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Abstract

We examine sequences containing p “−t”s and pt + r “+1”s, where p, t, and r

are integers satisfying p > 0, t > 1 and pt + r > 0. We develop a rotation method

to enumerate the number of sequences meeting additional requirements related to

their partial sums. We also define downcrossings about ℓ and their downcrossing

numbers, and obtain formulas for the number of sequences for which the sum of the

downcrossing numbers equals k, for ℓ 6 r + 1. We finish with an investigation of

the first downcrossing number about ℓ, for any ℓ.

Keywords. Lattice paths, ballot problem, rotation method, crossings, crossing

sums, generalized binomial series.

1 Introduction

We shall assume throughout that p, t, and r are integers satisfying p > 0, t > 1 and
pt + r > 0. Let Ω = Ωp,r = Ω

(t)
p,r denote the collection of all sequences containing p “−t”s

and pt + r “+1”s. For a sequence ω ∈ Ω, let ωj denote its jth digit, and let Sk(ω) denote
its kth partial sum. That is,

Sk =
k

∑

j=1

ωj, with S0 = 0 and Spt+p+r = r.

One common way to picture the sequences in relation to their partial sums is by consider-
ing the sequences as paths {(j, Sj) : 0 6 j 6 pt+p+r}, with each “+1” meaning “go right
one, go up one,” and each “−t” meaning “go right one, go down t.” We study the number
of paths with conditions on their partial sums, on their number of crossings, crossing
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numbers, and crossing sums, which we shall define later. Our interest in these sequences
originated from our investigation of the acceptance urn model involving pt+ r “+1” balls
and p “−t” balls. (For t = 1, see Chen et. al. [1] and Suen and Wagner [12].) These
sequences are also related to lattice paths (see Krattenthaler [5] and Mohanty [7]), the
ballot problem (see Renault [9] and Takács [13]), and rank order statistics in generalized
random walks (see Saran and Rani [10]).

When t = 1, the corresponding paths are known as ballot paths, and the study of
these paths in Ω often uses the reflection principle (see for example Feller [2]). When
t > 2, the reflection principle no longer applies, and the idea of rotation is used instead
(see for example Goulden and Serrano [3]). To describe the idea of rotation, we denote
by ω(i, j], for ω ∈ Ω, the sequence obtained by reversing the (i + 1)th to jth digits of ω.
In particular, we denote ωR as the reversal of ω, that is, ωR = ω(0, pt + p + r]. Clearly,
ω(i, j] ∈ Ω for any i < j.

Lemma 1.1 (The Reversal Lemma). We have Sn(ω) = Sn

(

ω(i, j]
)

for n 6 i and n > j,
and Sn

(

ω(i, j]
)

+ Si+j−n(ω) = Sj(ω) + Si(ω) for i 6 n 6 j.

Proof. Observe that for i 6 n 6 j, we have

Sn

(

ω(i, j]
)

= Si(ω) +

j
∑

ℓ=j−n+1

ωℓ, Si+j−n(ω) = Si(ω) +

j−n
∑

ℓ=i+1

ωℓ.

Thus,

Sn

(

ω(i, j]
)

+ Si+j−n(ω) = 2Si(ω) +

j
∑

ℓ=i+1

ωℓ = Si(ω) + Sj(ω).

From a path perspective, the map from ω to ω(i, j] rotates the portion of the path
ω over [i, j] by 180 degrees about the point P =

(

(i + j)/2, (Si + Sj)/2
)

, while keeping
the rest of the path intact. (See Figure 1 for an example.) In this regard, Lemma 1.1
can also be called the Rotation Lemma. This transformation can also be described as a
reflection, vertically and horizontally, of the part of ω over [i, j] through the midpoint P ,
a notion which also holds in higher dimensions. Thus, the Reversal Lemma gives rise to
a midpoint reflection method.

Let Rp,r(ℓ) denote the number of paths in Ωp,r with all partial sums at most ℓ. That is,
Rp,r(ℓ) is the number of ω ∈ Ω for which Sj(ω) 6 ℓ for all j satisfying 0 6 j 6 pt + p + r.
Similarly, let R′

p,r(ℓ) denote the number of paths with all partial sums at least ℓ. The
following is an immediate consequence of the Reversal Lemma.

Corollary 1.2. For any integer ℓ, R′
p,r(r − ℓ) = Rp,r(ℓ).

Proof. Apply the Reversal Lemma to the entire sequence. Then for each ω ∈ Ω, we have
for all j that

Sj(ω
R) = S0(ω) + Spt+p+r(ω) − Spt+p+r−j(ω) = r − Spt+p+r−j(ω).

That is, Sj(ω) 6 ℓ for all j if and only if Sj(ω
R) > r − ℓ for all j. Since the map ω → ωR

is a bijection, the result now follows.
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We shall need the following tools for the ease of discussion that follows. If Sn(ω) = a,
Sq(ω) = b, and Sk(ω) < b for n 6 k < q, we say that the path has made a “+(b − a)”
trip. Similarly, if Sn(ω) = a, Sq(ω) = b, and Sk(ω) > a for n < k 6 q, we say that the
path has made a reverse “+(b − a)” trip. (A “+0” trip is the empty path.) Note that,
upon reversal, a reverse “+ℓ” trip becomes a “+ℓ” trip, and vice versa. A path in Ωp,0

with nonnegative partial sums is called a Dyck path. We allow p = 0 in which case we
have an empty Dyck path. We shall say that a nonempty Dyck path is strict if Sj > 1 for
all j 6= 0, pt + p. A reverse Dyck path is one whose reversal is a Dyck path (i.e. Sj 6 0
for all j), and a strict reverse Dyck path is similarly defined.

The paths in Ω have been discussed in Graham, Knuth and Patashnik [4]. We shall
give a brief account of what is known or easily deduced. For each positive integer t, let

B(t)
p,r =

(

pt + p + r

p

)

, and C(t)
p,r =

(

pt + p + r

p

)

r

pt + p + r
,

with C
(t)
p,0 = δp,0, where δ is Kronecker’s delta. We shall leave most of our results in terms

of these coefficients. Then |Ωp,r| = B
(t)
p,r. When r = 1, the sequences in Ω are known as

Raney sequences, and the numbers C
(t)
p,1 are Fuss-Catalan numbers. (When t = r = 1,

see Stanley [11] for the many different interpretations of the numbers C
(1)
p,1 = 1

2p+1

(

2p+1
p

)

.)
In this paper, since t is fixed, we will omit the superscripts, using the simplified notation
Bp,r and Cp,r instead. It is known (see for example [4]) that Cp,1 is the number of Raney
sequences in Ωp,1 with Sj > 1 for all j > 1. Since the first element of these paths is always
a “+1,” the number of paths in Ωp,0 with nonnegative partial sums also equals Cp,1. That
is, the numbers of Dyck paths and reverse Dyck paths in Ωp,0, using Corollary 1.2, equal

Rp,0(0) = R′
p,0(0) = Cp,1.

