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Abstract

The algebraic connectivity of a graph G is the second smallest eigenvalue of its
Laplacian matrix. Let Bn be the set of all bicyclic graphs of order n. In this paper,
we determine the last four bicyclic graphs (according to their smallest algebraic
connectivities) among all graphs in Bn when n > 13. This result, together with
our previous results on trees and unicyclic graphs, can be used to further determine
the last sixteen graphs among all connected graphs of order n. This extends the
results of Shao et al. [The ordering of trees and connected graphs by their algebraic
connectivity, Linear Algebra Appl. 428 (2008) 1421-1438].
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1 Introduction

Let G be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G).
For v ∈ V (G), let NG(v) (or N(v) for short) be the set of vertices which are adjacent to
v in G and d(v) = |N(v)| be the degree of v. For any e ∈ E(G), we use G − e to denote
the graph obtained by deleting e from G. Readers are referred to [2] for undefined terms.

Let A(G) and D(G) be the adjacency matrix and the diagonal matrix of vertex degrees
of G, respectively. The Laplacian matrix of G is defined as L(G) = D(G)−A(G). It is easy
to see that L(G) is a symmetric positive semidefinite matrix having 0 as an eigenvalue.
Thus, the eigenvalues µi(G)’s of L(G) (or the Laplacian eigenvalues of G) satisfy

µ1(G) > µ2(G) > · · · > µn(G) = 0,

repeated according to their multiplicities. Fiedler [6] showed that the second smallest
Laplacian eigenvalue µn−1(G) is 0 if and only if G is disconnected. Thus µn−1(G) is
popularly known as the algebraic connectivity of G and is usually denoted by α(G).
Recently, the algebraic connectivity has received much more attention, see [1] for survey.
It has be found a lot of applications in theoretical chemistry, control theory, combinatorial
optimization, etc (see [1, 4, 6]).

Let Tn, Un Bn and Gn be the sets of all trees, unicyclic graphs, bicyclic graphs and
connected graphs of order n, respectively. Let U g

n be the set of all unicyclic graphs of
order n with girth g. Let Cn,g be the graph obtained by appending a cycle Cg to a pendant
vertex of Pn−g. Clearly, Cn,g ∈ U g

n .
Cvetković et al. [4] proposed some possible directions for further investigations on

graph spectra. One of which is how to order graphs according to their (Laplacian) eigen-
values. Hence ordering graphs with various properties by their spectra, specially by their
algebraic connectivity becomes an attractive topic. In particular, Shao et al. [12] deter-
mined the last four trees (according to their smallest algebraic connectivities) among all
trees in Tn. In [10], we further extend this result to the last eight trees. Those results
can be combined into the following theorem.

Theorem 1.1 ([12, 10]) Let T ∈ Tn \ {T1, T2, T3, T4, T5, T6, T7, T8} with n > 13. Then
α(T ) > max{α(T7), α(T8)}. Moreover, α(T1) < α(T2) < α(T3) < α(T4) < α(T5) <
α(T6) < min{α(T7), α(T8)}, where T1, . . . , T8 are shown in Fig. 1.

Guo [7, 8] proved the following theorem which was conjectured by Fallat and Kirk-
land [5].

Theorem 1.2 ([7, 8]) Let G be a connected graph of order n with girth g > 3. Then

(1) α(G) > α(Cn,g), and the equality holds if and only if G ∼= Cn,g.

(2) α(Cn,g+1) > α(Cn,g).
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Figure 1: Trees Ti (1 6 i 6 8).

Moreover, this result was used by Guo [8] to determine the graph with first smallest
algebraic connectivity among all graphs in Un. Recently, Liu and Liu [11] further deter-
mined the graphs with the second and the third smallest algebraic connectivities among
all graphs in Un, respectively. So, the last three unicyclic graphs (according to their
smallest algebraic connectivities) are determined as U1, U2 and U3 (shown in Fig. 2), re-
spectively. In [9], we further determine the fourth to seventh unicyclic graphs, which
are U4, U5, U6 and U7 (shown in Fig. 2), respectively. We combine these results into the
following theorem.

Theorem 1.3 ([8, 11, 9]) Let U ∈ Un \ {U1, U2, U3, U4, U5, U6, U7} with n > 13. Then
α(U) > α(U7). Moreover, α(U1) < α(U2) < α(U3) < α(U4) < α(U5) < α(U6) < α(U7).
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Figure 2: Unicyclic graphs Ui (1 6 i 6 7).

Moreover, Shao et al. [12] determined the last six graphs (according to their smallest
algebraic connectivities) among all connected graphs in Gn when n > 9. In this six
graphs, only one graph B1 (shown in Fig. 4) is a bicyclic graph. That is to say, they also
determined the graph B1 which has the minimum algebraic connectivity among all graphs

the electronic journal of combinatorics 17 (2010), #R162 3



in Bn. In this paper, we further extend their result to the last four bicyclic graphs. These
together with the previous result on the trees and unicyclic graphs, we can extend the
ordering of connected graphs by their smallest algebraic connectivities form the last six
connected graphs to the last sixteen connected graphs.

