1-cell. Moreover, the leftmost 1-cell in each row of M is a red cell and hence its value
is not modified by the transform, which means that it is also the leftmost 1-cell of the
corresponding row of M ′. Consequently, there is a matching µ′ ∈ Mn such that M ′ =
M(µ′, n).

Assume that the cells of M ′ are colored red and green by the two rules introduced
before. We claim that a cell is green in M ′ if and only if it is green in M . Let M(> i, < j)
denote the submatrix of M induced by rows i, i + 1, . . . , n and columns 1, 2 . . . , j. Note
that the color of the cell (i, j) in the matrix M only depends on the values in M(> i, < j).
If the cell (i, j) is red in M , then all the cells of M(> i, < j) are also red in M . Since each
red cell of M has the same value in M as in M ′, it follows that M(> i, < j) = M ′(> i, < j),
and hence (i, j) is also red in M ′. In other words, each red cell of M remains red in M ′.

Suppose now that (i, j) is the leftmost green cell of M in row i. This implies that
M(> i, < j) only contains red cells of M , and thus M(> i, < j) = M ′(> i, < j), which
implies that (i, j) must also be green in M ′. Every cell on row i to the right of (i, j) must
then also be green in M ′, which shows that all the green cells of M are also green in M ′,
as claimed.

Now that we have seen that the mapping M 7→ M ′ preserves the color of the cells,
we know that G′ corresponds exactly to the green cells of M ′, i.e., G′ = G(M ′). Since
G′ avoids S ′, we know that µ′ avoids π′. Obviously, the transform from π to π′ can be
inverted, and gives a bijection between Mn(π) and Mn(π′).

We now plug previous results on shape-Wilf equivalence into Lemma 4.2, to obtain
the following corollary.

Corollary 4.3. For any partial matching ρ, the two patterns

123(ρ + 3)213 and 123(ρ + 3)132

are equivalent.

Proof. As shown by Stankova and West [13], the two permutation matrices M(213, 3) and
M(132, 3) are shape-Wilf equivalent. The corollary then follows from Lemma 4.2.
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In fact, there are more results on shape-Wilf equivalence in the literature than the
above-mentioned result of Stankova and West. For instance, Backelin et al. [1] have
shown that for any k > ℓ > 1 the permutation k(k − 1) · · · (ℓ + 1)12 · · · ℓ is shape-Wilf
equivalent to the identity permutation 12 · · ·k. Apart from that, they have observed
that if p and q are shape-Wilf equivalent permutations of order n and r is an arbitrary
permutation, then the two permutations (r + n)p and (r + n)q are shape-Wilf equivalent
as well.

However, any equivalences of partial matchings that we may deduce from these results
using Lemma 4.2 already follow from Fact 2.1.

4.2 Partial matchings and fillings of stack diagrams

We now describe a more technical argument, which allows to translates certain bijections
between fillings of stack diagrams into bijections between pattern avoiding matchings.

Let Π be a stack diagram. The content of Π is the sequence of the column heights of
Π, listed in weakly decreasing order.

Let Π be a stack diagram with r rows. For i ∈ [r], let Li(Π) and Ri(Π) be the column
indices of the leftmost and rightmost cells of the i-th row of Π. Note that L1(Π) 6

L2(Π) 6 · · · 6 Lr(Π), and symmetrically R1(Π) > R2(Π) > · · · > Rr(Π). Let i > 1 be a
row of Π such that Ri(Π) < Ri−1(Π). The right shift of Π at height i is the stack diagram
Π′ satisfying

• Lj(Π
′) = Lj(Π) and Rj(Π

′) = Rj(Π) for every j < i, and

• Lj(Π
′) = Lj(Π) + 1 and Rj(Π

′) = Rj(Π) + 1 for every j > i.

Intuitively, Π′ is obtained from Π by shifting each cell in row i and above by one column
to the right. Note that Π′ and Π have the same content.

Let Π be again a stack diagram with r rows and let Z ⊆ [r] be a set of row-indices
of Π. Let P be a sparse matrix. Let F(P, Z, Π) denote the set of all the fillings F of Π
that have the following properties.

• F avoids P .

• For each i ∈ Z, the i-th row of F is a zero row.

• For each i ∈ [r] \ Z, the i-th row of F has exactly one 1-cell.

• Each column of F has exactly one 1-cell.

Let P be a sparse matrix. Let Π be a stack diagram with r rows, and let i > 1 be a
row-index such that Ri(Π) < Ri−1(Π). Let Π′ be the right shift of Π at height i. We say
that P is shift-proof for Π at height i if for every set Z ⊆ [r] that contains i, there is a
bijection φ between F(P, Z, Π) and F(P, Z, Π′). Notice that in this definition, we make
no assumption about fillings that contain 1-cells in row i.
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We say that a sparse matrix P is shift-proof if for every stack diagram Π and every
row-index i > 0 such that Ri(Π) < Ri−1(Π), P is shift-proof for Π at height i. The
concept of shift-proofness is motivated by the following theorem.

Theorem 4.4. Let s = s1 · · · sℓ be a sequence over the alphabet [k] that contains each num-
ber at most once. If the matrix M(s, k) is shift-proof, then the patterns σ = 12 · · ·k(k+1)s
and ρ = 12 · · ·ks(k + 1) are partial-matching equivalent.

Fix an n > 1 and a sequence of block sizes a = (a1, . . . , an), with ai ∈ {1, 2}. Let
P (a) be the set of partial matchings whose i-th block has size ai, or equivalently, the
set of canonical sequences with ai occurrences of the symbol i. Let N denote the sum∑

i ai. Recall that P (σ; a) is the sets of σ-avoiding elements of P (a), and p(σ; a) is the
cardinality of P (σ; a).

Fix a sequence s satisfying the assumptions of Theorem 4.4, and let σ and ρ be the
two patterns from the theorem’s statement. We will prove Theorem 4.4 by constructing a
bijection between P (σ; a) and P (ρ; a). Before we state the proof, we need several auxiliary
statements describing the structure of the partial matchings in the two pattern-avoidance
classes.

