
Building Graphs from Colored Trees

Rachel M. Esselstein
CSUMB Department of Mathematics and Statistics

100 Campus Center Dr. Building 53
Seaside, CA 93955, U.S.A.

resselstein@csumb.edu

Peter Winkler∗

Department of Mathematics, Kemeny Hall
Dartmouth College

Hanover, NH 03755, U.S.A.

peter.winkler@dartmouth.edu

Submitted: Sep 7, 2009; Accepted: Oct 7, 2010; Published: Nov 26, 2010

Mathematics Subject Classification: 05C85

Abstract

We will explore the computational complexity of satisfying certain sets of neigh-
borhood conditions in graphs with various properties. More precisely, fix a radius ρ

and let N(G) be the set of isomorphism classes of ρ-neighborhoods of vertices of G

where G is a graph whose vertices are colored (not necessarily properly) by colors
from a fixed finite palette. The root of the neighborhood will be the unique vertex
at the “center” of the graph. Given a set S of colored graphs with a unique root,
when is there a graph G with N(G) = S? Or N(G) ⊂ S? What if G is forced to
be infinite, or connected, or both?

If the neighborhoods are unrestricted, all these problems are recursively unsolv-
able; this follows from the work of Bulitko [Graphs with prescribed environments
of the vertices. Trudy Mat. Inst. Steklov., 133:78–94, 274, 1973]. In contrast, when
the neighborhoods are cycle free, all the problems are in the class P. Surprisingly,
if G is required to be a regular (and thus infinite) tree, we show the realization
problem is NP-complete (for degree 3 and higher); whereas, if G is allowed to be any
finite graph, the realization problem is in P.

∗Research supported in part by NSF Grant DMS-0600876

the electronic journal of combinatorics 17 (2010), #R161 1



1 Introduction

The notion of a neighborhood will be used throughout this paper in two different ways.
Formally, the neighborhood of radius ρ of a vertex v in graph G is the subgraph given by
the set of all vertices reachable from v in G by a path of length 6 ρ and the corresponding
edges from G. We say that v is the center of this neighborhood. In this paper we will
often refer to neighborhoods of radius ρ without referring to a graph G. In this case, we
are referring to a different notion of a neighborhood as a finite graph with a distinguished
vertex called the center such that every vertex in the graph is of distance 6 ρ from the
center. This abuse of notation derives from our goal of trying to construct graphs such
that every vertex in the graph has its neighborhood in a given set. We will sometimes
refer to the ρ-neighborhood set of a graph G by which we mean the set of all isomorphism
classes of ρ-neighborhoods of the graph G. We will denote the isomorphism class of a
ρ-neighborhood of a vertex v by Nρ(v).

Given a set S of neighborhoods of radius ρ, we want to determine whether there is a
colored graph such that every vertex in the graph is the center of one of the neighborhoods
in S. We define the following:

1. The set S is sufficient if there is a colored connected graph G such that every
ρ-neighborhood in G belongs to S. In this case, the graph G is said to satisfy S.

2. The set S is consistent if for every ρ-neighborhood N ∈ S, there is a colored
connected graph G which uses only neighborhoods from S and which exhibits the
ρ-neighborhood N .

3. The set S is realizable if there is a colored connected graph G such that every ρ-
neighborhood in G belongs to S and every neighborhood from S appears in G. The
graph G is said to realize S.

We would like to know the complexity of determining whether a given set S of ρ-
neighborhoods with vertices colored by c colors is sufficient, consistent, or realizable via a
connected graph. Notice that if we allowed the graphs to be disconnected, then realizabil-
ity and consistency would be the same concept. Also, a set S is sufficient (respectively,
consistent) via a connected graph if and only if it is also sufficient (respectively, consis-
tent) via a disconnected graph. Thus, we will only be concerned with building connected
graphs.

The following results were motivated by the problem of determining expressibility in
monadic second-order logic, in which all elements of a structure are “colored.” [4] In order
to prove that a property is expressible in monadic second-order logic, one must construct
a partial isomorphism between two colored structures, one which models the property
and one which does not. Thus, the problem of preserving local properties of the structure
becomes quite important. For more on this, see [1], [3] or [7]. The neighborhoods in this
article are the local properties being preserved and the larger graph we build from them
is a model of the desired theory.

We begin by noting that

the electronic journal of combinatorics 17 (2010), #R161 2



Realizability → Consistency → Sufficiency,

where each arrow represents implication and none of the arrows are reversible. Most of
this result is straightforward and thus will be left to the reader, however we will include
the proof of the proposition that consistency does not imply realizability.

1.1 Proposition. There is a set S of ρ-neighborhoods of degree d such that S is consistent
but not realizable.

Proof. Let every neighborhood in S be cycle-free with degree d = 2 and radius ρ = 1.
Denote each neighborhood by a pair 〈x; X〉 where x is the color of the root and X
is the multiset of the colors of the leaves. Note that the order of the leaves does not
matter; only the multiplicity of the colors is important. The set of colors we use is
{1, 2, 3, 4, 5, 6, 2′, 3′, 4′}.

We claim that the set

S = {〈1; 2, 2′〉, 〈2; 1, 3〉, 〈3; 2, 4〉, 〈4; 3, 2〉, 〈2; 4, 3〉,

〈2′; 1, 3′〉, 〈3′; 2′, 4′〉, 〈4′; 3′, 2′〉, 〈2′; 4′, 3′〉,

〈2; 1, 5〉, 〈5; 2, 6〉, 〈6; 5, 2〉, 〈2; 6, 5〉},

is a consistent but not realizable set.
It is not difficult to check that S is consistent. This is left to the reader.
We will show that S is not realizable. Without adding extra structure, we can add an

orientation to the edges of each of the neighborhoods as follows: 1 → 2, 1 → 2′, 2 → 3,
2′ → 3′, 3 → 4, 3′ → 4′, 4 → 2, 4′ → 2′, 2 → 5, 5 → 6, and 6 → 2. This gives 〈1; 2, 2′〉
an out-degree of 2 and all other neighborhoods, an out-degree of 1 and an in-degree of 1.
Thus, any graph exhibiting all the neighborhoods of S will have as its root 〈1; 2, 2′〉, and
then have directed paths always leading away from the root.