Since a “+1” trip is composed of a reverse Dyck path followed by a “+1,” the number of
paths in Ωp,1 that are themselves “+1” trips equals Cp,1.

Note that a nonempty Dyck path must end with a “−t.” This Dyck path, with the
final “−t” removed, can be decomposed into t + 1 Dyck paths, with consecutive Dyck
paths separated by a “+1.” This shows that for p > 1,

Cp,1 =
∑

pi>0
p1+p2+···+pt+1=p−1

Cp1,1Cp2,1 · · ·Cpt+1,1. (1)

If we define, following [4],

Bt(z) =
∑

p>0

1

pt + 1

(

pt + 1

p

)

zp,

then
Bt+1(z) =

∑

p>0

Cp,1z
p, and from (1), Bt+1(z) = zBt+1(z)t+1 + 1.
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Lagrange’s inversion now gives

Bt+1(z)r =
∑

p>0

Cp,rz
p, (2)

and
Bt+1(z)r

1 − z(t + 1)Bt+1(z)t
=

∑

p>0

Bp,rz
p. (3)

For integer r > 0, the number of paths in Ωp,r that are themselves “+r” trips equals

∑

pi>0
p1+p2+···+pr=p

Cp1,1Cp2,1 · · ·Cpr,1 = [zp]Bt+1(z)r = Cp,r, (4)

where [zp]G(z) denotes the coefficient of zp in G(z). More generally, the convolution of
“ + ri” trips, where ri > 1 and 1 6 i 6 k, gives

∑

pi>0
p1+p2+···+pk=p

Cp1,r1
Cp2,r2

· · ·Cpk,rk
= Cp,r1+r2+···+rk

. (5)

In addition, using (2) and (3), we have

Bp,r+s = [zp]
Bt+1(z)r+s

1 − z(t + 1)Bt+1(z)t
=

p
∑

k=0

Cp−k,rBk,s. (6)

Finally, each strict reverse Dyck path in Ωp,0, where p > 1, consists of a “−t” followed by
a “+t” trip. With the “−t” removed, they are paths in Ωp−1,t that are themselves “+t”
trips. Therefore, the number of strict Dyck paths (or strict reverse Dyck paths) in Ωp,0

equals Cp−1,t. We have thus proved the following theorem.

Theorem 1.3. (a) For integer r > 0, the number of paths in Ωp,r that are “+r” trips
(or reverse “+r” trips) equals Cp,r.

(b) The number of Dyck paths (or reverse Dyck paths) in Ωp,0 equals Cp,1.

(c) The number of strict Dyck paths (or strict reverse Dyck paths) in Ωp,0 equals Cp−1,t.

Recall that Rp,r(ℓ) denotes the number of paths in Ω with all partial sums at most ℓ.
Let Qp,r(ℓ) be the number of paths in Ωp,r with Sj > ℓ for some j. Obviously

Rp,r(ℓ) + Qp,r(ℓ + 1) = Bp,r.

Theorem 1.4.

Qp,r(ℓ) =

{

Bp,r, if ℓ 6 max(r, 0),
∑p

j=⌈(ℓ−r)/t⌉ Cp−j,ℓBj,r−ℓ, otherwise.
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Proof. The result is clear for ℓ 6 max(r, 0) since S0 = 0 and Spt+p+r = r. Thus, assume
ℓ > max(r, 0). Since Sj can increase by ones only, any path that reaches ℓ consists of an
initial “+ℓ” trip. If this initial “+ℓ” trip contains p− j “−t”s, then there are Cp−j,ℓ such
initial segments, and each of them is to be followed by a path in Ωj,r−ℓ, where jt+r−ℓ > 0.
Thus, the number of paths that reach ℓ equals

∑

j>(ℓ−r)/t

Cp−j,ℓBj,r−ℓ.

Let Q=
p,r(ℓ) be the number of paths in Ωp,r with Sj = ℓ for some j. Then since Sj can

increase by ones only, we have

Q=
p,r(ℓ) = Qp,r(ℓ), ℓ > 0.

Also,
Q=

p,r(ℓ) = Qp,r(r − ℓ), ℓ 6 r,

as Q=
p,r(ℓ) = Q=

p,r(r − ℓ) by the Reversal Lemma. When r < ℓ < 0, the quantity Q=
p,r(ℓ) is

much harder to enumerate, and we shall get back to it later.

Corollary 1.5. If ℓ < max(r, 0), then Rp,r(ℓ) = 0. If ℓ > max(r, 0), then

Rp,r(ℓ) =
∑

06j<⌈(ℓ+1−r)/(t+1)⌉

Cp−j,ℓ+1Bj,r−ℓ−1

=
∑

06j<⌈(ℓ+1−r)/(t+1)⌉

(−1)jCp−j,ℓ+1

(

ℓ − r − jt

j

)

.

Proof. The case for ℓ < max(r, 0) is clear. Assume ℓ > max(r, 0). Then we have

Rp,r(ℓ) = Bp,r − Qp,r(ℓ + 1).

Since
p

∑

j=0

Cp−j,ℓ+1Bj,r−ℓ−1 = Bp,r,

it follows from Theorem 1.4, where ℓ is replaced by ℓ + 1, that

Rp,r(ℓ) =
∑

06j<(ℓ+1−r)/t

Cp−j,ℓ+1Bj,r−ℓ−1.

The summation index j satisfies jt + r − ℓ− 1 < 0, and for this range of j, the coefficient
Bj,r−ℓ−1 is nonzero only when j(t + 1) + r − ℓ − 1 < 0. Thus,

Rp,r(ℓ) =
∑

06j<⌈(ℓ+1−r)/(t+1)⌉

Cp−j,ℓ+1Bj,r−ℓ−1.

The last equality in the Corollary now follows from

Bj,r−ℓ−1 =

(

jt + j + r − ℓ − 1

j

)

= (−1)j

(

ℓ − r − jt

j

)

.

the electronic journal of combinatorics 17 (2010), #R160 5



Note that if max(0, r) 6 ℓ 6 r + t, then the sums in the Corollary have only one term.
Thus,

Rp,r(ℓ) = Cp,ℓ+1, provided max(0, r) 6 ℓ 6 r + t, (7)

which is independent of r. These numbers are related to the solutions to the ballot
problem. Recall that in the ballot problem, two candidates A and B square off in an
election, with A receiving a votes and B receiving b votes (with a = pt + r, b = p in
our notation). The original question was to find the probability that, as the votes are
counted, A has more than t times as many votes as B throughout the tally, assuming that
r > 1. The question amounts to calculating the number of sequences in Ωp,r with partial
sums Sj > 1 for all j > 1. Since these sequences must start with a “+1,” the number of
these sequences equals the number of sequences in Ωp,r−1 with Sj > 0, which equals, from
Corollaries 1.2 and 1.5,

R′
p,r−1(0) = Rp,r−1(r − 1) = Cp,r, provided r > 1.