We first focus on the class P (σ; τ). Let µ = µ1 · · ·µN be a partial matching from P (a).
We say that an element µi is left-dominating if µi > µj for each j < i.

Assume now that µj is an element of µ that is not left-dominating. We shall say that
such an element is left-dominated. For left-dominated element µj, let i be the largest
index such that i < j and µi is left-dominating. We then say that µi left-dominates µj.
It is easy to see that such an index i always exists, and that µi > µj.

The left shadow of µ is the sequence µ̂ obtained by replacing each left-dominated
element of µ by the symbol ‘∗’. We will say that a non-star symbol j left-dominates an
occurrence of a star, if j is the rightmost non-star to the left of the star.

For example, if µ = 12321434, the left shadow of µ is the sequence µ̂ = 123∗∗4∗4. In
µ̂, the symbol ‘3’ left-dominates two stars, and the first occurrence of ‘4’ left-dominates
one star. No other symbol dominates any star.

Left-shadow sequences of partial matchings from the set P (a) are characterized by the
next observation, whose proof we omit.

Observation 4.5. Let µ̂ be a sequence of length N over the alphabet {1, 2, . . . , n, ∗}. For
k ∈ [n] let mk be the number of occurrences of k in µ̂, and let dk be the total number
of stars dominated by the occurrences of k in µ̂. Then µ̂ is the left shadow of a partial
matching from P (a) if and only if it satisfies the following conditions.

1. The non-star symbols of µ̂ form a weakly increasing subsequence.

2. For every k ∈ [n], 1 6 mk 6 ak.

3. Each star is dominated by a non-star (i.e., the leftmost symbol of µ̂ is not a star).

4. For every k ∈ [n], ∑

i<k

mi +
∑

j6k

dj 6
∑

i<k

ai.
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We say that a sequence µ̂ is a left-shadow sequence, if it satisfies the conditions of
Observation 4.7.

Definition 4.6. Let µ ∈ P (a) be a partial matching. Let F = F (µ) be the sparse filling
of a Ferrers diagram defined by the following conditions.

1. The columns of F correspond to the left-dominated elements of µ. The i-th col-
umn of F has height j if the i-th left-dominated element of µ is dominated by an
occurrence of j + 1.

2. The i-th column of F has a 1-cell in row r if the i-th left-dominated element of µ is
equal to r.

Note that for µ ∈ P (a), the filling F (µ) is in fact a subdiagram of the matrix M(µ, n).
As an example, consider the matching µ = 123442516563, with its left shadow µ̂ =
12344∗5∗6∗6∗. The filling F (µ) is depicted on Figure 2.

1

1

1

1

1

1

1

1

1

1

1

1M(µ, 6) =

1

1

1

1F (µ) =

Figure 2: An example of the matrix M(µ, n) and the filling F (µ), for µ = 123442516563,
with left shadow µ̂ = 12344∗5∗6∗6∗. The 0-cells are represented by empty boxes. The
shaded cells of the matrix correspond to the cells of F (µ).

Let ∆(µ) be the underlying Ferrers diagram of the filling F (µ). Note that ∆(µ) is
in fact uniquely determined by the left shadow µ̂ of µ. More precisely, the number of
columns of height h in ∆(µ) is equal to the number of stars in the left shadow µ̂ that are
dominated by an occurrence of h + 1. We may thus write ∆(µ̂) for the Ferrers diagram
determined by µ̂.

By definition, every column of F (µ) has exactly one 1-cell. Note that the i-th row of
the filling F (µ) is a zero row if and only if the left shadow µ̂ has ai occurrences of the
symbol i. This means that the zero rows of the F (µ) are uniquely determined by µ̂. Let
Z(µ̂) be the set of zero rows of F .

It is clear that the left shadow µ̂ and the filling F (µ) together uniquely determine µ.
In fact, for every sparse filling F ′ of ∆(µ̂) with the set of zero rows Z(µ̂) there is a unique
µ′ ∈ P (a) with left shadow µ̂ satisfying F (µ′) = F ′. (Note that any sparse filling of
∆(µ̂) with the set of zero rows Z(µ̂) must have a 1-cell in each column.) Thus, for any
left-shadow sequence µ̂, there is a one-to-one correspondence between partial matchings
from P (a) with left shadow µ̂ and sparse fillings of ∆(µ̂) with zero rows Z(µ̂).

The following observation is a straightforward application of the terminology intro-
duced above. We omit its proof.
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Observation 4.7. Assume that s = s1 · · · sℓ is a sequence of distinct numbers from the
set [k]. A partial matching µ ∈ P (a) avoids the pattern 12 · · ·k(k + 1)s if and only if the
filling F (µ) avoids the matrix M(s, k).

We now focus on partial matchings that avoid the pattern ρ = 12 · · ·ks(k + 1), where
s is again a sequence of distinct integers from [k].

Let ν ∈ P (a) be a partial matching. We say that an element νi of ν is right-dominating
if either νi > νj for each j > i, or νi > νj for each j < i. If νi is not right-dominating,
we say that it is right-dominated. We say that νi right-dominates νj if νi is the leftmost
right-dominating element appearing to the right of νj , and νj itself is not right-dominating.

The right shadow ν̃ of a ν is obtained by replacing each right-dominated element of ν

by a star.
For example, the right shadow of ν = 1213454523 is the sequence 12∗345∗5∗3. In this

sequence, each of the two occurrences of the symbol ‘3’ right-dominates one star, and the
second occurrence of ‘5’ also right-dominates one star. Right shadows are characterized
by the next observation.

Observation 4.8. Let ν̃ be a sequence of length N over the alphabet {1, 2, . . . , n, ∗}. For
k ∈ [n], let mk be the number of occurrences of k in ν̃, and let dk be the total number
of stars dominated by the occurrences of k in ν̃. Then ν̃ is the right shadow of a partial
matching from P (a) if and only if it satisfies the following conditions.