It is clear that we need 〈1; 2, 2′〉 to appear twice in a graph if both the neighborhoods
〈2; 1, 3〉 and 〈2; 1, 5〉 are to appear. Unfortunately, this is impossible since two instances
of 〈1; 2, 2′〉 in a connected graph would create a directed path which leads toward one of
the copies of 〈1; 2, 2′〉 (which, by our construction, cannot happen). It follows that S is
not realizable.

This proof illustrates a set of rotator neighborhoods in which the colors dictate that
every path in a graph built from S is ultimately periodic. Such neighborhoods will be
important in later proofs.

In general, we can not determine recursively whether an arbitrary set of neighborhoods
with colored vertices can be realized by a connected graph. This is proven as a special case
of [2]. In attempt to improve the computational complexity of this problem, we will look
at a more restricted class of neighborhoods; specifically, neighborhoods with no cycles.

A (ρ, d, C)–tree neighborhood is a rooted complete tree of height ρ where every
vertex which is not a leaf has fixed degree d. The vertices of each of our (ρ, d, C)–tree

the electronic journal of combinatorics 17 (2010), #R161 3



neighborhoods will be colored by a set of C colors. When ρ, d and C are understood, we
will simply refer to these as tree neighborhoods. Every neighborhood in the rest of this
paper will be a tree neighborhood unless otherwise indicated.

In this paper we are interested in evaluating the computational complexity of the
consistency, sufficiency and realizability of sets of (ρ, d, C)–tree neighborhoods. In section
2 we will look at the complexity of determining the existence of an infinite tree realizing
a set of tree neighborhoods. In section 3 we will look at the complexity of determining
the existence of finite graphs realizing a set of neighborhoods.

2 Realizability via Infinite Trees

In this section we will explore the computational complexity of determining the existence
of an infinite tree realized by a set S of tree neighborhoods. In the case that the degree
of the tree neighborhoods is 2, the problem can be shown to be in P. We omit this proof
but include the proofs that for neighborhoods of degree 3 and higher the problem is
NP-complete as these proofs are more illustrative.

Let S be a set of tree neighborhoods (with distinguished center) of radius ρ and fixed
degree d > 3. Enumerate the neighborhoods in S and, for each neighborhood, the edges
incident to the center vertex.

The de Bruijn graph B corresponding to the set S has vertex set {Ni : N ∈ S, i ∈
{1, 2, . . . , d}}. There is a solid black edge between vertices Ni and Mj if and only if
the center vertex of N is the color of the jth edge extending the center vertex of M
(according to the enumeration of the edges), the center vertex of M is the color of the
ith edge extending the center vertex of N , and the (ρ−1)-neighborhood of the center
vertex of N (respectively M) is completely contained in M (respectively N). There is a
dashed edge in B between vertices Ni and Nj for every neighborhood N in S and every
i, j ∈ {1, 2, . . . , d}.

For example, consider the set of 1-neighborhoods
S = {〈r; s, s, t〉, 〈s; t, t, r〉, 〈t; r, r, s〉} where the edges are enumerated according to the
order they appear in the neighborhood notation. The de Bruijn graph corresponding to
S is given in Figure 1.

Notice that the de Bruijn graph corresponding to S is constructible in polynomial
time with respect to n (the number of neighborhoods in S) and c (the number of colors).

A walk in the de Bruijn graph is a path that follows certain rules:

• In the initial step, starting at some vertex Ni, one may travel along any solid edge
to any vertex in B.

• For each subsequent step, one alternates traveling along dashed edges and solid
edges.

The length of the walk is measured by the number of solid edges traveled. A walk in
B corresponds to a path through a tree visiting only neighborhoods from S.

the electronic journal of combinatorics 17 (2010), #R161 4



Figure 1: de Bruijn graph on S

We will be interested in finding the minimal distance (i.e. shortest path) between any
pair of neighborhoods in S. The de Bruijn graph will help us find this bound.

Suppose there is a path from the vertex corresponding to the ith edge of neighbor-
hood N to any of the vertices corresponding to neighborhood M . We claim that if any
neighborhood appears more than twice along this path, then the path may be shortened.
The only time we would need a neighborhood to appear twice along this path is if the
vertex we arrive on is also the vertex we wish to leave from. In this case, we leave the
neighborhood along a different edge and then return to the vertex corresponding to the
desired edge. Thus, if there are n neighborhoods in S, we may need to visit every neigh-
borhood except M twice. Therefore, there is a path from Ni to M in B of length no more
than 2n − 1. Notice that this works for any radius ρ. We now show that if there is an
infinite tree realizing S, then there is a finite tree whose interior vertices realize S.

2.1 Proposition. If the set S (containing n neighborhoods) is realizable by an infinite
tree, then there is a finite tree of radius n(2n − 1 + ρ) in which every vertex of degree d
has its neighborhood in S and every neighborhood in S appears as the neighborhood of at
least one of the vertices of degree d.