This is the well-known solution to the ballot problem. If we assume in the spirit of the
ballot problem that each vote for A has weight 1 and each vote for B has weight t, then
the number of ways for which the votes are tallied so that A is ahead of B by a weight
of at most ℓ at all times equals the number R̂p,r(ℓ) of sequences for which Sj 6 ℓ, for all

j > 1. If ℓ > 0, then R̂p,r(ℓ) = Rp,r(ℓ), and if ℓ < 0, then R̂p,r(ℓ) = Rp−1,r+t(ℓ + t) as
the sequences counted must start with a “−t.” The relationship between crossings and
crossing sums (see later sections) can be related to the ballot problem similarly.

We would like to mention in passing that our results can also be translated to the case
where t is the reciprocal of an integer. For ω ∈ Ω, define the “dual” sequence ω̃ so that
w̃i = 1 if ωi = 1, and ω̃i = −1/t if ωi = −t. Then the partial sums S̃j for ω̃ satisfies S̃j 6 ℓ
if and only if Sj > −ℓt. Using the dual sequences, one can obtain an explicit solution to
the ballot problem when the parameter t is the reciprocal of an integer.

2 Paths with a Given Number of Crossings

We say that an upcrossing about ℓ occurs at ν if Sν 6 ℓ and Sν+1 > ℓ. Since Sν can
only increase by ones, the definition of an upcrossing about ℓ is the same as Sν = ℓ and
Sν+1 = ℓ + 1. Similarly, we say that a downcrossing about ℓ occurs at ν if Sν > ℓ and
Sν+1 < ℓ. We are also interested in the crossing number associated with a crossing. Since
each upcrossing has Sν = ℓ and Sν+1 = ℓ + 1, the upcrossing number is always 1. For a
downcrossing about ℓ occurring at ν, it is possible that Sν = ℓ + t − x and Sν+1 = ℓ − x,
where 1 6 x 6 t. In this case, we say that the downcrossing is accompanied with a
downcrossing number x. Since all upcrossing numbers equal 1, we shall be interested only
in downcrossing numbers.

For any ℓ, n > 0 and k > 1, we write q = n + k(t + 1) and let

T = {ω ∈ Ω: Sn = Sq = ℓ, Sj 6= ℓ for n < j < q}.
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Note that for ω ∈ T , it is necessary that the subsequence ωn+1, . . . , ωq has exactly kt
“+1”s and k “−t”s. We next partition T into sets Ax, where 0 6 x 6 t, by defining

Ax = {ω ∈ T : Sν = ℓ + t − x and Sν+1 = ℓ − x for some n 6 ν < q}.

We note that there are two cases for each ω ∈ T . If ωq = +1, then a downcrossing has
occurred at ν for some ν < q, and Ax is simply the set of those paths with downcrossing
number equal to x, where x = 1, 2, . . . , t. Otherwise, we have ωq = −t, and ω does not
have a downcrossing in the interval [n, q) (as Sj > ℓ for n < j < q), and A0 is the set of
these paths. It is therefore clear that {Ax}

t
x=0 is a partition of T . The following lemma

says that the sets Ax are equinumerous, and it is a direct consequence of the Reversal
Lemma.

Lemma 2.1 (The Crossing Lemma). Let T and A0, A1, . . . , At be as defined above. Then
{Ax}

t
x=0 is a partition of T and

|Ax| =
1

t + 1
|T |, 0 6 x 6 t.

Remark. The result of the Crossing Lemma does not depend on the choice of ℓ, n, or k.
The only property required is that Sn = Sq and Sj 6= Sn for n < j < q. We shall sometimes
consider the sets Ax of paths as events, meaning the set of of paths with the property
specified in the definition of Ax. For future reference, note also that A0 corresponds to
the set of strict Dyck paths on [n, q], and At corresponds to the set of strict reverse Dyck
paths on [n, q], and thus |Ax| = Ck−1,t for 0 6 x 6 t.

Proof. We have already shown that {Ax}
t
x=0 is a partition of T . We shall prove the second

part of the Lemma by showing that |Ax| = |A0| for each x. We shall assume without loss
of generality that ℓ = 0 and k > 0.

Note first that for ω ∈ T , we have ω ∈ A0 if and only if ωq = −t. Given that
ω ∈ Ax ⊆ T , where x 6= 0, find ν so that n 6 ν 6 q and Sν = t − x, Sν+1 = −x. Now
consider the path ω(ν, q]. We shall first show that ω(ν, q] ∈ T . By property of ω ∈ T ,
we know that Sn

(

ω(ν, q]
)

= 0 and Sj

(

ω(ν, q]
)

6= 0 for n < j 6 ν, and by the Reversal
Lemma, we have

Sj

(

ω(ν, q]
)

= Sν(ω) − Sν+q−j(ω), ν 6 j 6 q. (8)

The above shows that Sq

(

ω(ν, q]
)

= 0 and Sj

(

ω(ν, q]
)

> 0 for ν < j < q because Sν(ω) =
t − x > 0 and Sν+q−j(ω) < 0. Thus, Sn

(

ω(ν, q]
)

= Sq

(

ω(ν, q]
)

= 0 and Sj

(

ω(ν, q]
)

6= 0
for ν < j < q. Hence ω(ν, q] ∈ T . Since the qth digit of ω(ν, q] is “−t,” we have also that
ω(ν, q] ∈ A0. Furthermore, given that ω(ν, q] is obtained from ω ∈ Ax, we can find ν by
noting from (8) that ν is the largest value of j < q for which

Sj

(

ω(ν, q]
)

= Sν(ω) = t − x.

Therefore, we can invert the map and recover ω from ω(ν, q]. Thus, the map is injective.
Given ω′ in A0, since Sq−1(ω

′) = t and the partial sums increase by ones, we must have
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Sj(ω
′) = t − x at some point between n and q. Therefore, the map is surjective as well.

Thus, |Ax| = |A0| for all x. The desired conclusion now follows. Figure 1 gives an example
of the map from A2 to A0.

Figure 1: The figure shows a path ω ∈ A2, with n = 0, q = 15,
ℓ = 0 and ν = 7. The sequence ω(7, 15] ∈ A0 is obtained after a
rotation about (or reflection through) the point P (or after reversing
the subsequence ω8, ω9, . . . , ω15).

Alternatively, one can show that there a bijection from Ax to Ax−1, where 1 6 x 6 t,
as follows: For a path from Ax, there is a “+x” trip following the crossing to −x. Taking
the last “+1” trip, reversing it, and sending it to the beginning of the path results in a
path in Ax−1, a process that can be reversed.