1. The non-star symbols of ν̃ form a sequence of the form 12 · · ·nx1x2 · · ·xm, where
x1x2 · · ·xm is a strictly decreasing sequence of numbers from [n].

2. For every k ∈ [n], 1 6 mk 6 ak.

3. Each star is dominated by a non-star (i.e., the rightmost symbol of ν̃ is not a star).

4. For every k 6 n, ∑

i<k

mi +
∑

j6k

dj 6
∑

i<k

ai.

A sequence ν̃ satisfying the conditions of Observation 4.8 is a right-shadow sequence.
Suppose that ν̃ is a right-shadow sequence and µ̂ is a left-shadow sequence. We say

that µ̂ and ν̃ are twins if for every i ∈ [n], the next two conditions are satisfied.

• The symbol i has the same number of occurrences in µ̂ as in ν̃.

• The number of stars left-dominated by each occurrence of i in µ̂ is equal to the
number of stars right-dominated by the corresponding occurrence of i in ν̃.

From Observations 4.5 and 4.8, we deduce that every left-shadow sequence has a unique
right-shadow twin and vice versa. For instance, consider the left-shadow sequence µ̂ =
1233∗45∗∗5. The second occurrence of 3 in µ̂ left-dominates a single star, and the first
occurrence of 5 left-dominates two stars. Thus, the twin of µ̂ is the right-shadow sequence
ν̃ = 1234∗∗55∗3.
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Let ν ∈ P (a) be a partial matching. Let S = S(ν) be the sparse filling of a stack
diagram defined by the following conditions.

1. The columns of S correspond to the right-dominated elements of ν. The i-th column
of S has height j if the i-th right-dominated element of ν is dominated by an
occurrence of j + 1.

2. The i-th column of S has a 1-cell in row j if the i-th right-dominated element of ν

is equal to j.

For example, ν = 123415563624 has the right shadow ν̃ = 1234∗5∗6∗6∗4. Figure 3
shows the filling S(ν), which is a subfilling of the matrix M(ν, 6). Notice that ν̃ is the
twin of the left shadow µ̂ from Figure 2.

1

1

1

1

1

1
1

1

1

1

1

1M(ν, 6) =

1
1

1

1S(ν) =

Figure 3: The filling S(ν) associated with ν = 123415563624. The right shadow of ν is
ν̃ = 1234∗5∗6∗6∗4.

Let Σ(ν) be the underlying diagram of S(ν). Notice that Σ(ν) is uniquely determined
by the right shadow ν̃ of the matching ν, so we may write Σ(ν̃) for the diagram determined
by ν̃. The i-th row of S(ν) is a zero row if and only if ν̃ has ai occurrences of the symbol i,
which shows that the set of zero rows of S(ν) is determined by ν̃. Let Z(ν̃) be the set of
zero rows of S(ν).

The sequence ν̃ and the filling S(ν) together determine ν. This establishes, for any
right-shadow sequence ν̃, a bijection between the partial matchings from P (a) with right
shadow ν̃ and the sparse fillings of Σ(ν̃) with the set of zero rows Z(ν̃).

The following observation follows directly from our definitions, and we again omit its
proof.

Observation 4.9. Assume that s = s1 · · · sℓ is a sequence of distinct numbers from the
set [k]. A matching ν avoids the pattern ρ = 12 · · ·ks(k +1) if and only if the filling S(ν)
avoids M(s, k).

Lemma 4.10. Let ν̃ be the right shadow of a sequence ν ∈ P (a), and let Σ = Σ(ν̃) and
S = S(ν) be as above. If, for some row index i > 1 of Σ we have Ri(Σ) < Ri−1(Σ), then
ν̃ has two occurrences of the symbol i, and hence i is a zero row of S.

Proof. Let h be the height of the column Ri(Σ) of Σ. Clearly h > i. Suppose that
Ri(Σ) < Ri−1(Σ). This means that the column Ri(Σ) + 1 of Σ has height i − 1. This
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in turn means that the right shadow ν̃ has an occurrence of the symbol i that follows
an occurrence of the symbol h + 1 > i. Apart from that, ν̃ must also contain another
occurrence of i, which is to the left of any occurrence of h+1, because the first n non-star
symbols of ν̃ form the sequence 12 · · ·n. Thus, ν̃ has two occurrences of i, and hence the
i-th row of S is a zero row.

We are now ready to prove Theorem 4.4. Let s = s1s2 · · · sℓ be a sequence of distinct
integers from the set [k], and assume that the matrix P = M(s, k) is shift-proof. Recall
that σ is the pattern 12 · · ·k(k + 1)s and ρ is the pattern 12 · · ·ks(k + 1). Our goal is to
construct a bijection between P (σ; a) and P (ρ; a).

It suffices to show that for each pair of twins µ̂ and ν̃, where µ̂ is a left shadow and ν̃

is a right shadow, the number of partial matchings in P (σ; a) with left shadow µ̂ is equal
to the number of partial matchings in P (ρ; a) with right shadow ν̃.

Let M̂ and M̃ denote, respectively, the set of elements in P (σ; a) with left shadow
µ̂, and the set of elements of P (ρ; a) with right shadow ν̃. Let ∆ = ∆(µ̂) and Σ = Σ(ν̃).
Since µ̂ and ν̃ are twins, the diagrams ∆ and Σ have the same content. Let r be the
number of rows of ∆ (and of Σ).

Define the set Z = {i 6 r : µ̂ has ai occurrences of i}. Note that Z is also equal to the
set {i 6 r : ν̃ has ai occurrences of i}. From Observations 4.7 and 4.9, we deduce that the

elements of M̂ correspond bijectively to fillings from the set F(P, Z, ∆) and the elements

of M̃ correspond bijectively to fillings from F(P, Z, Σ).
We now show that there is a bijection between F(P, Z, ∆) and F(P, Z, Σ). Since Σ

and ∆ have the same content, and since ∆ is a right-justified diagram, we can find a
sequence of stack diagrams Π0, Π1, . . . , Πk such that Σ = Π0, ∆ = Πk, and for any j > 1,
Πj is a right shift of Πj−1 at a height hj. Moreover, by Lemma 4.10, each hj belongs
to Z. Since P is assumed to be shift-proof, we know that |F(P, Z, Πj−1)| = |F(P, Z, Πj)|
for each j ∈ [k], and hence |F(P, Z, Σ)| = |F(P, Z, ∆)|. This proves Theorem 4.4.