Proof. Suppose there is an infinite tree realizing S. Mark one copy of each neighborhood
from S in the tree. One at a time, connect the center vertex of each marked neighborhood
to the previous marked neighborhood via a path through the tree. Prune the rest of the
tree to yield a finite, connected tree. The resulting tree might have a diameter greater
than 2n−1+ρ. Since each path through the tree represents a walk in the de Bruijn graph,
we can use the argument above to shorten the paths between two marked neighborhoods.
Assume π is a path of length greater than 2n−1+ρ connecting two marked neighborhoods
such that the only marked neighborhoods in π are the endpoints. We use the argument

the electronic journal of combinatorics 17 (2010), #R161 5



above to shorten this path to a new path of length less than or equal to 2n − 1 + ρ. If
we do this for each path with no intermediate marked neighborhoods then the diameter
of the resulting graph will be less than or equal to n(2n − 1 + ρ).

Determining the existence of an infinite tree realizing S is in NP since the set S is
realizable if and only if there is a finite tree which exhibits every neighborhood from S
and S is consistent. We showed in Lemma 2.1 that if there is an infinite tree realizing
S, then there is a finite tree realizing S. The consistency of S guarantees that we may
extend each of the branches indefinitely to an infinite tree realizing S. It is easily seen
that the consistency of S is decidable in polynomial time and that a nondeterministic
polynomial time machine can guess a finite tree from the list of all possible finite trees of
radius n(2n− 1 + ρ) and accept if and only if the interior vertices give a realization of S.
Thus, realizing S by an infinite tree is in NP.

We will use these results to show that the problem of deciding whether S is realizable
by an infinite tree is NP-complete. Our proof is by a reduction from a variant of 3-SAT.
The standard version of 3-SAT allows clauses in which the same literal appears more than
once. We call such clauses repetitive. For example, 3-SAT allows the repetitive clause
(x ∨ x ∨ y). For our reduction we would like to ensure that none of our clauses are
repetitive. Thus, we would allow such clauses as (x ∨ x∨ y) but not the repetitive clause
above in which literal x appears twice. It is not difficult to find a reduction of this type
of 3-SAT, called STRICT 3-SAT, to the classical 3-SAT.

2.2 Theorem. Let S be a set of tree neighborhoods of radius 1 and degree 3. The problem
of determining the existence of an infinite tree realizing S is NP-complete.

Proof. We showed that this problem is in NP. Now we perform a reduction from STRICT

3-SAT to our realizability problem. Consider an instance of STRICT 3-SAT given by
Φ = {c1, c2, . . . cm} where each ci is a disjunction of three literals over a set of n variables,
V , such that none of the clauses in Φ are repetitive. Φ is satisfied if and only if there is
a truth valuation which satisfies at least one literal in each clause ci.

We want a polynomial time algorithm to construct a set S of colored neighborhoods
(d = 3, ρ = 1) such that Φ is satisfied if and only if S is realizable.

Choose k > 0 such that the number of variables n in V is 3 · 2k (if necessary, add
“dummy variables” which are not used in any of the clauses in Φ to force n = 3 · 2k).

We begin our construction of S with a collection of neighborhoods called the core
neighborhoods that must appear exactly once in any tree realizing S. These are 〈0; 1, 1, 1〉
and, 〈1; 0, 2, 2〉, 〈2; 1, 3, 3〉, . . . , 〈k + 1; k, k + 2, k + 2〉, where each number 0, 1, 2, . . . , k + 2
represents a distinct color.

We surround the core with variable neighborhoods which consist of

〈k + 2; k + 1, x0, x0〉, and 〈k + 2; k + 1, x0, r〉

for each variable x ∈ V , where x0 is a color corresponding to the variable x and r is a
new color which will be explained later in the construction.

Next, we include a collection of neighborhoods called the literal neighborhoods.

the electronic journal of combinatorics 17 (2010), #R161 6



If the literal x (respectively x) does not appear in clause c1, we include

〈x0; k + 2, x1, r〉, resp. 〈x0; k + 2, x1, r〉

where x1 and x1 are new colors. Otherwise, we include new colors g1 and h1 and the
neighborhoods

〈x0; k + 2, x1, g1〉, 〈g1; x1, h1, r〉,

respectively
〈x0; k + 2, x1, g1〉, 〈g1; x1, h1, r〉.

For each subsequent clause ci in Φ (2 6 i 6 m), if the literal x does not appear in ci,
we include the neighborhood

〈xi, xi−1, xi+1, r〉.

Otherwise, we introduce new colors gi and hi and the neighborhoods

〈xi, xi−1, xi+1, gi〉, and 〈gi; xi, hi, r〉.

Similarly for the literal x.
Finally, we include a final layer of literal neighborhoods

〈xm+1, xm, r, r〉, and 〈xm+1, xm, r, r〉.

(Note that the literals xm+1 and xm+1 do not correspond to any clauses in Φ.)
Then come the satisfaction neighborhoods. We add four more colors a1, a2, a3 and a4

and for all 1 6 i 6 m, include the following neighborhoods:

〈hi; gi, a1, r〉, 〈hi; gi, a2, r〉, 〈hi, gi, a3, r〉, 〈hi; gi, a3, r〉,

and
〈a1; hi, r, r〉, 〈a2; hi, r, r〉, 〈a3; hi, r, r〉, 〈a4; hi, r, r〉.

Many of the neighborhoods above contain a vertex colored by r. For every neighbor-
hood containing such a vertex we include the set of rotator neighborhoods

〈r; ∗, s, s〉, 〈s; r, t, t〉, 〈t; s, r, r〉, 〈r; t, s, s〉,

where ∗ is the color of the center vertex of a neighborhood containing a vertex colored by
r.

This completes our construction of S. We now show that Φ is satisfiable if and only
if S is realizable.

Suppose Φ is satisfiable. Then there is a truth assignment t which satisfies Φ. We use
this truth assignment to construct the realization of S in levels.

