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Abstract

Let r and m be two integers such that r > m. Let H be a graph with order |H|,
size e and maximum degree r such that 2e > |H|r−m. We find a best lower bound
on spectral radius of graph H in terms of m and r. Let G be a connected r-regular
graph of order |G| and k < r be an integer. Using the previous results, we find
some best upper bounds (in terms of r and k) on the third largest eigenvalue that is
sufficient to guarantee that G has a k-factor when k|G| is even. Moreover, we find
a best bound on the second largest eigenvalue that is sufficient to guarantee that G

is k-critical when k|G| is odd. Our results extend the work of Cioabă, Gregory and
Haemers [J. Combin. Theory Ser. B, 1999] who obtained such results for 1-factors.

1 Introduction

Throughout this paper, G denotes a simple graph of order n (the number of vertices)
and size e (the number of edges). For two subsets S, T ⊆ V (G), let eG(S, T ) denote the
number of edges of G joining S to T . The eigenvalues of G are the eigenvalues λi of its
adjacency matrix A, indexed so that λ1 > λ2 > · · · > λn. The largest eigenvalue is often
called spectral radius. If G is k-regular, then it is easy to see that λ1 = k and also, λ2 < k
if and only if G is connected. A matching of a graph G is a set of mutually disjoint edges.
A matching is perfect if every vertex of G is incident with an edge of the matching. Let
a be a nonnegative integer and we denote a matching of size a by Ma. Let G denote the
complement of a graph G. The join G + H denotes the graph with vertex V (G) ∪ V (H)
and edge set

E(G + H) = E(G) ∪ E(H) ∪ {xy | x ∈ V (G) and y ∈ V (H)}.

∗This work is supported by the Fundamental Research Funds for the Central Universities.
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For a general graph G and an integer k, a spanning subgraph F of G such that

dF (x) = k for all x ∈ V (G)

is called a k-factor. Given a subgraph H of G, we define the deficiency of H with respect
to k-factor as

defH(G) =
∑

v∈V

|k − dH(v)|.

The total deficiency of a graph G is defined as

def(G) = min
H⊆G

defH(G).

F is called a k-optimal subgraph of G if defF (G) = def(G). Clearly, G has a k-factor
if and only if def(G) = 0. We call a graph G k-critical, if G contains no k-factors, but
for any fixed vertex x of V (G), there exists a subgraph H of G such that dH(x) = k ± 1
and dH(y) = k for any vertex y (y 6= x). Tutte [13] obtained the well-known k-Factor
Theorem in 1952.

Theorem 1.1 (Tutte [13]) Let k > 1 be an integer and G be a general graph. Then G
has a k-factor if and only if for all disjoint subsets S and T of V (G),

δG(S, T ) = k|T | + eG(S, T ) + τG(S, T ) − k|S| −
∑

x∈T

dG(x)

= k|T | + τG(S, T ) − k|S| −
∑

x∈T

dG−S(x) 6 0,

where τG(S, T ) denotes the number of components C, called k-odd components of G−(S∪
T ) such that eG(V (C), T ) + k|C| ≡ 1 (mod 2). Moreover, δ(S, T ) ≡ k|V (G)| (mod 2).

Furthermore, Lovász proved the well-known k-defficiency Theorem in 1970.

Theorem 1.2 (Lovász [10]) Let G be a graph and k a positive integer. Then

def(G) = max δG(S, T )

= max{k|T | + τG(S, T ) − k|S| −
∑

x∈T

dG−S(x) | S, T ⊆ V (G), and S ∩ T = ∅}

where τG(S, T ) is the number of components C of G−(S∪T ) such that e(V (C), T )+k|C| ≡
1 (mod 2). Moreover, δG(S, T ) ≡ k|V (G)| (mod 2). Furthermore, G is not k-critical if

and only if there exist two disjoint subsets S and T with S∪T 6= ∅ such that δG(S, T ) > 0.

In [2], Brouwer and Haemers gave sufficient conditions for a graph to have a 1-factor in
terms of its Laplacian eigenvalues and, for a regular graph, gave an improvement in terms
of the third largest adjacency eigenvalue λ3. Cioabă and Gregory [4] also studied relations
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between 1-factors and eigenvalues. Later, Cioabă, Gregory and Haemers [5] found a best
upper bound on λ3 that is sufficient to guarantee that a regular graph G of order v has a
1-factor when v is even, and a matching of order v − 1 when v is odd. In [11], the author
studied the relation of eigenvalues and regular factors of regular graphs.