To apply Theorem 4.4, we need examples of shift-proof patterns. The only permutation
matrices known to be shift-proof are the identity matrices M(12 · · · ℓ, ℓ) and the anti-
diagonal matrices M(ℓ(ℓ − 1) · · ·1, ℓ). More generally, for any k > ℓ, both M(12 · · · ℓ, k)
and M(ℓ(ℓ− 1) · · ·1, k) are shift-proof. This follows directly from more general results of
Rubey related to fillings of moon diagrams [11, Theorem 5.3]. We state this as a fact.

Fact 4.11. For any k > ℓ > 1, the matrices M(12 · · · ℓ, k) and M(ℓ(ℓ − 1) · · ·1, k) are
shift-proof.

Combining Fact 2.1, Lemma 3.4, Theorem 4.4 and Fact 4.11, we get the following
result.

Corollary 4.12. Let k, ℓ, and m be integers, with k > ℓ > m. The following four partial
patterns are partial-matching equivalent:

• 12 · · ·km(m + 1) · · · ℓ(k + 1),

• 12 · · ·k(k + 1)m(m + 1) · · · ℓ,
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• 12 · · ·kℓ(ℓ − 1) · · ·m(k + 1), and

• 12 · · ·k(k + 1)ℓ(ℓ − 1) · · ·m.

We found two more examples of shift-proof matrices, presented in the next lemma.

Lemma 4.13. The matrix P = M(13, 3) and the matrix P ′ = M(31, 3) are both shift-
proof.

Proof. It is enough to prove the lemma for P , the argument for P ′ is symmetric.
Let Π be a stack diagram with r rows and c columns. Let i > 1 be a row index such

that Ri(Π) < Ri−1(Π). Let Π′ be the right shift of Π at height i. Let Z be a set of
row-indices containing i.

Fix a filling F ∈ F(P, Z, Π). We will say that a cell of F is high if it belongs to a row
i′ > i, and a cell is low if it belongs to a row i′ < i. Note that each column of F has
exactly one 1-cell, and each 1-cell is either high or low, because row i is a zero row by
assumption. We may thus partition the set [c] of column indices into two sets High(F )
and Low(F ), defined as

High(F ) = {j : column j contains a high 1-cell}, and

Low(F ) = {j : column j contains a low 1-cell}.

Let ℓ be the cardinality of Low(F ), and let j1 < j2 < · · · < jℓ be the elements of Low(F ).
We now describe how to transform the filling F into a filling F ′ from F(P, Z, Π′). For

any i′ > i, the row i′ of F ′ contains the same values as the row i′ of F , only shifted to
the right by one cell. This implies that j ∈ High(F ′) if and only if j − 1 ∈ High(F ), and
consequently j ∈ Low(F ′) if and only if j = 1 or j − 1 ∈ Low(F ). Let j′1 < j′2 < · · · < j′ℓ
be the elements of Low(F ′). It remains to specify the values of F ′ in the rows below row i.
Necessarily, all the 1-cells in these rows can only appear in the columns from Low(F ′).
For any i′ < i, the row i′ of F ′ has a 1-cell in a column j′m ∈ Low(F ′) if and only if the
row i′ of F has a 1-cell in column jm. This determines F ′ uniquely.

Notice that if j is a column of F with fewer than i−1 cells, then j has the same height
and the same values in F as in F ′.

Let us show that F ′ belongs to F(P, Z, Π′). By construction, F ′ has exactly one 1-cell
in each column, and at most one 1-cell in each row. Also, Π′ has the same zero rows as Π.

It remains to show that F ′ avoids P . Assume for contradiction that F ′ contains a
copy of P induced by columns c1 < c2 and rows r1 < r2 < r3. If both 1-cells in this copy
of P are high, then F contains a copy of P in columns c1 − 1 and c2 − 1. If, on the other
hand, both of the 1-cells are low, then c1 = j′a and c2 = j′b for some a < b. In such case,
F contains a copy of P in columns ja and jb. Finally, assume that c1 ∈ Low(F ′) and
c2 ∈ High(F ′). Then row r3 is above row i. Since the column c1 intersects row r3, we see
that c1 > 1. Consequently, c1 − 1 intersects row r3 in F , and c1 − 1 belongs to Low(F ).
We conclude that F has a 1-cell in row r3 > i and column c2 − 1, and another 1-cell in
column c1 − 1 and a row smaller than i. This shows that the two columns c1 − 1 and
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c2 − 1 of F contain a copy of P . In all cases we have a contradiction, showing that F ′

belongs to F(P, Z, Π′).
By analogous arguments, we can show that every filling F ′ ∈ F(P, Z, Π′) is obtained

from a unique filling F ∈ F(P, Z, Π). Thus, the mapping F 7→ F ′ is a bijection between
F(P, Z, Π) and F(P, Z, Π′). This shows that P is shift-proof, as claimed.

Combining Lemma 4.13 with Theorem 4.4, we get the next corollary.

Corollary 4.14. The pattern 123134 is partial-matching equivalent to the pattern 123413,
and the pattern 123314 is partial-matching equivalent to the pattern 123431.

5 Bijections involving ‘hybrid’ matchings

In this section, we prove the two equivalence relations

123412 ∼ 123142 and 123421 ∼ 123241.

The two proofs share the same basic structure. In both cases, we construct the bijection
between two pattern avoiding classes by composing bijections between classes of ‘hybrid’
matchings. Informally, a hybrid matching is a matching that avoids two different forbidden
patterns in its different parts.