Begin with the neighborhood 〈0; 1, 1, 1〉 and extend in the canonical way out to the
k + 2nd level using the core neighborhoods. Then extend each branch using the variable
neighborhoods so that every variable appears on the next level exactly 3 times. Since we
chose k such that V = 3 · 2k, this is always possible.

the electronic journal of combinatorics 17 (2010), #R161 7



We use the truth valuation t to extend to the next level. For each literal, we extend
using two copies of the neighborhood which corresponds to the truth value given by t and
only one copy of the other neighborhood. For example, if t(x) = False then we include
two copies of the literal neighborhood 〈x0; k + 2, x1, r〉 and exactly one copy of the literal
neighborhood 〈x0; k + 2, x1, r〉. We extend the branches containing xi for i = 1, . . . , m+1.
By construction, if the literal corresponding to the xi appears in clause ci, we will be
forced to branch off by gi and then hi.

At this stage in the construction of the tree, there are two branches for every literal,
given by the truth valuation which satisfies Φ. Since each clause is satisfied by the truth
valuation, there is at least one literal in each clause satisfied by it. Thus, there are between
4 and 6 branches in the tree extending to gi and then hi for each 1 6 i 6 m. So since Φ
was satisfiable, we should have at least 4 neighborhoods of the form 〈hi; gi, r, ∗〉 for each
1 6 i 6 m. To ensure finite realizability, we are forced to use each of the satisfaction
neighborhoods 〈hi; gi, aj, r〉 in the tree. We then complete the infinite tree by extending
all the branches by rotator neighborhoods indefinitely.Thus we have shown that if Φ is
satisfiable, the set S is realizable.

Now, we assume that S is realizable and show that Φ is satisfiable. We first make
some comments on what a realization of S must look like.

Without adding any extra structure, we may add an orientation to the edges of the
neighborhoods of S as follows:

〈0; 1, 1, 1〉 has out-degree 3 and all other neighborhoods of S have in-degree 1 along
the first arm and out-degree 2 along the other two arms. Thus any graph built from
neighborhoods of S can only have paths leading away from 〈0; 1, 1, 1〉. This gives us that
〈0; 1, 1, 1〉 can only appear once in any realization of S since otherwise the path connecting
the two copies of 〈0; 1, 1, 1〉 must lead toward one of them which cannot happen.

Assume G is a realization of S. We know G must have exactly one copy of 〈0; 1, 1, 1〉.
There is only one way to extend each of the branches to complete the first k + 2 levels of
the tree.

Thus G must have the “canonical core” as illustrated in Figure 2.
At the k + 3rd level there will be exactly enough free arms to exhibit both of the

following neighborhoods from S for each literal x:

〈k + 2; k + 1, x0, x0〉, and 〈k + 2; k + 1, x0, r〉.

Since the color k + 2 may only appear in one level of the tree, G must realize each of
these neighborhoods exactly once on this level.

Thus we have three free arms extending x0 for each literal x.
There are only two neighborhoods in S which can extend x0 :

〈x0; k + 2, x1, r〉 and 〈x0; k + 2, x1, r〉.

The color x0 may only appear in one level so the colors x1 and x1 may only appear in
the k + 4th level. Thus for each variable x, one of these neighborhoods must appear once
and the other must appear twice in order to realize S.

the electronic journal of combinatorics 17 (2010), #R161 8



Figure 2: The “canonical core” where the dashed lines denote the possibility of several
more levels or possibly none before reaching the k + 2nd level.

From here we canonically extend xi to xi+1 and xi to xi+1 until i = m. If the literal
corresponding to the branch appears in clause ci, we must extend the free arm by gi and
otherwise we must always extend the free arm by r. The color gi must always be extended
by 〈gi; xi, hi, r〉.

At this stage in the graph, all of the neighborhoods 〈hi; gi, r, ∗〉 can be extended by
any of the aj for 1 6 j 6 4. However, in order for S to be realized, G must have at least 4
copies of 〈hi; gi, r, ∗〉 for every 1 6 i 6 m. Each clause ci has exactly 3 literals and so there
is one branch connecting to gi and hi for every literal appearing in ci which is not satisfied
by the interpreted truth valuation on the k +4th level, and two branches connecting to gi

and hi for every literal appearing in ci which is satisfied by the interpreted truth valuation
on the k + 4th level. So, if the truth valuation satisfies at least one literal in clause ci,
we will have at least 4 of the branches connecting to gi and hi with which to extend to
each of the 4 colors aj. If our truth valuation satisfies none of the literals in some clause
ci, then the branches containing gi and hi will appear at most 3 times and we will not be
able to realize one of the neighborhoods of the form 〈gi; hi, aj , r〉. Note that we are also
using the fact here that no literal appears with the same parity more than once in each
clause since such a repetitive clause would only give us 3 or fewer such opportunities to
extend to aj .

Thus, we see that if G is an infinite tree realizing S then the truth valuation given by
level k + 4 as described earlier must be one which satisfies Φ.

the electronic journal of combinatorics 17 (2010), #R161 9



Therefore, we have that Φ is satisfied if and only if S is realized thus completing our
reduction.

It is not difficult to extend this result for tree neighborhoods with larger radius, higher
degree, or mixed degree.

3 Realizability via Finite Graphs

In this section, we examine the computational complexity of determining the existence
of graphs (as opposed to trees without cycles) which witness the realization, consistency,
or sufficiency of a set of tree neighborhoods. We showed in the previous section that the
problem of determining the existence of an infinite tree from a set of tree neighborhoods
of degree > 3 is NP-complete. Every finite graph has, corresponding to it, an infinite tree
formed by the infinite paths through the finite graph starting at a fixed root. Furthermore,
unlike trees, the neighborhoods in graphs have higher dependencies on one another. Thus,
we might expect the complexity of realizing a set of tree neighborhoods by a finite graph
to be at least as “hard” as the problem of realizing a set of tree neighborhoods by an
infinite tree. Surprisingly, we show in this chapter that this problem can be determined
in polynomial time!