The Crossing Lemma describes one way the midpoint reflection method is typically
implemented. It is a useful tool in counting paths as it allows us to break paths into
successive segments [i, j] where Si = Sj = ℓ and Sh 6= ℓ for i < h < j, and the set of
subpaths on each segment can be partitioned into the equinumerous classes Ax, 0 6 x 6 t.
The correspondence of paths indicated by the Crossing Lemma has been noted before,
dating back to the solution of the ballot problem. Mohanty, in [6, eq. (18)], gave a
non-geometric proof of the Crossing Lemma by deleting the downcrossing and using the
convolution (4).

When t > 1 is a positive integer, the proof of the ballot theorem follows easily with
the Crossing Lemma in place. For any “bad” ballot permutation, that is, a vote count for
which A does not always lead, there is a first tie after the ballot count has begun. Using
the Crossing Lemma on the section between the start and this first tie, we establish a
(t+1)-to-one correspondence from the bad ballot permutations to the ballot permutations
that start with a vote for B. Writing r = a − bt > 0, there are Bb−1,r+t of the latter, and
we obtain the familiar answer for the number of “good” ballot permutations,

Bb,r − (t + 1)Bb−1,r+t = Cb,r.
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For any ℓ, let

nℓ(ω) = |{j : Sj(ω) = ℓ}|,

n+
ℓ (ω) = |{j : Sj(ω) = ℓ, Sj+1(ω) = ℓ + 1}|,

n−
ℓ (ω) = |{j : Sj(ω) = ℓ, Sj+1(ω) = ℓ − t}|.

Note that since Spt+p+r(ω) = r always, we have

nℓ(ω) = n+
ℓ (ω) + n−

ℓ (ω) + δℓ,r.

Let Nℓ(k), N+
ℓ (k), and N−

ℓ (k) denote the number of paths ω with, respectively, nℓ(ω),
n+

ℓ (ω), and n−
ℓ (ω) equal to k. Similarly, let Hℓ(k), H+

ℓ (k) and H−
ℓ (k) denote the number

of paths with nℓ, n+
ℓ , and n−

ℓ at least k. Both Nℓ(k) and N+
ℓ (k) were explored in Nieder-

hausen [8, Examples 1 and 2]. These quantities depend on the parameters p and r. In
situations where there is a need to state these parameters explicitly, we shall write for
example np,r,ℓ, Np,r,ℓ(k), Hp,r,ℓ(k), etc.

Theorem 2.2. Suppose that 0 6 ℓ 6 r. Then for k > 0,

Nℓ(k + 1) = (t + 1)kCp−k,kt+r, (9)

Hℓ(k + 1) = (t + 1)kBp−k,kt+r, (10)

N+
ℓ (k + 1 − δℓ,r) = tkCp−k,kt+k+r+1, (11)

H+
ℓ (k + 1 − δℓ,r) = tkBp−k,kt+k+r, (12)

N−
ℓ (k) =

p
∑

j=k

(

j

k

)

tj−kCp−j,jt+r, (13)

H−
ℓ (k) =

p
∑

j=k

(

j − 1

k − 1

)

tj−kBp−j,jt+r. (14)

Proof. We note first that n+
ℓ > 1 unless r = ℓ, which is the reason for the term δℓ,r

appearing (11) and (12). To show (9), we note that for each path counted by Nℓ(k + 1),
there are exactly k segments [i, j] where

Si = ℓ, Sj = ℓ, and Sh 6= ℓ, i < h < j.

Let M be the set of paths with the additional condition that for each segment [i, j], Sh < ℓ
for i < h < j. That is, in terms of the notation in the Crossing Lemma, the event At

occurs for each of the k segments. We claim that Nℓ(k+1) = (t+1)k|M |. This is because
by applying the Crossing Lemma to each of the k segments, every ω ∈ Ω with nℓ = k + 1
corresponds to a ω ∈ M , and each ω ∈ M corresponds to (t + 1)k paths with nℓ = k + 1.
It therefore remains to show that |M | = Cp−k,kt+r.
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Suppose ω ∈ M . Then ω is comprised of an initial “+ℓ” trip, k strict reverse Dyck
paths, then a reverse “+(r − ℓ)” trip. Then using (5) and Theorem 1.3,

|M | =
∑

qi>0,pi>1
q0+p1···+pk+q1=p

Cq0,ℓCp1−1,t · · ·Cpk−1,tCq1,r−ℓ

=
∑

pi>0
p0+···+pk+1=p−k

Cp0,ℓCp1,t · · ·Cpk,tCpk+1,r−ℓ

= Cp−k,kt+r.

The above can also be shown combinatorially. Upon removal of the k “−t”s that cause
the event At to occur in each of the k segments, and reversal of the final reverse “+(r−ℓ)”
trip, we have a path in Ωp−k,kt+r that is a “+(kt + r)” trip. Since each path of Ωp−k,kt+r

that is a “+(kt + r)” trip can be decomposed into a “+ℓ” trip, followed by k “+t” trips,
and a “+(r − ℓ)” trip, we can reverse the last trip and insert the missing “+t”s in the
appropriate spots. Thus, we have a bijection. It follows that |M | = Cp−k,kt+r. Figure 2
below gives an example of an ω ∈ M .

Figure 2: The figure shows an ω ∈ M with ℓ = r = 3 and k = 2. Note
that ω4 = ω10 = −t and they cause the event At to occur twice. The
removal of ω4 and ω10 results in a “+ℓ” trip and k “+t” trips.

Equation (10) follows from (9) by noting the finite difference

∆k

(

(t + 1)kBp−k,kt+r

)

= (t + 1)k+1Bp−k−1,(k+1)t+r − (t + 1)kBp−k,kt+r

= −(t + 1)kCp−k,kt+r,

and that we have Hℓ(1) = Bp,r. We can also prove (10) directly as follows. We first use
the Crossing Lemma to show that Hℓ(k + 1) = (t + 1)k|M ′| where M ′ is the set of paths
composed of an initial “+ℓ” trip, k strict reverse Dyck paths, and finally a path from ℓ
to r. The result is then proved by showing |M ′| = Bp−k,kt+r. We omit the details.
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To prove (11), we shall count the set M+ of paths in Ωp,r that consist of a “+ℓ” trip, a
reverse Dyck path, k segments where each segment consists of a strict Dyck path followed
by a reverse Dyck path, then a reverse “+(r − ℓ)” trip. We have

|M+| =
∑

p0+···+pk+1

+q0+···+qk=p

Cp0,ℓCq0,1Cp1−1,tCq1,1 · · ·Cpk−1,tCqk,1Cpk+1,r−ℓ

= Cp−k,kt+k+r+1,

where the sum is over p0 > 0, pk+1 > 0, pi > 1 for 1 6 i 6 k and qi > 0 for 0 6 i 6 k,
and the last equality follows from (5). Equation (11) now follows from N+

ℓ = tk|M+|.
Indeed, for ω ∈ M+, each strict Dyck path corresponds to the event A0 in the Crossing
Lemma and contributes one toward n+

ℓ . The events A0, A1, . . . , At−1 (but not At) each
can contribute 1 to n+

ℓ . It therefore follows from the Crossing Lemma that in counting
N+

ℓ , each strict Dyck path in ω ∈ M+ contributes a factor of t, thus giving N+
ℓ = tk|M+|.