Although the two proofs in this section are similar, we prefer to present them sepa-
rately. We do not know whether the two results can be generalized to a wider class of
forbidden patterns.

5.1 The patterns 123412 and 123142

In this subsection, we show that the two patterns 123412 and 123142 are equivalent. Let
us write σ = 123412 and τ = 123142.

Let µ = µ1 · · ·µ2n be a matching with n edges. For an integer ℓ ∈ [n], we say that µ

contains σ at level ℓ if µ contains a subsequence s = s1s2s3s4s5s6 order-isomorphic to σ

such that s2 = s6 = ℓ (in other words, the symbol ‘2’ of σ corresponds to the symbol ℓ of
s). Similarly, we say that µ contains τ at level ℓ if µ has an occurrence s of τ in which
the symbol ‘2’ of τ corresponds to the symbol ℓ of s.

For an integer ℓ > 1, a matching µ = µ1 · · ·µ2n is an ℓ-hybrid if it satisfies the following
two conditions:

• For each ℓ′ < ℓ, µ avoids σ at level ℓ′.

• For each ℓ′ > ℓ, µ avoids τ at level ℓ′.

Notice that 1-hybrid matchings are precisely the matchings that avoid τ , while (n+1)-
hybrid matchings are precisely the matchings that avoid σ. Thus, to show that σ and
τ are equivalent, it is enough to show that the number of ℓ-hybrid matchings does not
depend on ℓ.
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Lemma 5.1. For any ℓ ∈ [n], the number of ℓ-hybrid matchings of order n is equal to the
number of (ℓ + 1)-hybrid matchings of order n.

Proof. Fix a level ℓ and an order n. Our goal is to construct a bijection f between ℓ-hybrid
and (ℓ + 1)-hybrid matchings of order n.

Let µ be a matching of order n. Express µ as µ = aℓbℓc, where a, b and c are (possibly
empty) subwords of µ delimited by the two occurrences of ℓ.

Let x1 be the element of µ corresponding the first occurrence of the symbol ℓ + 1, and
let x2 be the element of µ corresponding to the second occurrence of ℓ + 1. Let k > 0
be the number of elements of b that are larger than ℓ + 1, and let y1, y2, . . . , yk be the
sequence of all such elements, in the order in which they appear in b.

Note that µ contains σ at level ℓ if and only if k > 0 and b contains a symbol smaller
than ℓ that appears to the right of y1. Similarly, µ contains τ at level ℓ if and only if
k > 0 and b contains a symbol smaller than ℓ anywhere between x1 and yk.

Assume now that µ is an ℓ-hybrid matching. We may express b as

b = b(0)x1b
(1)y1b

(2)y2 · · · yk−1b
(k)ykb

(k+1),

where x1, y1, . . . , yk are the elements defined above, and b(0), . . . , b(k+1) are possibly empty
subwords of b. Since µ is an ℓ-hybrid, it avoids τ at level ℓ, and in particular, none of
the subwords b(1), . . . , b(k) may contain a symbol smaller than ℓ. This means that the
subwords b(1), . . . , b(k) are either empty or consist of a single element x2.

Define now the word b′ obtained from b by exchanging the positions of b(1) and b(k+1).
In other words,

b′ = b(0)x1b
(k+1)y1b

(2)y2 · · · yk−1b
(k)ykb

(1).

Define a new matching µ′ = aℓb′ℓc. We claim that µ′ is an (ℓ + 1)-hybrid matching. It is
immediate that µ′ is indeed a canonical sequence representing a matching. It is also easy
to see that µ′ avoids σ at level ℓ.

Let us now check that µ′ avoids σ at all levels below ℓ. Suppose this is not the case.
Then there are four values u < v < w < x such that v < ℓ and µ′ has a subsequence s

equal to uvwxuv. We may assume without loss of generality that x = w + 1 = v + 2, and
that the occurrences of w and x in s correspond to the first occurrence of w and x in µ′.
That means, however, that s contains no element of µ′ larger than ℓ, except possibly the
element x1. It follows that s is also a subsequence of µ, because the mapping µ 7→ µ′ only
affects the symbols to the right of x1, and it does not change the relative positions of two
symbols smaller than ℓ. This is a contradiction.

Let us now check that µ′ does not contain τ at any level greater than ℓ. We proceed
again by contradiction. Assume that there are four values u < v < w < x, such that
v > ℓ and µ′ has a subsequence s = s1s2s3s4s5s6, whose symbols have values equal to
uvwuxv. We may assume that w = v + 1 and that the symbol s3 is the first occurrence
of w in µ′. If u > ℓ + 1 then s is also a subsequence of µ because the mapping µ 7→ µ′

does not change the relative positions of symbols larger than ℓ + 1. We may thus assume
that u 6 ℓ + 1.
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Let us distinguish several cases, depending on the position of s3 and s5 in µ′. Note
that the symbols s3 and s5 can only appear in b′ or in c. If both these symbols appear in
b′, then s3 = yi and s5 = yj for some i < j. Necessarily, u > ℓ+1, because no two symbols
yi, yj have a symbol smaller than ℓ + 1 between them. From this, we easily deduce that
s is also a subsequence of µ, which is impossible.

If both s3 and s5 are in c, then all the four symbols s3s4s5s6 appear in this order
in c and hence also in µ. Recall that these symbols have values wuxv. Since the first
occurrence of u and v in µ must precede the first occurrence of w, we again conclude that
µ must contain the subsequence uvwuxv.

Lastly, suppose that s3 is in b′ and s5 is in c. We may then replace the two occurrences
of u with the two occurrences of ℓ and conclude that both µ and µ′ contain a subsequence
ℓvwℓxv which is order-isomorphic to τ . In all cases, we obtain a contradiction.

Let us define a mapping f by f(µ) = µ′. We have seen that f maps ℓ-hybrid matchings
to (ℓ + 1)-hybrid matchings. It is easy to see that f can be inverted and we routinely
check that it maps (ℓ + 1)-hybrid matchings onto ℓ-hybrid matchings. This shows that f

is the required bijection.