It is important to note that in order to preserve the “tree-like” qualities of our neigh-
borhoods, we must put certain restrictions on the size of the cycles in the graph. If every
ρ-neighborhood of a graph G belongs to S, then G may not have any cycles of length less
than 2ρ+2.

Let S be a set of tree neighborhoods of degree d and radius 1 with vertices colored by a
set C of colors. We begin with determining the computational complexity of determining
the satisfaction of S via a finite graph and then prove results about the complexity of
consistency and realization as corollaries.

3.1 Theorem. The satisfaction of S by a connected finite graph is decidable in polynomial
time with respect to n (the number of neighborhoods in S) and the number of colors from
our set.

One of the difficulties in satisfying a set of neighborhoods by a finite graph is finding
the exact number of copies of each neighborhood from S needed in order to “glue up”
every edge while still guaranteeing that the neighborhood set of the graph is contained
in S. We will construct a matrix A corresponding to S such that any nonnegative (non-
trivial) integer solution to AX = 0 tells us how many copies of each neighborhood is
needed to build a finite graph satisfying S. If no such nonnegative integer solution X
exists, we conclude that S cannot be satisfied by a finite graph.

We begin by enumerating the colors and ordering them according to the enumeration.
A twig t in a neighborhood N is an ordered triple (N, c, c′) where c is the color of the
center vertex of N and c′ is the color of a leaf in N .

The matrix A is constructed as follows: The rows will correspond to unordered pairs
of colors from our set. The columns will correspond to neighborhoods in S. For c 6 c′

the electronic journal of combinatorics 17 (2010), #R161 10



according to our ordering of the colors, the a{c,c′},N entry of the matrix will be given by:

a{c,c′},N =
∑

twigs (N,c,c′)

1 −
∑

twigs (N,c′,c)

1.

Notice that if c = c′ then a{c,c′},N = 0. Thus, we may eliminate the rows in A
corresponding to pairs of identical colors. We will show that such symmetric twigs will
never prevent us from building a finite graph realizing S if such a graph exists.

We want to find a nonnegative non-trivial integer solution X to the equation AX = 0.
Since AX = 0 is a system of homogeneous linear equations, we will either have only the
trivial solution or infinitely many solutions. Thus, when referring to a particular solution,
we will always specify the vector X unless it is obvious from the context. Note that any
nonnegative non-trivial integer valued vector X prescribes a multiset of neighborhoods
from S. Let SX be the multi-set of the neighborhoods in this collection, TX be the multi-
set of all twigs (both symmetric and non-symmetric) in SX , and let NX be the multi-set
of the non-symmetric twigs in TX .

We define the relation M on a set of twigs such that (N, c, c′)M(N ′, d, d′) if and only
if the colors c = d′ and c′ = d. In other words, M decides whether two neighborhoods
may “glue up” along an edge with endpoint colors given by the twigs. Notice that M is
a symmetric relation.

Let X be a non-trivial vector with only nonnegative integer entries. Then we may
construct the graph MX as follows: Let the set of vertices be V (MX) = {t ∈ NX} and
the set of edges be E(MX) = {(t, t′) : tMt′}.

Notice that MX is restricted to the non-symmetric twigs only and depends on which
vector X we choose.

Recall that a perfect matching in a graph G is a set of edges from G such that every
vertex of G is incident to exactly one edge. There has been much work done on the study
of matchings. A result of particular interest to us is:

3.2 Theorem (Hall [5]). Given a bipartite graph G = (V1, V2, E), with the sets V1 and
V2 of the same cardinality, there is a perfect matching in G if and only if for every subset
U ⊆ V1, the size of U is less than or equal to the size of the set of all vertices adjacent to
at least one element of U .

We will use Hall’s Theorem to prove the existence of a perfect matching in MX if and
only if AX = 0. Then we will use the perfect matching in MX to construct a finite graph
which will allow us to determine the satisfaction of S.

3.3 Lemma. Let S be a set of n tree neighborhoods. Let X be a non-trivial 1 × n
vector with nonnegative integer entries. There is a perfect matching in MX if and only
if AX = 0.

Proof. Fix an arbitrary non-trivial 1×n vector X with nonnegative integer-valued entries.
We begin by showing that if AX = 0, then MX is a bipartite graph. For colors c < c′

according to the enumeration on C, let V1 be the set of all non-symmetric twigs of the
form (Ni, c, c

′) and let V2 be the set of all non-symmetric twigs of the form (Nj , c
′, c).

the electronic journal of combinatorics 17 (2010), #R161 11



By the way that we set up the matrix A, the entry corresponding to [AX]{c,c′} is

∑

N∈S

xNa{c,c′},N =
∑

N∈S

xN∑

1

a{c,c′},N =
∑

t∈NX

a{c,c′},N =
∑

t∈NX

(
∑

t=(N,c,c′)

1 −
∑

t=(N,c,c′)

1).

So [AX]{c,c′} = 0 if and only if the number of twigs of the form (Ni, c, c
′) in NX , is equal

to the number of twigs of the form (Nj, c
′, c) in NX for c 6= c′. Thus, AX = 0 if and only

if V1 and V2 have the same cardinality. If (Ni, c, c
′) ∈ V1, then for all twigs t such that

(Ni, c, c
′)Mt, t must have the form (Nj , c

′, c) and thus, it must be a member of V2. This
implies that no edge has both its endpoints in the same set. Thus, MX is bipartite.