We are now able to state our main theorems and prove them in Section 2. Recently,
Suil O and Cioabă [12] also independently proved Theorems 1.3 and 1.4 with different
method and applied their results to matching problems.

Theorem 1.3 Let r > 4 be an integer and m an even integer, where 2 6 m 6 r + 1.
Let H(r, m) denote the class of all connected irregular graphs with order n 6= r (mod 2),
maximum degree r, and size e with 2e > rn − m. Let

ρ1(r, m) =
1

2
(r − 2 +

√

(r + 2)2 − 4m). (1)

Then λ1(H) > ρ1(r, m) for each H ∈ H(r, m) with equality if H is the join of Kr+1−m

and Mm/2.

Theorem 1.4 Let r and m be two integers such that m ≡ r (mod 2) and 1 6 m 6 r.
Let H(r, m) denote the class of all connected irregular graphs with order n ≡ r (mod 2),
maximum degree r, and size e with 2e > rn − m.

(i) If m > 3, let

ρ2(r, m) =
1

2
(r − 3 +

√

(r + 3)2 − 4m), (2)

then λ1(H) > ρ2(r, m) for each H ∈ H(r, m) with equality if H is the join of

M(r+2−m)/2 and C, where C with order m consists of disjoint cycles;

(ii) if m = 1, let ρ2(r, m) is the greatest root of P (x), where P (x) = x3 − (r − 2)x2 −
2rx + (r− 1), then λ1(H) > ρ2(r, m) for each H ∈ H(r, m) with equality if H is the

join of K1,2 and M(r−1)/2;

(iii) if m = 2, let ρ2(r, m) is the greatest root of f1(x), where f1(x) = x3 − (r − 2)x2 −
(2r− 1)x + r, then λ1(H) > ρ2(r, m) for each H ∈ H(r, m) with equality if H is the

join of P4 and M(r−2)/2, where P4 denote the path of length three.

Theorems 1.3 and 1.4 improve the recent results from [11]. The proofs of these theo-
rems are contained in Section 2.

Theorem 1.5 Suppose that r is even, k is odd. Let G be a connected r-regular graph

with order n. Let m > 3 be an integer and m0 ∈ {m, m − 1} be an odd integer. Suppose

that r
m

6 k 6 r(1 − 1
m

).

(i) If n is odd and λ2(G) < ρ1(r, m0 − 1), then G is k-critical;

(ii) if n is even and λ3(G) < ρ1(r, m0 − 1), then G has a k-factor.
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Theorem 1.6 Let r and k be two integers. Let m be an integer such that m∗ ∈ {m, m+1}
and m∗ ≡ 1 (mod 2). Let G be a connected r-regular graph with order n. Suppose that

λ3(G) <

{

ρ1(r, m − 1) if m is odd,

ρ2(r, m − 1) if m is even.

If one of the following conditions holds, then G has a k-factor.

(i) r is odd, k is even and k 6 r(1 − 1
m∗

);

(ii) both r and k are odd and r
m∗

6 k.

The main tool in our arguments is eigenvalue interlacing (see [9]).

Theorem 1.7 (Interlacing Theorem) If A is a real symmetric n × n matrix and B
is a principal submatrix of A with order m × m, then for 1 6 i 6 m, λi(A) > λi(B) >

λn−m+i(A).

2 The proof of Theorems 1.3 and 1.4

Proof of Theorem 1.3. Let H be a graph in H(r, m) with λ1(H) 6 ρ1(r, m). Firstly,
we prove the following claim.

Claim 1. H has order n and size e, where n = r + 1 and 2e = rn − m.