Corollary 5.2. The patterns 123412 and 123142 are equivalent.

5.2 The patterns 123421 and 123241

Our next goal is to establish the equivalence of the two patterns π = 123421 and
ρ = 123241. Our argument follows the same basic idea as the proof from the previ-
ous subsection. Let us adapt the terminology of the previous subsection to the new pair
of patterns. We say that a matching µ contains π (or ρ) at level ℓ if µ has a subsequence
s order-isomorphic to π in which the symbol ℓ corresponds to the symbol ‘2’ in π (or ρ).
We say that a matching µ is an ℓ-hybrid if it avoids π at all levels 1, 2, . . . , ℓ − 1, and it
avoids ρ at all levels ℓ, ℓ + 1, . . . , n.

We now show that the number of ℓ-hybrid matchings of order n does not depend on
ℓ, which means that 123421 and 123241 are equivalent.

Lemma 5.3. For any ℓ ∈ [n], then number of ℓ-hybrid matchings of order n is equal to
the number of (ℓ + 1)-hybrid matchings of order n.

Proof. Fix ℓ and n, with ℓ 6 n. We will describe an involution f on the set of matchings
of order n, which will act as a bijection between ℓ-hybrids and (ℓ + 1)-hybrids.

Let µ be a matching of order n. Let us say that a symbol of the sequence µ is small
if its value is smaller than ℓ, let us say that a symbol is large if its value is larger than
ℓ, and let us say that a large symbol is very large if it is larger than ℓ + 1. Let µi be
the leftmost large symbol of µ (which is necessarily equal to ℓ + 1), let µj be the second
occurrence of the symbol ℓ in µ, and let µk be the rightmost small symbol of µ.

If i > j or j > k, then µ clearly avoids both π and ρ at level ℓ. In such case, we define
f(µ) = µ. Assume now that i < j < k. We may decompose the sequence µ as

µ = aµibµjcµkd,
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where a, b, c and d are (possibly empty) sequences of symbols. Note that µ contains π at
level ℓ if and only if b has at least one very large symbol, and that µ contains ρ at level
ℓ if and only if c has at least one very large symbol. If both b and c contain very large
symbols, then µ contains both π and ρ at level ℓ, while if neither b nor c has a very large
symbol, then µ avoids both π and ρ at level ℓ. In such cases, we define f(µ) = µ.

Assume now that exactly one of the two words b and c contains a very large symbol.
Let w = w1w2 · · ·wp denote the sequence bℓc, i.e., w is the subsequence of µ formed by
the symbols of µ between µi and µk. We now define a new sequence w′ = w′

1w
′

2 · · ·w
′

p

obtained from w by reordering some of its symbols. The sequence w′ has the property
that whenever wi is a small symbol, then w′

i = wi, i.e., the small symbols of w and w′

coincide. Let x = x1x2 · · ·xq be the subsequence of w formed by all its non-small symbols,
and let x′ = x′

1x
′

2 · · ·x
′

q be determined by these rules:

• If the first symbol of x is ℓ (i.e., x1 = ℓ) then define x′ by

x′ = x2x3 . . . xqℓ.

• If the last symbol of x is ℓ, define

x′ = ℓx1x2 · · ·xq−1.

• If the first symbol of x is ℓ + 1 and the second symbol is ℓ, define

x′ = x3x4 · · ·xqℓ(ℓ + 1).

• If the last symbol of x is ℓ + 1, immediately preceded by ℓ, define

x′ = (ℓ + 1)ℓx1x2 · · ·xq−2.

The four cases above are mutually exclusive and cover all possibilities. This follows from
the assumption that w has at least one very large symbol, and that either all the very
large symbols precede ℓ or all of them follow ℓ. Let w′ be the sequence obtained from
w by replacing the subsequence x of w by the subsequence x′. Note that the very large
symbols appear in w′ in the same order as they appear in w.

Let µ′ be the sequence of symbols obtained from µ by replacing the subsequence w

with the subsequence w′, i.e., µ′ = aµiw
′µkd. Since the very large symbols in w appear

in the same order as the very large symbols in w′, we easily see that µ′ is a canonical
sequence of a matching. We may then define f(µ) = µ′.

Notice that the mapping f defined above is an involution which maps the matchings
that avoid π at level ℓ onto matchings that avoid ρ at level ℓ.

It is also easy to verify that for every ℓ′ < ℓ, µ avoids π at level ℓ′ if and only if
µ′ avoids π at level ℓ′. To see this, notice that if µ has a subsequence xℓ′yzℓ′x order-
isomorphic to π, then µ also has such a subsequence that only uses the small symbols
possibly together with the first occurrence of ℓ and the first occurrence of ℓ + 1. Thus, at
least one occurrence of π at level ℓ′ is preserved by f .
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Let us now show that for any ℓ′ > ℓ, µ contains ρ at level ℓ′ if and only if f(µ) contains
ρ at level ℓ′. Suppose µ has a subsequence s = s1s2s3s4s5s6 order-isomorphic to ρ, with
s2 = s4 = ℓ′. We only need to deal with the case when µ 6= f(µ). Recall that µk is the
rightmost small symbol of µ.

If the whole subsequence s belongs to the prefix µ1µ2 · · ·µk of µ, then we can assume
without loss of generality that s6 corresponds to µk. Then the word w contains the
subsequence s3s4s5. It is easy to check that w′ must contain this subsequence as well, and
from this we easily deduce that f(µ) has s as a subsequence, so f(µ) contains ρ.

Assume now that the symbol s6 of s appears to the right of µk. Then all the symbols
of s are large, and all the symbols of s that appear in w are very large. Since the very
large symbols in w form the same subsequence as the very large symbols of w′, we see
that f(µ) has s as a subsequence.

We conclude that f maps ℓ-hybrid matchings onto (ℓ+1)-hybrid matchings, as claimed.

Corollary 5.4. The two partial matchings 123421 and 123241 are equivalent.