Since AX = 0 implies that the number of twigs of the form (Ni, c, c
′) in NX is equal

to the number of twigs (Nj , c
′, c) in NX for each pair of distinct colors c, c′, we know that

every vertex has degree at least the number of times its twig appears in NX . By Hall’s
Theorem, we know that there is a perfect matching in (V1, V2, E(MX)) if and only if for
every subset U ⊆ V1, the number of vertices in U is less than or equal to the number of
vertices adjacent to a vertex from U . Since every vertex in V1 is adjacent to at least as
many vertices as its multiplicity in NX , we know that for any subset U , every vertex in
U must be adjacent to at least as many vertices as its twig type appears in U . Therefore,
Hall’s condition is satisfied. Thus, if AX = 0, then MX has a perfect matching.

For the other direction, we see that if MX has a perfect matching, then for every twig
(Ni, c, c

′) in NX , there is a twig (Nj , c
′, c) in NX . We showed that this is the case if and

only if there is a vector X with nonnegative integer values such that AX = 0.

Next we will show that there is a perfect matching for MX if and only if there is a
finite graph satisfying S. We begin with some preliminary lemmas.

Given any finite graph G, we may construct a finite graph G′ such that

• G′ has no cycles of length less than or equal to 2ρ+1,

• there is a vertex v adjacent to vertices colored by x1, . . . , xd in G if and only if there
is a vertex colored by v and adjacent to vertices colored by x1, . . . , xd in G′, and

• G′ is connected if and only if G is.

We construct G′ as follows. Let m be the number of cycles of length less than or equal
to 2ρ+1 in G. Choose p to be the least prime number greater than m.

Enumerate the vertices of G. This gives an orientation to the edges of G; u → v if u < v
in the enumeration. For each directed edge, we assign a shift value; σ : E(G) → Z/p such
that for all cycles of length 6 2ρ+1, given by e1, . . . , ek, we have Σk

i=1σ(ei) 6= 0(mod p).
The following lemma shows that such a function σ exists.

3.4 Lemma. There is a function σ; E(G) → Z/p such that for all cycles of length k 6

2ρ+1, given by e1, . . . , ek, it is the case that Σk
i=1σ(ei) 6= 0(mod p).

the electronic journal of combinatorics 17 (2010), #R161 12



Proof. We construct the map σ one element of the domain at a time. With each assign-
ment, we ensure that every cycle of length 6 2ρ+1 containing that edge does not sum to
0(mod p). Suppose there is an edge e such that there is no way to assign a value σ(e)
without a cycle of length 6 2ρ+1 containing the edge e adding to 0(mod p). This means
that there are cycles of length 6 2ρ+1 containing e which add up to 0, 1, 2, . . . , and p−1
(mod p) before we add in the value for σ(e). We chose p such that there are fewer than
p cycles of length 6 2ρ+1. This gives us a contradiction. Thus, there is always a way
to assign a shift value σ to each edge in G such that every cycle of length 6 2ρ+1 in G,
given by e1, . . . , ek, has the property that Σk

i=1σ(ei) 6= 0(mod p).

Let the vertices of G′ be the collection of all pairs (v, ℓ) where v is a vertex from G
and ℓ ∈ {0, 1, 2, . . . , p−1}. There will be an edge in G′ from (u, ℓ) to (v, ℓ + σ(mod p))
if (u, v) is an edge in G, u < v according to the enumeration on the vertices of G,
ℓ ∈ {0, 1, 2, . . . , p−1}, and the shift assigned to the edge (u, v) in G is σ. In other words,
G′ has p copies of the vertex set of G and edges G′ are given by the shift function σ.

It is easy to check that G′ has no cycles of length 6 2ρ+1. Furthermore, the graph G′

was constructed so that the adjacencies from G are preserved.
Now we show that G′ is connected.

3.5 Lemma. If the graph G is connected and has at least one cycle of length 6 2ρ − 1,
then the graph G′ is connected.

Proof. Since the sum of the values of the edges in any cycle of length 6 2ρ−1 must add to
some nonzero number λ modulo p, a copy of the small cycle in G′ will end λ many levels
from where it began. Since p is a prime number, it has no proper divisors so the lifting of
the small cycle will pass through every level set. Thus, assume that G is connected and
has a small cycle. Choose arbitrary vertices (u, k) and (v, ℓ) in G′. We will show that
there is a path in G′ from (u, k) to (v, ℓ).

When we project these vertices onto G, there is a path connecting u to v since G is
connected. This path is possibly trivial. Let the sum of the shifts of this path be λ(mod p).
This means that if we can find a path from (u, k) to (u, ℓ−λ), then by following the lifting
of the path in G, there is a path from (u, ℓ − λ) to (v, ℓ).

Now, assuming that k 6= ℓ − λ, we must find a path from (u, k) to (u, ℓ − λ) in G′.
Let w be a vertex in the small cycle in G. Since G is connected, there is a path from u
to w in G. Let the sum of the shifts of this path be κ(mod p). This means that there is
a path from (u, k) to (w, k + κ) in G′. Since (w, k + κ) is in the lifting of the small cycle,
we know that there is a path from (w, k + κ) to (w, ℓ − λ − κ) in G′. Thus, the path in
G′ from (u, k) to (w, k + κ) to (w, ℓ − λ − κ) to (u, ℓ − λ) to (v, ℓ) is the desired path in
G′. Therefore, G′ is connected.

Notice that this proof required that G had at least one cycle of length 6 2ρ − 1 in
order to guarantee that G′ is connected. This does not cause any problems since if G does
not have a cycle of length 6 2ρ − 1 then we have no need to construct the graph G′.

We define the type of a symmetric twig to be the color of its endpoints.

the electronic journal of combinatorics 17 (2010), #R161 13



Note that if there is a solution to AX = 0 then there is a solution in which each type
of symmetric twig appears an even number of times in TX . If X has the property that TX

does not have an even number of each type of symmetric twig, then we consider the vector
2X. If AX = 0, then A(2X) = 0 and clearly, every type of symmetric twig appears an
even number of times in T2X . Since we showed in Lemma 3.3 that there is a nonnegative
integer solution to AX = 0 if and only if there is a perfect matching in MX (which only
relies on the non-symmetric twigs), we know that there is a perfect matching in MX if
and only if there is a perfect matching in M2X .