Suppose that 2e > rn−m. Then, since rn −m is even, so 2e > rn−m + 2. Because
the spectral radius of a graph is at least the average degree, λ1(H) >

2e
n

> r− m−2
r+1

. Since

ρ1(r, m) =
1

2
(r − 2 +

√

(r + 2)2 − 4m)

=
1

2
(r − 2) +

1

2
(r + 2)

√

1 −
4m

(r + 2)2

<
1

2
(r − 2) +

1

2
(r + 2)(1 −

2m

(r + 2)2
)

= r −
m

r + 2

< r −
m − 2

r + 1
,

so λ1(H) > ρ1(r, m). Thus 2e = rn − m. Because H has order n with maximum degree
r, we have n > r + 1. If n > r + 1, since n + r is odd, so n > r + 3, it is straightforward
to check that

λ1(H) >
2e

n
> r −

m

r + 3
> ρ1(r, m),

the electronic journal of combinatorics 17 (2010), #R159 4



a contradiction. This completes the claim.
Then by Claim 1, H has order n = r+1 and at least r+1−m vertices of degree r. Let

G1 be the subgraph of H induced by n1 = n + 1−m vertices of all the vertices of degree
r and G2 be the subgraph induced by the remaining n2 = m vertices. Also, let G12 be the
bipartite subgraph induced by the partition and let e12 be the size of G12. A theorem of
Haemers [7] shows that eigenvalues of the quotient matrix of the partition interlace the
eigenvalues of the adjacency matrix of G. Because each vertex in G1 is adjacent to all
other vertices in H , the quotient matrix Q is the following

Q =

(2e1

n1

e12

n1

e12

n2

2e2

n2

)

=

(

r − m m
r + 1 − m m − 2

)

.

Applying eigenvalue interlacing to the greatest eigenvalue of G, we get

λ1(H) > λ1(Q) =
1

2
(r − 2 +

√

(r + 2)2 − 4m), (3)

with the equality if the partition is equitable [[9], p.202]; equivalently, if G1 and G2

are regular, and G12 is semiregular; or equivalently, if G2 = Mm/2, G1 = Kr+1−m and
G12 = Kr+1−m,m. Hence λ1(R) > ρ1(r, m) for each R ∈ H(r, m) and the equality holds if
R = Kr+1−m + Mm/2. This completes the proof. 2

Proof of Theorem 1.4. Let H be a graph in H(r, m) with λ1(H) 6 ρ2(r, m). With
similar proof of Claim 1 in Theorem 1.3, we obtain the following claim.

Claim 1. H has order n and size e, where n = r + 2 and 2e = rn − m.

By Claim 1, H has order n = r + 2 and at least r + 2 − m vertices of degree r. Let
G1 be the subgraph of H induced by the n1 = n + 2 − m vertices of degree r and G2 be
the subgraph induced by the remaining n2 = m vertices. Also, let G12 be the bipartite
subgraph induced by the partition and let e12 be the size of G12. The quotient matrix Q
is the following

Q =

(2e1

n1

e12

n1

e12

n2

2e2

n2

)

.

Suppose that e12 = t. Then 2e1 = (r + 2 − m)r − t and 2e2 = rm − m − t. Applying
eigenvalue interlacing to greatest eigenvalue

λ1(G) > λ1(Q) =
2e1

n1
+

2e2

n2
+

√

(
2e1

n1
−

2e2

n2
)2 +

e2
12

n1n2

=
2r − 1

2
−

(r + 2)t

2m(r + 2 − m)
+

√

(
1

2
+

t(r + 2 − 2m)

2m(r + 2 − m)
)2 +

t2

m(r + 2 − m)
.

Let s = t
m(r+2−m)

, where 0 < s 6 1, then we have

2λ1(Q) = f(s) = (2r − 1) − s(r + 2) +
√

1 + 2s(r + 2 − 2m) + s2(r + 2)2.
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For s > 0, since

f ′(s) = −(r + 2) +
(r + 2 − 2m) + s(r + 2)2

√

1 + 2s(r + 2 − 2m) + s2(r + 2)2
< 0.

Then 0 < t 6 m(r + 2 − m), so we have

2λ1(Q) > f(1) = (r − 3) +
√

1 + 2(r + 2 − 2m) + (r + 2)2

= (r − 3) +
√

(r + 3)2 − 4m.

Hence

λ1(H) > λ1(Q) >
1

2
(r − 3) +

1

2

√

(r + 3)2 − 4m, (4)

with equality if t = m(r + 2 − m), both G1 and G2 are regular and G12 is semiregular;
equivalently, if G1 is a perfect matching with order r + 2−m and G2 is a 2-regular graph
with order m. Hence λ1(R) > ρ2(r, m) for each R ∈ H(r, m) and the equality holds if
R = M(r+2−m)/2 + C, where C is a 2-regular graph with order m.