Equation (12) follows from (11), the finite difference

∆k

(

tkBp−k,kt+k+r

)

= −tkCp−k,kt+k+r+1,

and that H+
ℓ (1 − δℓ,r) = Bp,r. This result can also be obtained directly.

To prove (13), we note that in our proof of (9), if the paths in the set M each contain
j (instead of k) segments, then |M | = Cp−j,jt+r. For each ω ∈ M , there are

(

j
k

)

ways to
fix k segments for which the event At occurs, and the other j − k segments each can have
t possible choices: A0, A1, . . . , At−1. The Crossing Lemma gives that the events Ai are
equally likely. This means that each ω ∈ M contributes

(

j
k

)

tj−k paths counted by N−
ℓ (k).

Summing
(

j
k

)

tj−kCp−j,jt+r over j thus gives the result.

The proof of (14) is similar to that of (13). For j > k, let M ′ be the set of paths
in Ωp,r where each path is composed of an initial “+ℓ” trip, j strict reverse Dyck paths,
followed by a path from ℓ to r. The paths in M ′ satisfy nℓ > j + 1. As commented at
our proof of (10), we have |M ′| = Bp−j,jt+r. Each strict reverse Dyck path produces a
downcrossing number of t. Thus, out of the j strict reverse Dyck paths, k of them will
remain, and in order to avoid double counting, we need to insist that the last of the j
strict reverse Dyck paths to remain as it is. This accounts for the factor

(

j−1
k−1

)

. For each
of the remaining j−k strict reverse Dyck paths, we need to switch it to a path associated
with one of the events A0, A1, . . . , At−1 defined in the Crossing Lemma, thus accounting
for the factor tj−k. We complete the proof by summing

(

j−1
k−1

)

tj−kBp−j,jt+r over j.

The result for Nℓ(k) when 0 6 ℓ 6 r is [6, Theorem 3], while our counting of M is [6,
Corollary 1 (ii)].

It is possible to obtain formulas for N+, H+, N−, H− through other means. In this
respect, the formulas in the following theorem represent some combinatorial identities in
association with Theorem 2.2.
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Theorem 2.3. Suppose that 0 6 ℓ 6 r. Then for k > 0,

N+
ℓ (k + 1 − δℓ,r) = tk

p
∑

j=k

(

j

k

)

Cp−j,jt+r, (15)

H+
ℓ (k + 1 − δℓ,r) = tk

p
∑

j=k

(

j − 1

k − 1

)

Bp−j,jt+r. (16)

Suppose that 0 6 ℓ < r + t. Then for k > 0,

N−
ℓ (k) =

p
∑

j=k

(

j

k

)

(t − 1)j−kCp−j,jt+j+r+1, (17)

H−
ℓ (k) =

p
∑

j=k

(

j − 1

k − 1

)

(t − 1)j−kBp−j,jt+j+r. (18)

Proof. Equations (15) and (16) are proved in the same way as (13) and (14) are proved.
To prove (17), we note that a downcrossing about ℓ with a downcrossing number t is

the same as a downcrossing about ℓ′ = ℓ − t + x with a downcrossing number x, when
1 6 x 6 t. We shall show (17) for the case when r > 1, t > 2 and ℓ = r + t − 1. Here we
choose x = 1, and the number of paths counted by N−

ℓ (k) equals the number of paths for
which there are exactly k downcrossings about ℓ′ = r with downcrossing number 1. Each
of these downcrossings about ℓ′ is associated with a preceding upcrossing about ℓ′. If the
paths counted have a total of j upcrossings about ℓ′, then the remaining j−k upcrossings
each has t − 1 choices, as the events A1 and At defined in the Crossing Lemma are ruled
out. Therefore, using the method in counting M+ as in the proof of (11) (where paths
in M+ have j segments), we see that number of paths with j upcrossings about ℓ′, k of
which have downcrossing number 1, equals

(

j
k

)

(t− 1)j−kCp−j,jt+j+r+1. Equation (17) now
follows by summing over j. The above argument shows that the right hand sides of (13)
and (17) are equal for infinitely many values of r and t, and we use a polynomial argument
to complete the proof.

The proof of equation (18) is similar to that of (14) using the idea of the proof of (17).
We omit the details.

Remark. The idea of using the sets M and M+ (multiple times in some instances) as
“templates” enabled us to prove (13), (14), and Theorem 2.3. We can use this same
procedure to count other objects. For example, let Nℓ(k, m) denote the number of paths
in Ω with n+

ℓ = k and n−
ℓ = m. Then, for 0 6 ℓ 6 r, we have

Nℓ(k + 1 − δℓ,r, m) = tk
(

k + m

m

)

Cp−k−m,(k+m)t+r, (19)

so that summing over m gives (15), and summing over k gives (13). Equation (19) may
be shown by starting with the set M used in the proof of (9), with k replaced by k + m.
This set M has cardinality Cp−k−m,(k+m)t+r. With k + m segments, we select m of them
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to be of the type At, while for the remaining k segments, we have t choices of the events
A0 through At−1. This generates the factor tk

(

k+m
m

)

. The extra step from ℓ to ℓ + 1 is
automatic, unless ℓ = r, thus the involvement of the term δℓ,r.

When the condition 0 6 ℓ 6 r is not satisfied, we shall concentrate on H and H+.
Note that N(k) = H(k)−H(k+1) and N+(k) = H+(k)−H+(k+1) and that N−(k) and
H−(k) can be calculated from N(k) and H(k) respectively, in the manner of the proofs
of (13) and (14). However, since the formulas obtained are rather complicated, we shall
not state them explicitly.

Theorem 2.4. Assume that ℓ > max(r, 0). Then for k > 0,

Hℓ(k + 1) = (t + 1)kQp−k,kt+r(kt + ℓ) (20)

= (t + 1)k

p−k
∑

j=⌈(ℓ−r)/t⌉

Cp−k−j,kt+ℓBj,r−ℓ,

H+
ℓ (k + 1) = tkQp−k,kt+k+r(kt + k + ℓ + 1) (21)

= tk
p−k
∑

j=⌈(ℓ−r+1)/t⌉

Cp−k−j,k(t+1)+ℓ+1Bj,r−ℓ−1.