3.6 Theorem. For any non-trivial 1 × n vector X with all nonnegative integer values,
there is a perfect matching in MX if and only if there is a finite graph which satisfies S.

Proof. As in the discussion above, we know that if there is a non-trivial vector with
nonnegative integer entries such that there is a perfect matching in the graph of the
non-symmetric twigs, then there is a vector X such that every type of symmetric twig
appears an even number of times in TX and there is a perfect matching in MX . Thus, we
may assume that X is a vector with these properties. Since TX has an even number of
each type of symmetric twig, we may match each symmetric twig with exactly one other
symmetric twig of its type.

We construct the finite graph G as follows. Begin by enumerating the neighborhoods
in SX . The vertices of G will be the set of all vi such that v is the color of the center
vertex of the ith neighborhood in the enumeration of SX . There is an edge from ui to vj

if one of the two cases hold:

• The twig (Ni, u, v) is adjacent to the twig (Nj , v, u) in the perfect matching on MX ,
or

• The twigs (Ni, u, v) and (Nj, v, u) are symmetric twigs of the same type which we
paired together.

The graph G is finite since the number of vertices in G is the same as the sum of the
entries in X.

Suppose that there is a vertex in G colored by v and adjacent to vertices colored by
x1, . . . , xd. Then v must be the center vertex of some neighborhood in SX (and thus, from
S).

Thus we have the existence of a finite graph G′ which satisfies S. Note that G and
therefore G′ may or may not be connected but that connectedness is irrelevant for satis-
faction.

Now suppose that there is a graph G which satisfies S. Let SX be the multi-set of
neighborhoods in G and let X prescribe the number of each type of neighborhood in
G. Enumerate the vertices of G. If ui is adjacent to vj in G, then we must have that
(Ni, u, v)M(Nj, v, u). Thus, G prescribes a perfect matching on MX .

Thus, we have shown:

3.7 Theorem. If X is a nontrivial vector with nonnegative integer values such that the
set TX has an even number of each type of symmetric twigs, the following are equivalent:

the electronic journal of combinatorics 17 (2010), #R161 14



1. X satisfies AX = 0,

2. There is a perfect matching on the set TX ,

3. There is a finite connected graph whose neighborhood set is contained in S.

So there is a finite graph satisfying S if and only if there is a non-trivial, nonnegative
integer solution X to the equation AX = 0. An algorithm known as the Ellipsoid Method
can be used to solve linear programming problems in polynomial time [6]. The solution
set to a linear programming problem can be restricted to nonnegative integer solutions.
Thus, the Ellipsoid Method allows us to check in polynomial time for the existence of a
non-trivial, nonnegative integer valued vector satisfying AX = 0.

Thus, we have shown that the sufficiency of S can be determined in polynomial time.
Now we will look at the complexities of the same problem for realizability and consistency.

We have shown that there is a polynomial time algorithm for determining the suffi-
ciency of S by a finite graph. The proof showed that S is sufficient if and only if there
is a nonnegative (non-trivial) vector X such that AX = 0. The vector X prescribes the
number of each type of neighborhood required to guarantee a perfect matching of all the
twigs in TX . Thus, if we require that X has all positive integer entries, then there would
be a perfect matching in which every neighborhood was represented at least once. The
linear programming techniques used to determine the existence of such a vector X still
run in polynomial time even if we require X to have only positive integer entries. We will
use this idea to prove that realizability and consistency can be determined in polynomial
time.

3.8 Theorem. The consistency of S by a finite graph can be determined in polynomial
time with respect to n (the number of neighborhoods in S) and the number of colors in C.

Proof. We construct the matrix A just as before so that the a{c,c′},N entry will be given
by:

a{c,c′},N =
∑

twigs (N,c,c′)

1 −
∑

twigs (N,c′,c)

1.

Theorem 3.6 showed that there is a nontrivial nonnegative valued vector X satisfying
AX = 0 if and only if there is a finite (possibly not connected) graph G witnessing
every neighborhood prescribed by SX . We require X to have only positive integer entries.
In this case, G must witness every neighborhood from S at least once. Thus, for any
neighborhood N in S, the connected component containing N is a finite connected graph
witnessing N and only exhibiting neighborhoods from S. Conversely, if G is a graph
which witnesses the neighborhood N and exhibits only neighborhoods from S, then there
is a non-trivial nonnegative integer valued vector X satisfying AX = 0. If we sum
the vectors corresponding to every neighborhood N in S, the resulting vector Y must
satisfy AY = 0 and must have all positive integer entries. Thus, there is a vector X with
positive integer entries satisfying AX = 0 if and only if S is consistent. As before, we may
determine, in polynomial time, the existence of such a vector X using linear programming
techniques.

the electronic journal of combinatorics 17 (2010), #R161 15



The algorithm for determining the realizability of S will work in much the same way.
Unfortunately, there is one problem with realizability: we require that the witnessing
graph be connected (unlike sufficiency and consistency where we are only interested in
realizing a connected component of the graph). The finite graph constructed from the
perfect matching may or may not yield a connected graph. We can however, determine in
polynomial time whether there is a connected graph. We will show this by determining
in, polynomial time, the existence of a partial matching on MX and we will show that
this partial matching can always be extended to a perfect matching on MX .

3.9 Lemma. Let X be a vector with positive integer entries. Every partial matching in
MX can be extended to a perfect matching in MX if X satisfies AX = 0.