Now we consider m = 1. Then r is odd and n = r + 2. So H contains one vertex
of degree r − 1, say v and the rest vertices have degree r. Hence H = K1,2 ∪ M(r−1)/2.
Partition the vertex of V (H) into three parts: the two endpoints of K1,2; the internal
vertex of K1,2; the (r − 1) vertices of M(r−1)/2. This is an equitable partition of H with
quotient matrix

Q =





0 0 r − 1
0 1 r − 1
1 2 r − 3



 .

The characteristic polynomial of the quotient matrix is

P (x) = x3 − (r − 2)x2 − 2rx + (r − 1).

Since the partition is equitable, so λ1(H) = λ1(Q) and λ1(H) is a root of P (x).
Finally, we consider m = 2. Then r is even. Let G ∈ H(r, m) be the graph with order

r + 2 and size e = (r(r + 2) − 2)/2.
We discuss three cases.

Case 3.1. G has two nonadjacent vertices of degree r − 1.

Then G = P4 + M(r−2)/2 and G = P4 ∪ M(r−2)/2. Partition the vertex of V (G) into
three parts: the two endpoints of P4; the two internal vertices of P4; the (r − 2) vertices
of M(r−1)/2. This is an equitable partition of G with quotient matrix

Q1 =





1 1 r − 2
0 1 r − 2
2 2 r − 4



 .
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The characteristic polynomial of the quotient matrix is

f1(x) = x3 − (r − 2)x2 − (2r − 1)x + r.

Case 3.2. G has two adjacent vertices of degree r − 1.

Then G = 2P3 ∪ M(r−4)/2. Partition the vertex of V (G) into three parts: the four
endpoints of two P3; the two internal vertices of two P3; the (r − 4) vertices of M(r−4)/2.
This is an equitable partition of G with quotient matrix

Q3 =





3 1 r − 4
2 1 r − 4
4 2 r − 6



 .

The characteristic polynomial of the quotient matrix is

f2(x) = x3 − (r − 2)x2 − (2r − 1)x + r − 2.

Case 3.3. G has one vertex of degree r − 2.

Then G = K1,3 ∪ M(r−2)/2. Partition the vertex set of G into three parts: the center
vertex of K1,3; the three endpoints of K1,3; the (r − 2) vertices of M(r−2)/2. This is an
equitable partition of G with quotient matrix

Q2 =





0 0 r − 2
0 2 r − 2
1 3 r − 4



 .

The characteristic polynomial of the quotient matrix is

f3(x) = x3 − (r − 2)x2 − 2rx + 2(r − 2).

Note that λ1(Q1) < λ1(Q2) < λ1(Q3). We have ρ2(r, m) = λ1(Q1). So H = P4 ∪
M(r−2)/2. Hence λ1(H) is a root of f1(x) = 0. This completes the proof. 2

3 The proof of Theorems 1.5 and 1.6

We will need the following technical lemma whose proof is an easy modification of the
proof of Theorem 2.2 from [11]. We provide the proof here for completeness.

Lemma 3.1 Let r and k be integers such that 1 6 k < r. Let G be a connected r-regular
graph with n vertices. Let m be an integer and m∗ ∈ {m, m + 1} be an odd integer.

Suppose that one of the following conditions holds

(i) r is even, k is odd, and r
m

6 k 6 r(1 − 1
m

);

(ii) r is odd, k is even and k 6 r(1 − 1
m∗

);
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(iii) both r and k are odd and r
m∗

6 k.

If G contains no a k-factor and is not k-critical, then G contains def(G) + 1 vertex

disjoint induced subgraph H1, H2, . . . , Hdef(G)+1 such that 2e(Hi) > r|V (Hi)|− (m−1) for

i = 1, 2, . . . , def(G) + 1.

Proof. Suppose that the result does not hold. Let θ = k/r. Since G is not k-critical
and contains no k-factors, so by Theorem 1.2, there exist two disjoint subsets S and T
of V (G) such that S ∪ T 6= ∅ and δ(S, T ) = def(G) > 1. Let C1, . . . , Cτ be the k-odd
components of G − (S ∪ T ). We have

def(G) = δ(S, T ) = k|T | + eG(S, T ) + τ − k|S| −
∑

x∈T

dG(x). (5)

Claim 1. τ > def(G) + 1.