2 Preliminaries

In this section, we present some lemmas which will be used in the subsequent sections.

Lemma 2.1 ([3]) Let G be a graph of order n which does not isomorphic to the complete
graph Kn and let G′ = G + e be the graph obtained from G by adding a new edge e. Then
the Laplacian eigenvalues of G and G′ interlace, that is

µi+1(G
′) 6 µi(G) 6 µi(G

′) for 1 6 i 6 n − 1.

Lemma 2.2 ([12]) Let G be a connected graph of order n. Suppose that v1, . . . , vs (s > 2)
are non-adjacent vertices of G and N(v1) = · · · = N(vs). Let Gt be a graph obtained from

G by adding any t (0 6 t 6
s(s−1)

2
) edges among v1, . . . , vs. If α(G) 6= d(v1), then

α(G) = α(Gt).

In [9], we proved two useful results on the smallest algebraic connectivity of unicyclic
graphs with girth 3 or 4.

Lemma 2.3 ([9]) Let U ∈ U 3
n \{U1, U2, U3, U5, U6, U7} with n > 13, where Ui are shown

in Fig. 2. Then α(U) > α(U7). Moreover α(U1) < α(U2) < α(U3) < α(U5) < α(U6) <
α(U7).

Lemma 2.4 ([9]) For each U ∈ U 4
n \ {Cn,4

∼= U4} with n > 8, α(U) > α(U7).

3 Bicyclic graphs

Firstly, we introduce some notations that are used in this section. Let ∞ (coalescence
of two cycles C3) be the graph shown in Fig. 3. Let B∞

n be the set of all bicyclic graphs
of order n which consist of ∞ and five trees T1, T2, T3, T4 and T5 attached at the vertices
v1, v2, v3, v4 and v5, respectively, where vi ∈ V (Ti) for i = 1, 2, 3, 4, 5. Let θ (shown in
Fig. 3) be the graph obtained from a cycle C4 (= v1v2v3v4v1) by adding a new edge v1v3.
Let Bθ

n be the set of all bicyclic graphs of order n which consist of θ and four trees T1, T2, T3

and T4 attached at the vertices v1, v2, v3 and v4, respectively. Assume that |V (Ti)| = ni

for i = 1, 2, 3, 4. Clearly, n1 + n2 + n3 + n4 = n. Then for each B ∈ Bθ
n, we write

B = θ4(T1, T2, T3, T4). We also write B = θ4(i, j, k, l) instead of θ4(Pi+1, Pj+1, Pk+1, Pl+1),
where i, j, k, l > 0. Clearly, B2 = θ4(0, n − 4, 0, 0) and B3 = θ4(n − 4, 0, 0, 0), where B2

and B3 are shown in Fig. 4.
Now, we give the first four bicyclic graphs of order n > 13 with smallest algebraic

connectivity.
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Figure 3: Bicyclic graphs ∞ and θ.

Theorem 3.1 Let B ∈ Bn \ {B1, B2, B3, B4} with n > 13. Then α(B) > α(B4). More-
over, α(B1) < α(B2) < α(B3) < α(B4), where B1, B2, B3, B4 are shown in Fig. 4.
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Figure 4: Bicyclic graphs Bi (1 6 i 6 4).

Proof. Firstly, by Lemma 2.2, it is easy to see that α(B1) = α(U2), α(B2) = α(U4),
α(B3) = α(U5) and α(B4) = α(U7). Thus, by Theorem 1.3, we have α(B1) < α(B2) <
α(B3) < α(B4).

For each B ∈ Bn, let Ck and Cl be two independent cycles in B, where 3 6 k 6 l. If
l > 5, then we may delete one of the edges in E(Ck), say e, such that B − e ∈ U l

n . Thus,
by Lemma 2.1 and Theorems 1.2 and 1.3, we have

α(B) > α(B − e) > α(Cn,l) > α(Cn,5) > α(U7) = α(B4).

In the following we suppose that l 6 4. We consider the following two cases.

Case 1 |V (Ck) ∩ V (Cl)| 6 1.

(a) l = 4.
In this case, we always can choose some edge, say e, in Ck (k = 3, 4) such
that B − e ∈ U 4

n and B − e does not isomorphic to Cn,4. Thus, Lemmas 2.1
and 2.4 imply that

α(B) > α(B − e) > α(U7) = α(B4).