Proof. Suppose (V1, V2, E) is the bipartite graph description of MX from the proof of
Lemma 3.3. Let W1 ⊂ V1 and W2 ⊂ V2 be subsets of vertices from MX such that there
is a perfect matching on (W1, W2, E); in other words, let (W1, W2, E

′) describe a partial
matching on MX . We will show that we may extend this partial matching to a perfect
matching on MX by creating a perfect matching on (V1 − W1, V2 − W2, E).

Let U be a subset of V1 − W1. Hall’s condition requires that the size of the set of
vertices adjacent to any vertex in U is greater than or equal to the size of U . Notice that
since there is a perfect matching on (W1, W2, E

′), we have that the size of W1 is equal
to the size of W2. Thus, the number of vertices in V1 − W1 is the same as the number
of vertices in V2 − W2. Furthermore, if there are m vertices in V1 − W1 corresponding
to twigs with endpoint colors c, c′, then there are m vertices in V2 − W2 corresponding
to twigs with endpoints c′, c. Thus, by Hall’s Theorem, there is a perfect matching on
(V1−W1, V2−W2, E). Thus, we have extended the partial matching to a perfect matching
on MX .

3.10 Theorem. The realization of S by a finite connected graph is decidable in polynomial
time with respect to n (the number of neighborhoods in S) and the number of colors in C.

Proof. As before, we construct the matrix A corresponding to S. Theorem 3.8 showed
that there is a finite (possibly non-connected) graph G such that the set of neighborhoods
in G is exactly S if and only if there is a vector X with positive integer valued entries
satisfying AX = 0. Furthermore, we know that determining the existence of such a vector
X can be done in polynomial time.

We showed in section 2 that the de Bruijn graph B can be constructed in polynomial
time with respect to n and the size of C. We can thus check in polynomial time whether
the de Bruijn graph is connected. If the de Bruijn graph is not connected then there can
be no connected graph realizing S since every path in B corresponds to a path in a graph
and vice versa. Thus, we assume that B is connected. Since it is connected we can find a
spanning tree in B. Let the multi-set SY be the collection of all neighborhoods prescribed
by this spanning tree. From SY we can build a connected piece of a finite graph which
realizes S. Suppose that X is a positive integer valued vector satisfying AX = 0. Let Z
be a nonnegative valued vector such that Y + Z is equal to some scalar multiple of X,
say mX. We may assume that TY +Z has an even number of each type of symmetric twig

the electronic journal of combinatorics 17 (2010), #R161 16



since we may choose Z however we wish. Thus we have that A(Y + Z) = 0, and that
there is a perfect matching on MY +Z as well as on all the symmetric twigs.

Let the spanning tree of B prescribe the partial matching on MY +Z ; thus it gives a
perfect matching on MY . We showed in Lemma 3.9 that this partial matching may be
extended to a perfect matching on MY +Z . We then use this perfect matching to build
a finite graph whose set of neighborhoods is exactly S. This graph still may not be con-
nected but we know that there is at least one component (the component containing every
neighborhood from Y ) which realizes S. Thus, we may eliminate all other components
and we have a connected graph G which realizes S. Let W be the vector describing the
multi-set of neighborhoods in the finite connected graph G. Note that G prescribes a
perfect matching on MW . Thus, by Lemma 3.3 we have that W satisfies AW = 0. The
vector W must have positive integer entries since every neighborhood appears at least
once in the graph constructed from W .

Thus we have shown that the de Bruijn graph corresponding to S is connected and
there is a positive integer valued vector W such that AW = 0 if and only if there is a
finite connected graph G which realizes S. The connectedness of the de Bruijn graph and
the existence of a vector W can be verified in polynomial time. Thus, we have that the
realizability of S can be verified in polynomial time.

4 Conclusion

Given a set S of arbitrary neighborhoods (not necessarily tree neighborhoods), the prob-
lem of determining whether or not there is a graph realizing S is recursively undecidable.
We showed that by restricting the set S to tree neighborhoods, we can improve the com-
putational bounds. Furthermore, if we require the graph to be an infinite tree then the
problem of determining the realizability of S via such a graph is NP-complete. If however
we wish to determine the realizability of S via a finite graph, the problem is in P.

In the first author’s exploration of the recursively undecidable general case, all the
neighborhoods had many cycles and were quite dense. We continue to explore how the
condition of allowing cycles in our neighborhoods affects the computational complexity of
realizing or satisfying a set of neighborhoods. Some progress has been made in this realm
but there is still more to be done.

References

[1] Sanjeev Arora and Ronald Fagin. On winning strategies in Ehrenfeucht-Fräıssé games.
Theoret. Comput. Sci., 174(1-2):97–121, 1997.

[2] V. K. Bulitko. Graphs with prescribed environments of the vertices. Trudy Mat. Inst.
Steklov., 133:78–94, 274, 1973. Mathematical logic, theory of algorithms and theory
of sets (dedicated to P. S. Novikov on the occasion of his seventieth birthday).

[3] A. Ehrenfeucht. An application of games to the completeness problem for formalized
theories. Fund. Math., 49:129–141, 1960/1961.

the electronic journal of combinatorics 17 (2010), #R161 17



[4] Rachel M. Esselstein. On the Complexity of Building a Graph with Given Neighbor-
hoods. Ph.D. Thesis. Dartmouth College, May 31, 2007.

[5] P. Hall. On representatives of subsets. Proc. London Math. Soc. (3), 10:26–30, 1935.

[6] L. G. Khachian. A polynomial algorithm in linear programming. Doklady Akademiia
Nauk SSSR, 244:1093–1096, 1979.

[7] Thomas Schwentick. On winning Ehrenfeucht games and monadic NP. Ann. Pure
Appl. Logic, 79(1):61–92, 1996.

the electronic journal of combinatorics 17 (2010), #R161 18


	Introduction
	Realizability via Infinite Trees
	Realizability via Finite Graphs
	Conclusion