Otherwise, let τ 6 def(G). Then we have

0 > k|S| +
∑

x∈T

dG−S(x) − k|T |. (6)

So we have |S| 6 |T |, and equality holds only if
∑

x∈T dG−S(x) = 0. Since G is r-regular,
so we have

r|S| > eG(S, T ) = r|T | −
∑

x∈T

dG−S(x). (7)

By (6) and (7), we have
(r − k)(|T | − |S|) 6 0.

Hence |T | = |S| and
∑

x∈T dG−S(x) = 0. So we have τ = def(G) > 0. Since G is
connected, then eG(Ci, S ∪ T ) > 0 and so eG(C1, S) > 0. Note that G is r-regular, then
we have r|S| > r|T | −

∑

x∈T dG−S(x) + e(Ci, S), a contradiction. We complete the claim.
By the hypothesis, without loss of generality, we can say e(S ∪ T, Ci) > m for i =

1, . . . , τ − def(G). Then 0 < θ < 1, and we have

− def(G)

= − δ(S, T ) = k|S| +
∑

x∈T

dG(x) − k|T | − eG(S, T ) − τ

=k|S| + (r − k)|T | − eG(S, T ) − τ

=θr|S| + (1 − θ)r|T | − eG(S, T ) − τ

=θ
∑

x∈S

dG(x) + (1 − θ)
∑

x∈T

dG(x) − eG(S, T ) − τ

>θ(eG(S, T ) +
τ

∑

i=1

eG(S, Ci)) + (1 − θ)(eG(S, T ) +
τ

∑

i=1

eG(T, Ci)) − eG(S, T ) − τ

=

τ
∑

i=1

(θeG(S, Ci) + (1 − θ)eG(T, Ci) − 1).
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Since G is connected, so we have θeG(S, Ci) + (1 − θ)eG(T, Ci) > 0 for 1 6 i 6 τ. Hence
it suffices to show that for every C = Ci, 1 6 i 6 τ − def(G),

θeG(S, Ci) + (1 − θ)eG(T, Ci) > 1. (8)

Since C is a k-odd component of G − (S ∪ T ), we have

k|C| + eG(T, C) ≡ 1 (mod 2). (9)

Moreover, since r|C| = eG(S ∪ T, C) + 2|E(C)|, then we have

r|C| ≡ eG(S ∪ T, C) (mod 2). (10)

It is obvious that the two inequalities eG(S, C) > 1 and eG(T, C) > 1 implies

θeG(S, C) + (1 − θ)eG(T, C) > θ + (1 − θ) = 1.

Hence we may assume eG(S, C) = 0 or eG(T, C) = 0. We consider two cases.
First we consider (i). If eG(S, C) = 0, since 1 6 k 6 r(1 − 1

m
), then θ 6 1 − 1

m
and so

1 6 (1 − θ)m. Note that e(T, C) > m, so we have

(1 − θ)eG(T, C) > (1 − θ)m > 1.

If eG(T, C) = 0, since k > r/m, so mθ > 1. Hence we obtain

θeG(S, C) > mθ > 1.

In order to prove that (ii) implies the claim, it suffices to show that (8) holds under
the assumption that eG(S, C) or eG(T, C) = 0. If eG(S, C) = 0, then by (9), we have
eG(T, C) ≡ 1 (mod 2). Hence eG(T, C) > m∗, and thus

(1 − θ)eG(T, C) > (1 − θ)m∗
> 1.

If eG(T, C) = 0, then by (10), we have k|C| ≡ 1 (mod 2), which contradicts the assumption
that k is even.

We next consider (iii), i.e., we assume that both r and k are odd and r
m∗

6 k. If
eG(S, C) = 0, then by (9) and (10), we have

|C| + eG(T, C) ≡ 1 (mod 2) and |C| ≡ eG(T, C) (mod 2).

This is a contradiction. If eG(T, C) = 0, then by (9) and (10), we have

|C| ≡ 1 (mod 2) and |C| ≡ eG(S, C) (mod 2),

which implies eG(S, C) > m∗. Thus

θeG(S, C) > θm∗
> 1.
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So we have

−def(G) > δ(S, T ) > −def(G),

a contradiction. This completes the proof. 2

Proof of Theorem 1.5. Firstly, we prove (i). Suppose that G is not k-critical.
By Lemma 3.1, G contains two vertex disjoint induced subgraphs H1 and H2 such that
2e(Hi) > rni − (m − 1), where ni = |V (Hi)| for i = 1, 2. Hence we have 2e(Hi) >

rni − (m0 − 1). So by Interlacing Theorem, we have

λ2(G) > min{λ1(H1), λ1(H2)}

> min{ρ1(r, m0 − 1), ρ2(r, m0 − 1)} = ρ1(r, m0 − 1).