Remark. The results of Theorem 2.4 hold for any ℓ > 0, as when 0 6 ℓ < r equations
(20) and (21) reduce to (10) and (12), respectively.

Proof. Recall that Qp,r(ℓ) is the number of paths in Ωp,r for which Sj > ℓ for some j,
and its formula is given in Theorem 1.4. To prove (20), let M be the set of paths in
Ωp,r for which Nℓ > k + 1 and after the first k times the partial sum equals ℓ, a “−t”
follows. (That is, the subpath over each of the k intervals [i, j] where Si = Sj = ℓ is in
At.) Then, Hℓ(k + 1) equals (t + 1)k|M | by the Crossing Lemma. A path ω ∈ M consists
of a “+ℓ” trip, k strict reverse Dyck paths, followed by a path from ℓ to r. Removal of
the k “−t”s found at the beginning of each strict reverse Dyck path gives a path from
Ωp−k,kt+r that reaches kt + ℓ. As this process can be reversed by adding back the “−t”s
at the appropriate places, we must have |M | = Qp−k,kt+r(kt + ℓ).

To prove (21), we shall count the set M+ of paths ω for which N+
ℓ (ω) > k+1, with the

additional property that the event A0 occurs after each of the first k upcrossings. Then
ω ∈ M+ consists of a “+ℓ” trip, k segments where each segment consists of a reverse
Dyck path followed by a strict Dyck path, a “+1” trip, then finally a path from ℓ + 1 to
r. For the strict Dyck path in each of the k segments, we remove the “−t” necessarily
at the end, then reverse it (thus turning it into a “+t” trip), while for each reverse Dyck
path, we attach a “+1” to the end (thus turning it into a “+1” trip). This results in a
path composed of a “+(kt + k + ℓ + 1)” trip, followed a path from ℓ + 1 to r. That is, the
resulting path is from Ωp−k,kt+k+r and it reaches kt + k + ℓ + 1. As this manipulation can
be reversed by adding/removing “−t”s and “+1”s at the appropriate places, we have

|M+| = Qp−k,kt+k+r(kt + k + ℓ + 1).
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The Crossing Lemma now gives that

H+
ℓ (k + 1) = tk|M+| = tkQp−k,kt+k+r(kt + k + ℓ + 1),

as desired.

Lemma 2.5. For any ℓ and for k > 0,

Hℓ(k + 1) = Hr−ℓ(k + 1), (22)

and
H+

ℓ (k + 1) = H+
r−ℓ−1(k + 1). (23)

Proof. This a direct consequence of the Reversal Lemma. Note that for each ω ∈ Ω,
if we reverse all of ω, we have Sj(ω) = ℓ if and only if Spt+p+r−j(ω

R) = r − ℓ, from
which (22) follows. In addition, we have Sj(ω) = ℓ and Sj+1(ω) = ℓ + 1 if and only if
Spt+p+r−j(ω

R) = r − ℓ and Spt+p+r−j−1(ω
R) = r − ℓ − 1, which is an upcrossing about

r − ℓ − 1. This shows (23).

Corollary 2.6. For ℓ 6 min(r, 0) and k > 0,

Hℓ(k + 1) = (t + 1)kQp−k,kt+r(kt + r − ℓ)

= (t + 1)k

p−k
∑

j=⌈−ℓ/t⌉

Cp−k−j,kt+r−ℓBj,ℓ.

For ℓ < min(r, 0) and k > 0,

H+
ℓ (k + 1) = tkQp−k,kt+k+r(kt + k + r − ℓ)

= tk
p−k
∑

j=⌈−ℓ/t⌉

Cp−k−j,k(t+1)+r−ℓBj,ℓ.

Proof. The Corollary is a direct result of Theorem 2.4 and Lemma 2.5.

To cover all ranges of ℓ and r, we shall find formulas for H and H+ when r 6 ℓ < 0,
for which we need to work with Q=

p,r(ℓ).

Lemma 2.7. For integer r 6 ℓ < 0 we have

Q=
p,r(ℓ) =

p+⌊(r−ℓ)/t⌋
∑

j=⌈−ℓ/t⌉

(

Bj,ℓ − Hj,ℓ,0(2)
)

Bp−j,r−ℓ.

Proof. Each path counted by Q=
p,r(ℓ) consists of an initial subpath ω̂ that first arrives at

ℓ (that is, it does not touch ℓ until the end), followed by a path from ℓ to r. If ω̂ contains
j “−t”s, then it is a path in Ωj,ℓ with nj,ℓ,ℓ(ω̂) = 1. Since nj,ℓ,ℓ(ω̂) = nj,ℓ,0(ω̂

R), there
are Bj,ℓ − Hj,ℓ,0(2) possible choices for ω̂. The result now follows by summing over the
appropriate values of j.
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Theorem 2.8. For integers r 6 ℓ < 0 and k > 0,

Hℓ(k + 1) = (t + 1)k

p+⌊r/t⌋
∑

j=k

Cj−k,ktQ
=
p−j,r(ℓ), (24)

H+
ℓ (k + 1) = tk

p+⌊(r−1)/t⌋
∑

j=k

Cj−k,k(t+1)+1Q
=
p−j,r−1(ℓ). (25)

Proof. For the paths counted by Hℓ(k + 1), the first k + 1 times when the partial sum
equals ℓ form k segments [a, b] where Sa = Sb = ℓ. As before, we count the set M of paths
with the restriction that each of the k segments is a strict reverse Dyck path, and then
(24) follows from the Crossing Lemma. To count M , if there are j, where j > k, “−t”s
in these k segments, then the removal of these k segments from a path in M results in a
path ω ∈ Ωp−j,r passing through ℓ, and there are Q=

p−j,r(ℓ) such ω’s. To count the number
of ways to form the k segments, we note that removal of the “−t” at the front of each
of the k strict reverse Dyck paths results in a path in Ωj−k,kt that is itself a “+kt” trip,
and that this process can be reversed by inserting the “−t”s at the appropriate places. It
follows that there are Cj−k,kt ways to form the k segments. We obtain |M | by summing
Cj−k,ktQ

=
p−j,r(ℓ) over j.