6 Enumerations of short patterns

We now apply the results of the previous sections to give a summary of equivalence classes
among patterns of small size. We also give explicit formulas for the counting functions
mn(τ), where available. We then summarize the results in Tables 2–5. In each of the
tables, the patterns are ordered by increasing (apparent) growth rate of mn(τ).

Table 2: Number of matchings in Mn(τ), where τ is a pattern of
length four.

τ m7(τ) Formula Reference

1233 0 0 Observation 3.1
1234 0 0 Observation 3.1
1223,1232 13 2n− 1 Lemma 3.4
1213,1231 239 (2.1) Corollary 4.12

1212,1221 429 1

n+1

(
2n

n

)
[9], Fact 2.3

1123 1001 3

2n+1

(
2n+1

n−1

)
[8]

1122 5040 n! Observation 3.3

6.1 Patterns of length four

The results of this paper allow us to provide the full classification of patterns of length four
with respect to their equivalence, and to enumerate the corresponding pattern avoiding
matchings. The results are listed in Table 2.
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6.2 Patterns of length five

For patterns of length five, we are able to classify all the equivalence classes, and give
explicit formulas for most, but not all, of the counting functions mn(τ). The results are
summarized in Table 3. The formulas for mn(12313) and mn(11233) are derived in the
next two subsections.

Table 3: Number of matchings in Mn(τ), where τ is a pattern
of length five. For the patterns in bold, we do not have explicit
formulas.

τ m7(τ) Formula Reference

12344 0 0 Observation 3.1
12345 0 0 Observation 3.1
12334,12343 143 (2n − 1)(2n− 3) Lemma 3.4
12324,12342 1287 (2n − 1)mn−1(1213) Lemma 3.4

12323,12332 1716
(
2n−1

n

)
Lemma 3.4

12314,12341 3263 (2.2) Corollary 4.12
12313 3804 (6.1)

12234 3861 3
(
2n−1

n+1

)
Lemma 3.4

12331 5787
12134 7472
12123,12132,12213,

12231,12312,12321 7752 1

2n+1

(
3n

n

)
[4], Fact 2.6

12233 9360 (2n − 1)(n − 1)! Lemma 3.4
11233,12133 11743 (6.2) Lemma 3.10
11234 16171

11223,11232 30869
n∑

j=1

j!
(
2n−j−1

j−1

)
Lemma 3.5

6.3 Enumeration of 12313-avoiding matchings

Let µ be a matching of order n. Let e1, . . . , en be the edges of µ, where each ei connects a
pair of vertices xi < yi, and the edges are numbered in such a way that x1 < x2 < · · · < xn.
We say that edges ei and ej cross, if xi < xj < yi < yj, or xj < xi < yj < yi. We say that
ej is nested below ei if xi < xj < yj < yi. The following observation, whose routine proof
we omit, characterizes 12313-avoiding matchings.

Observation 6.1. A matching µ avoids 12313 if and only for every two edges ei, ej that
cross each other, we have either i = j + 1 or j = i + 1.

Using this observation, it is not hard to see that the structure of any 12313-avoiding
matching µ is described by exactly one of the following three cases (see Figure 4):

• The edge e1 of µ is not crossed by any other edge. Then the vertices between
vertex x1 = 1 and vertex y1 induce an arbitrary (possibly empty) 12313-avoiding
matching σ, and the vertices to the right of y1 induce an arbitrary (possibly empty)
12313-avoiding matching π.
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• The edge e1 is crossed by e2, and y1 = 3. Then µ begins with the three symbols 121,
and the edges e2, e3, . . . , en form an arbitrary 12313-avoiding matching of order n−1.

• The edge e1 is crossed by e2, and y1 > 3. From this, it follows that x3 < y1, and
since e3 cannot cross e1, it does not cross e2 either. Hence, e2 is not crossed by any
edge other than e1. It follows that the vertices between x2 and y1 induce a nonempty
12313-avoiding matching σ, the vertices between y1 and y2 induce a possibly empty
12313-avoiding matching π, and the vertices to the right of y2 induce a possibly
empty 13213-avoiding matching τ .

Furthermore, any matching whose structure corresponds to one of these three cases is
clearly 12313-avoiding.

σ π
1 y1 1 2 3 y1 1 2 y1 y2

σ τπ

Figure 4: The matchings avoiding 12313.

Let f(x) be the generating function for mn(12313). The decompositions of 12313-
avoiding matching describe above imply the identity

f(x) = 1 + xf 2(x) + x(f(x) − 1) + x2f 2(x)(f(x) − 1),

which is equivalent to

f(x) = 1 + xf 2(x) +
x2

1 − x
f 3(x).

Let g(x, y) be a generating function such that g(x, y) = xy(g(x, y)+ 1)2(1+ x
1−x

(g(x, y)+
1)). Clearly, g(x, 1) = f(x) − 1. Using the Lagrange inversion formula (for example, see
[15, Theorem 5.1.1]), we get that

[yn]g(x, y) =
1

n
[an−1]

(
x(a + 1)2(1 +

x

1 − x
(a + 1))

)n

=

n−1∑

i=0

(
2n

i

)(
n

n − 1 − i

)
x2n−1−i

n(1 − x)n
,

Thus,

f(x) = 1 +
∑

i>1

i−1∑

j=0

x2i−1−j

i(1 − x)i

(
2i

j

)(
i

j + 1

)
,

and hence the number of 12313-avoiding matchings on [2n] is given by

n∑

i=1

i−1∑

j=0

1

i

(
2i

j

)(
i

j + 1

)(
n + j − i

i − 1

)
. (6.1)

the electronic journal of combinatorics 17 (2010), #R158 26



6.4 The pattern 11233

We now derive a formula for mn(11233). Let µ be a matching. Let ei, xi and yi have
the same meaning as in the previous subsection. We say that the edge ei of µ is short, if
yi < xn. An edge is long if it is not short. In particular, the edge en is always long.