So we have λ2(G) > ρ1(r, m0 − 1), a contradiction.
Now we prove (ii). Suppose that G contains no a k-factor. Then we have def(G) > 2.

So by Lemma 3.1, G contains three vertex disjoint induced subgraphs H1, H2 and H3

such that 2e(Hi) > rni − (m − 1), where ni = |V (Hi)| for i = 1, 2, 3. Since r is even , so
2e(Hi) > rni − (m0 − 1) for i = 1, 2, 3. So by Interlacing Theorem, we have

λ3(G) > min{λ1(H1), λ1(H2), λ1(H3)}

> min{ρ1(r, m0 − 1), ρ2(r, m0 − 1)} = ρ1(r, m0 − 1),

a contradiction. We complete the proof. 2

Remark. Now we show that the upper bound in Theorems 1.5 (ii) is the best possible
function of r and m when 2m2 < r. Let r be even and m be odd. Let k be an odd integer
such that r/(m− 1) > k > r/m. Let m0 = m− 1 and H(r, m0) = Kr+1−m0

+ Mm0/2. Let
G(r, m0) be the r-regular graph obtained by matching the m0 vertices of degree r − 1 in
each r copies of H(r, m0) to a set S of |S| = m0 independent vertices. Then G(r, m0)−S
has r > km0 copies of odd order graph H(r, m0) as its components and so, by Theorem
1.1, G(r, m0) has no k-factors. Moreover,

λ2(G(r, m0)) = λ3(G(r, m0)) = ρ1(r, m0).

(For the proof, we refer the reader to [5], where the statement is proved for 1-factors.)
For (i), let k be even such that (r − 1)/(m − 1) > k > r/m. Let G′(r, m0) be the r-
regular graph obtained by matching the m0 vertices of degree r − 1 in each r − 1 copies
of H(r, m0) to a set S of Mm0/2. Then G′(r, m0) has n = m− 1 + (r − 1)(r + 1) vertices.
Since (r − 1)/(m − 1) > k > r/m and δG′(r,m0)(S, ∅) = (r − 1) − k(m − 1) > 0, so by
Theorem 1.2, G′(r, m0) is not k-critical. Similarly, we have

λ2(G
′(r, m0)) = λ3(G

′(r, m0)) = ρ1(r, m0).
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Proof of Theorem 1.6. Suppose that G contains no a k-factor. By Lemma 3.1, G
contains three vertex disjoint induced subgraph H1, H2, H3 such that 2e(Hi) > r|V (Hi)|−
(m − 1) for i = 1, 2, 3. Firstly, let m be odd. By Interlacing Theorem we have

λ3(G) > min
16i63

λ1(Hi) > min{ρ1(r, m − 1), ρ2(r, m − 2)} = ρ1(r, m − 1).

So we have λ3(G) > ρ2(r, m − 1), a contradiction.
Next, let m be even. By Interlacing Theorem we have

λ3(G) > min
16i63

λ1(Hi) > min{ρ1(r, m − 2), ρ2(r, m − 1)} = ρ2(r, m − 1),

a contradiction. We complete the proof. 2

Remark. The upper bound in Theorems 1.6 is best possible when m is even and m2 < r.
Let r and k be two odd integers. Let G be an r-regular graph. Note that G contains a
k-factor if and only if G contains an (r−k)-factor. So we only need to show that the upper
bound in Theorems 1.6 (ii) is best possible. Let m be an even integer and m∗ = m + 1
such that r/m∗ 6 k < r/(m− 1). Let H(r, m− 1) denote the extremal graph in Theorem
1.4. Let G(r, m − 1) be the r-regular graph obtained by matching the m − 1 vertices of
degree r−1 in each r copies of H(r, m−1) to a set S of |S| = m−1 independent vertices.
Similarly, we have

λ3(G(r, m − 1)) = ρ2(r, m − 1).

But G(r, m − 1) contains no k-factors.
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