For (25), we count the set M+ of paths ω for which the event A0 follows each of the
first k times that ω passes from ℓ to ℓ + 1. The Crossing Lemma then gives (25). Each
ω ∈ M+ is composed of an initial trip that first reaches ℓ, k segments where each segment
consists of a reverse Dyck path followed by a strict Dyck path, a “+1” trip, and finally
a path from ℓ + 1 to r. If there are j “−t”s in the k segments together with the “+1”
trip that follows, then removing these components from ω results in a path ω′ ∈ Ωp−j,r−1

that takes the partial sum ℓ, and there are Q=
p−j,r−1(ℓ) such ω′. To find the number of

ways to form the k segments together with the “+1” trip that follows, we remove the
final “−t” from each of the k strict Dyck paths and then reverse the path that remains,
thus forming k “+t” trips. Add “+1” to each of the reverse Dyck path in the k segments,
forming k “+1” trips. This manipulation turns the ‘k segments with the “+1” trip that
follows’ into a path in Ωj−k,kt+k+1 that is itself a “+(kt + k + 1)” trip. As this process
can be reversed, the number of ways to form the k segments together with the “+1” trip
that follows equals Cj−k,kt+k+1. We then obtain |M+| by summing Cj−k,kt+k+1Q

=
p−j,r−1(ℓ)

over j.

3 Crossing Sums

We investigate in this section the sum of the crossing numbers about ℓ. For ω ∈ Ω, we
define the upcrossing sum of ω about ℓ as the sum of all upcrossing numbers of ω about ℓ,
and similarly, the downcrossing sum of ω about ℓ as the sum of all downcrossing numbers
of ω about ℓ. Since all upcrossing numbers equal 1, the upcrossing sum of ω is simply
n+

ℓ (ω) and N+
ℓ (k) gives the number of paths ω with upcrossing sum equal to k. We shall

therefore concentrate on downcrossing sums, and all crossing sums for the rest of the
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section refer to downcrossing sums. In particular, the crossing sums about r are related
to the distribution of the gain for the acceptance urn model with “+1” and “−t” balls,
using an optimal strategy to maximize the expected gain.

For ω ∈ Ωp,r, we call Kℓ(ω) = (x1, . . . , xh) the crossing sequence of ω about ℓ if ω has
h downcrossings about ℓ, and x1,. . . , xh is the sequence of the h downcrossing numbers.
The crossing sum of ω about ℓ is

gℓ(ω) =
h

∑

i=1

xi, where Kℓ(ω) = (x1, . . . , xh).

When t = 1, we can calculate the crossing sums with the help of the reflection method.
For an example, see [12, Lemma 2.2]. For integer t > 1, we can calculate crossing sums
with the help of rotation.

Theorem 3.1. If 0 6 ℓ 6 r, then the number of paths in Ωp,r with gℓ(ω) = k equals
Qp,r(r + k)−Qp,r(r + k + 1). That is, there is a one-to-one correspondence between paths
with a crossing sum about ℓ of k and paths with a maximum partial sum of r + k.

Proof. It suffices to show the one-to-one correspondence indicated by the last statement
of the Theorem. We begin by proving the case with ℓ = r. Suppose gr(ω) = k. We will
split ω into the two subpaths ω+ and ω−. For each i, we place ωi into ω− if Si−1(ω) > r,
and we place ωi into ω+ otherwise. All of this is done with the relative order preserved,
that is, ω+ = ωb1 · · ·ωbj

is such so that b1 < · · · < bj , and similarly for ω−. We then form
the path ω = ω+(ω−)R.

Suppose Kr(ω) = (x1, . . . , xh). If r 6= 0, then ω+ begins with the initial “+r” trip. The
remaining portion of ω+ consists of a “+x1,” “+x2,” . . . , and “+xh” trips in ω following
each downcrossing about r. Therefore, ω+ is a “+(r + k)” trip since gr(ω) = k. For each
“+xi” trip in ω+, there is a corresponding “−xi” path in ω− for which only the last partial
sum is negative. These “−x1,” . . . , “−xh” paths, followed by a Dyck path, comprise ω−.
Due to the properties of these “−xi” paths, all partial sums over ω− are at least −k, and
in particular the sum over all of ω− equals −k. Therefore, (ω−)R has the property that
all partial sums are at most zero, by the Reversal Lemma. Thus, upon concatenation, ω
has a maximum partial sum of r + k. Figure 3 gives an example of how ω is split into ω+

and ω−.
We next show that the map is surjective. Let ω be given, with maxn Sn(ω) = r + k.

We find find the smallest such n for which Sn(ω) = r + k, and split ω into ω+ (before)
and (ω−)R (after), reversing the latter to produce ω−. We construct ω with gr(ω) = k
as follows: We fill in ω using ω+ until a partial sum of r is reached, then using ω−

until a partial sum less than r is reached. We repeat this process until both ω+ and ω−

are empty. When finished, the resulting (and uniquely determined) ω has the property
that gr(ω) = k, since the fills from ω+ after the initial “+r” trip equal the sum of the
downcrossings.

When 0 6 ℓ 6 r, any path ω begins with a “+ℓ” trip, and ends with a reverse “+(r−ℓ)”
trip, with neither contributing to the crossing sum about ℓ. Reversing, then moving the

the electronic journal of combinatorics 17 (2010), #R160 16



Figure 3: In this example, with ℓ = r = 3 and k = gr(ω) = 6, the parts
of ω that are in solid lines are grouped to form ω+ and the parts that
are in dotted lines are grouped to form ω−. Note that ω = ω+(ω−)R

has maximum partial sum equal to r + k = 9.

now-“+(r − ℓ)” trip to the beginning gives a one-to-one correspondence between paths
with gℓ = k and those with gr = k. This completes the proof.

Theorem 3.2. If ℓ 6 min(r, 0) and k > 0, then the number of paths with gℓ = k equals
Qp,r(r − ℓ + k) − Qp,r(r − ℓ + k + 1).

Remark. If gℓ = 0, then all partial sums must be at least ℓ, and therefore the number of
paths with this property equals Rp,r(r − ℓ).

Proof. We proceed similarly as in Theorem 3.1, adding ωn to ω+ if and only if Sn−1 > ℓ.
This time, ω+ will be a “+k” trip, while ω− will have a minimum partial sum of ℓ − k,
ending with a Dyck path followed by a reverse “+(r − ℓ)” trip. Reversing the reverse
“+(r − ℓ)” trip and moving it to the end of ω+ gives the two subpaths ω̂+, ω̂−, and the
path ω = ω̂+(ω̂−)R has a maximum partial sum of r − ℓ + k. Since we can pick off the
moved “+(r − ℓ)” trip, the map is reversible.

Theorem 3.3. If r > 0 and k > 0, then the number of paths with gr+1 = k equals
Qp,r(r + k) − Qp,r(r + k + 1). If r < 0, then the number of paths with gr+1 = k equals
Qp,r(k − 1) − Qp,r(k).

Remark. The number of paths with gr+1 = 0 equals Cp,r+1 if r > 0, and equals zero when
r < 0.