By definition, if ei is a long edge then xi 6 xn < yi. It follows that every two long
edges are either crossing or nesting.

We may easily check that a matching µ avoids 11233 if and only if it satisfies the
following two conditions.

1. The submatching of µ induced by the short edges avoids 112; in other words, every
two short edges are nested. Thus, if µ has s short edges, then these edges induce a
submatching isomorphic to 123 · · · ss(s − 1) · · · 1.

2. If ei is a long edge different from en and ej is a short edge, then xi < yj.

We may now easily infer that the number of 11233-avoiding matchings with ℓ long
edges and s short edges is equal to ℓ!

(
ℓ+s−1

s

)
, where the factor ℓ! corresponds to the

number of possible mutual arrangements of the long edges, while
(

ℓ+s−1
s

)
is the number

of possibilities to choose the relative position of the short edges and the left endpoints of
the first ℓ − 1 long edges (the left endpoint of the last long edge is always the rightmost
left endpoint of the whole matching).

Summing over all possible values of ℓ, we get the formula

mn(11233) =
n∑

ℓ=1

ℓ!

(
n − 1

ℓ − 1

)
. (6.2)

6.5 Patterns of length six and seven

In this subsection, we summarize the equivalence classes for patterns of length six and
seven. We verified by computer enumeration that no other patterns of these lengths are
equivalent. For patterns of length six, our results confirm all the equivalences suggested
by computer enumeration.

On the other hand, there are several patterns of length seven which appear to be
equivalent based on computer enumeration, but their equivalence does not follow from
our results. These patterns are marked in bold in Table 5. We also list these plausible
equivalences explicitly in a conjecture.

Conjecture 6.2. Apart from the equivalences implied by the results of this paper, the
partial matchings of length seven also satisfy the following equivalence relations:

• 1234413 ∼ 1234431,

• 1234213 ∼ 1231342, and

• 1233124 ∼ 1233142 ∼ 1233241.
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To save space, we only list the nontrivial equivalence classes, and we omit the enu-
meration data. Complete data, as well as the source code of the program used for the
enumerations, are available from the second author’s website [16].

The equivalence classes of patterns of length six and seven are listed in Table 4 and
Table 5, respectively.

Table 4: Nonsingleton equivalence classes of patterns of length six.

Pattern Reference

123445, 123454 Lemma 3.4
123435, 123453 Lemma 3.4
123434, 123443 Lemma 3.4
123425, 123452 Lemma 3.4
123415, 123451 Corollary 4.12
123234, 123243, 123324,
123342, 123423, 123432 Lemma 3.4
122344, 123244 Lemma 3.4
123134, 123143, 123413 Fact 2.7, Corollary 4.14
121344, 123144 Lemma 3.10
123314, 123341, 123431 Fact 2.5, Corollary 4.14
123124, 123142, 123214, Corollaries 4.12, 5.2 and 5.4,
123241, 123412, 123421 Fact 2.7
123132, 123213 Corollary 4.3
123123, 123312, 123321 Fact 2.1
121332, 122313 Observation 3.8
121234, 122134 Fact 2.3
122334, 122343 Lemma 3.4
112334, 112343, 121334, 121343 Lemmas 3.7 and 3.10, Fact 2.4
112323, 112332, 121233, 122133 Lemmas 3.5 and 3.9
112324, 112342 Lemma 3.5

Table 5: Nonsingleton equivalence classes of patterns of length
seven.

Pattern Reference

1234556, 1234565 Lemma 3.4
1234545, 1234554 Lemma 3.4
1234546, 1234564 Lemma 3.4
1234536, 1234563 Lemma 3.4
1233455, 1234355 Lemma 3.4
1234526, 1234562 Lemma 3.4
1234345, 1234354, 1234435,
1234453, 1234534, 1234543 Lemma 3.4
1232455, 1234255 Lemma 3.4
1234516, 1234561 Corollary 4.12
1234245, 1234254, 1234524 Lemma 3.4
1231455, 1234155 Lemma 3.10
1234425, 1234452, 1234542 Lemma 3.4

continued on next page
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Table 5: Nonsingleton equivalence classes of patterns of length
seven.

Pattern Reference

1234235, 1234253, 1234325,
1234352, 1234523, 1234532 Lemma 3.4
1234451, 1234541 Fact 2.5
1234243, 1234324 Lemma 3.4
1234234, 1234423, 1234432 Lemma 3.4
1232443, 1233424 Lemma 3.4
1234125, 1234215, 1234512, 1234521 Corollary 4.12
1233445, 1233454 Lemma 3.4
(1234413), (1234431)
1223434, 1223443, 1232344, 1233244 Lemma 3.4
1232345, 1233245 Lemma 3.4
1223445, 1223454, 1232445, 1232454 Lemma 3.4
1123434, 1123443, 1213443, 1213434 Lemmas 3.7 and 3.10
1234412, 1234421 Fact 2.1
1234132, 1234213, (1231342) Corollary 4.3
1213445, 1213454, 1231445, 1231454 Lemmas 3.7 and 3.10
1212344, 1213244, 1221344, Fact 2.3,
1223144, 1231244, 1232144 Lemma 3.10
1123344, 1213344 Lemma 3.10
(1233124), (1233142), (1233241)
1231234, 1233214, 1233412, Facts 2.1 and 2.5,
1233421, 1234123, 1234312, 1234321 Corollary 4.12
1231245, 1232145 Fact 2.3
1123445, 1123454 Fact 2.4
1223435, 1223453 Lemma 3.4
1122344, 1123244 Corollary 3.6
1123435, 1123453, 1213435, 1213453 Lemmas 3.7 and 3.10
1123234, 1123243, 1123324,
1123342, 1123423, 1123432 Lemma 3.5
1212345, 1221345 Fact 2.3
1123345, 1213345 Lemma 3.5
1123425, 1123452 Lemma 3.5
1212334, 1212343, 1221334, 1221343 Facts 2.2 and 2.4
1122334, 1122343 Fact 2.4
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