Proof. Once again, we break ω into ω+ and ω−, placing ωi into ω− if and only if Si−1(ω) >

r+1. Suppose r > 0. If Kr+1(ω) = (x1, . . . , xh) with gr+1(ω) = k > 0, then ω+ consists of
“+(r+1),” “+x1,” . . . , and “+xh−1” trips, followed this time by a “+(xh−1)” trip, since
we return back to r (but not r + 1) after the last downcrossing. Thus, ω+ is a “+(r + k)”
trip. It now follows similarly to the proofs of Theorems 3.1 and 3.2 that the maximum
partial sum of ω = ω+(ω−)R equals r + k. If r < 0, then the initial part of ω through the
first downcrossing about r + 1 belongs to ω−. Thus ω+ will consist only of the “+x1,”
. . . , “+xh−1,” and “+(xh−1)” trips, and thus is a “+(k−1)” trip. Therefore, ω will have
a maximum partial sum of k − 1.
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The computation of the crossing sum is more complicated when ℓ > r + 1. Note that
in the proofs of the theorems in this section, we do not calculate the downcrossing sum
about ℓ directly, but rather, we count the return trips back to ℓ instead. When ℓ 6 r,
there is always a return to ℓ following each downcrossing. When ℓ > r, this may not
be the case for the final downcrossing. However, when ℓ = r + 1, we have a guaranteed
return to ℓ − 1 (not to ℓ), following the last downcrossing, so we can still calculate the
downcrossing sum in that case. Otherwise, when ℓ > r + 1, we do not have any such
guarantee. Thus, there is an extra degree of difficulty in obtaining the distribution for the
crossing number about ℓ. Nevertheless, it is still possible to find the number of paths with
gℓ(ω) = k. However, such results are not particularly illuminating or of much aesthetic
value, thus we omit them from this paper.

4 The First Downcrossing Number

We are interested in the first downcrossing number about ℓ. For integers ℓ and x with
1 6 x 6 t, let Xp,r(ℓ, x) be the number of paths whose first downcrossing number about
ℓ is x. That is, Xp,r(ℓ, x) is the number of paths for which ν = min{j : Sj > ℓ, Sj+1 < ℓ}
exists and Sν+1 = ℓ−x. This problem has been studied by Goulden and Serrano [3] when
r > 0 and ℓ = 0.

Theorem 4.1. Assume 1 6 x 6 t. Then for ℓ > 0,

Xp,r(ℓ, x) =

p−1+min(0,⌊(r−ℓ+x)/t⌋)
∑

j=0

Cj,ℓ+t−x+1Bp−j−1,r−ℓ+x. (26)

For ℓ 6 0,

Xp,r(ℓ, x) =

p−1+min(0,⌊(ℓ+t−x)/t⌋)
∑

j=max(0,⌈(ℓ−x−r)/t⌉)

Rp−1−j,ℓ+t−x(t − x)Bj,r−ℓ+x. (27)

Proof. Suppose ℓ > 0. Let 1 6 x 6 t be given. Suppose that j + 1 “−t”s have been used
up to and including the first downcrossing about ℓ. Any path with a first downcrossing
number about ℓ of x must begin with a “+ℓ” trip. A Dyck path, a reverse “+(t − x)”
trip, and a “−t” follows, with the last “−t” resulting in the first downcrossing about ℓ,
to ℓ − x. The total number of paths in Ωj+1,ℓ−x with the above properties equals

∑

j1+j2+j3=j

Cj1,ℓCj2,1Cj3,t−x = Cj,ℓ+t−x+1.

The portion of ω following this first downcrossing is a path in Ωp−j−1,r−ℓ+x. We thus
complete the proof by taking the convolution over the appropriate values of j. Figure 4
gives an example of the different parts of ω used in this proof.

Now we assume ℓ 6 0. Suppose that there are j + 1 “−t”s remaining immediately
before ℓ is crossed. Then a path counted by Xp,r(ℓ, x) consists of a path in Ωp−1−j,ℓ+t−x
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Figure 4: The first downcrossing about ℓ = 2 in this example is caused
by ω13 = −t = −3, with the first downcrossing number x = 1 (shown
in dashdotted line). The initial “+ℓ” trip is depicted in dashed lines,
and the Dyck path followed by the reverse “+2” trip are shown in
dotted lines.

with partial sums at least ℓ, (where j must satisfy j 6 p− 1 + (ℓ + t− x)/t,) followed by
a “−t” and then a path in Ωj,r−ℓ+x, where j > (ℓ − r − x)/t. By the Reversal Lemma,
the number of paths in Ωp−1−j,ℓ+t−x with partial sums at least ℓ equals the number of
paths in Ωp−1−j,ℓ+t−x with partial sums at most t − x, which is Rp−1−j,ℓ+t−x(t − x). As
|Ωj,r−ℓ+x| = Bj,r−ℓ+x, the result follows from summing the product of these two numbers
over appropriate values of j.

The formulas in Theorem 4.1 have closed forms in some cases. For example, if ℓ > 0
and r > ℓ − x, we have from (26) that

Xp,r(ℓ, x) =

p−1
∑

j=0

Cj,ℓ+t−x+1Bp−j−1,r−ℓ+x = Bp−1,r+t+1. (28)

This extends the result of [3, Theorem 4]. In another example, if 0 > ℓ > −t + x and
r > ℓ − x, then using (7) and (27),

Xp,r(ℓ, x) =

p−1
∑

j=0

Cp−1−j,t−x+1Bj,r−ℓ+x = Bp−1,r−ℓ+t+1.

In another example, suppose that r < 0. Then all paths cross r +1 and each path has
a first downcrossing about r + 1. Then for 1 6 x 6 t

Xp,r(r + 1, x) =

p−1+⌊(r+1+t−x)/t⌋
∑

j=0

Rp−1−j,r+1+t−x(t − x)Bj,−1+x.

If −t − 1 6 r 6 −1, then (7) gives Rp−1−j,r+1+t−x(t − x) = Cp−1−j,t−x+1, and the above
becomes

Xp,r(r + 1, x) =

p−1+⌊(r+1+t−x)/t⌋
∑

j=0

Cp−1−j,t−x+1Bj,−1+x.
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It follows that for −t − 1 6 r 6 −1,

Xp,r(r + 1, x) =

{

(

pt+p−1
p−1

)

, if 1 6 x 6 t + r + 1,
(

pt+p−1
p−1

)

−
(

pt+p−t−2+x
p−1

)

, if t + r + 2 6 x 6 t.

As p → ∞, the proportion of paths in Ωp,r, where −t 6 r 6 −1, with downcrossing
number x about r + 1 is Xp,r(r + 1, x)B−1

p,r . As p → ∞, this proportion, after some
simplification using Stirling’s formula, equals

{

1
t

(

1+t
t

)−r−1
, if 1 6 x 6 t + r + 1,

1
t

(

1+t
t

)−r−1
− 1

t

(

1+t
t

)x−r−t−2
, if t + r + 2 6 x 6 t.
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