(b) k = l = 3
If |V (Ck) ∩ V (Cl)| = 1, then B ∈ B∞

n . In this case, we always can choose
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some edge, say e, in Ck or Cl such that B − e ∈ U 3
n and B − e does not

isomorphic to one of graphs U1, U2, U3, U5, U6, U7. Thus, Lemmas 2.1 and 2.3
imply that

α(B) > α(B − e) > α(U7) = α(B4).

If |V (Ck) ∩ V (Cl)| = 0 and B does not isomorphic to B1 or B4, then B
must be a bicyclic graph which consists of the graph H (here H is a bicyclic
graph obtained by joining the vertex u of C3(= uu1u2u) and the vertex v of
C3(= vv1v2v) with a path Puv, shown in Fig. 5) and some trees which attached
at some vertices of H , respectively. If there is a tree Ti with |V (Ti)| > 2

u v

1
u 1

v

2
u

2
v

{ uv
P

Figure 5: Bicyclic graph H , where u 6= v.

attached at some vertex belonging to Puv (in H), then we have B−u1u2 ∈ U 3
n

(or B − v1v2 ∈ U 3
n ) and B − u1u2 (or B − v1v2) does not isomorphic to one

of graphs U1, U2, U3, U5, U6, U7. Thus, Lemmas 2.1 and 2.3 imply that

α(B) > α(B − u1u2)(or α(B − v1v2)) > α(U7) = α(B4).

If there are four trees T1, T2, T3 and T4 attached at the vertices u1, u2, v1

and v2, respectively. Suppose that |V (Ti)| = ni > 1 for i = 1, 2, 3, 4, where
n1 + n2 + n3 +n4 = n− |V (Puv)|. If one of n1, n2, n3, n4 is more than 3, then
by the same reasoning, we may delete one of the edges u1u2 and v1v2 such
that the resulting graph is in U 3

n and does not isomorphic to one of graphs
U1, U2, U3, U5, U6, U7. Thus the result follows.

Similarly, if n1 = 2 and n2 = 2 (or n3 = 2 and n4 = 2), the result also
follows. Now, recall that B does not isomorphic to B1 or B4, by symmetric,
it suffices to consider n1 = 2, n2 = 1, n3 = 2 and n4 = 1, such a graph can be
denoted by B†. Then by Lemmas 2.1 and 2.3, we have

α(B†) > α(B† − u1u2)(or α(B† − v1v2)) > α(U7) = α(B4).

Case 2 |V (Ck) ∩ V (Cl)| > 1.

(a) l = 4.
In this case |V (Ck) ∩ V (Cl)| 6 3. If |V (Ck) ∩ V (Cl)| = 3, then k = 4.
Therefore, B must be a bicyclic graph which consists of the graph H ′ (shown
in Fig. 6) and five trees attached at each vertex of H ′, respectively. If B does
not isomorphic to B∗ (shown in Fig. 6), we may delete one of the common
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edges, say e, in E(Ck) ∩ E(Cl) such that B − e ∈ U 4
n and B − e does not

isomorphic to Cn,4. Then Lemmas 2.1 and 2.4 imply that

α(B) > α(B − e) > α(U7) = α(B4);

if B ∼= B∗, we may delete one of the edges in E(Ck)∪E(Cl)/E(Ck)∩E(Cl),
by the same reasoning, the result follows. If |V (Ck)∩V (Cl)| = 2, then we can

H ¢ B
*

Figure 6: Bicyclic graphs H ′ and B∗.

delete the common edge, say e, of Ck and Cl such that B − e ∈ U 5
n or U 6

n ,
the result follows from Theorem 1.2 and the fact α(Cn,5) > α(B4).

(b) k = l = 3.
Since B ∈ Bθ

n, B can be rewrote as B = θ4(T1, T2, T3, T4), and |V (Ti)| = ni

for i = 1, 2, 3, 4, where n1 + n2 + n3 + n4 = n.

If at least two of n1, n2, n3, n4 are great than 1, then B − v1v3 ∈ U 4
n and

B − v1v3 does not not isomorphic to Cn,4. Then Lemmas 2.1 and 2.4 imply
that

α(B) > α(B − e) > α(U7) = α(B4).

If only one of n1, n2, n3, n4 is more than 1, by symmetric, we may assume that
n1 > 2 or n2 > 2. Therefore, B ∼= θ4(T1, P1, P1, P1) or B ∼= θ4(P1, T2, P1, P1).
If θ4(T1, P1, P1, P1) does not isomorphic to B3 and θ4(P1, T2, P1, P1) does not
isomorphic to B2. That is, θ4(T1, P1, P1, P1)−v1v3 and θ4(P1, T2, P1, P1)−v1v3

do not isomorphic to Cn,4, respectively. Then Lemma 2.1 and Theorem 2.4
imply that

α(θ4(T1, P1, P1, P1)) > α(θ4(T1, P1, P1, P1) − v1v3) > α(U7) = α(B4)

and

α(θ4(P1, T2, P1, P1)) > α(θ4(P1, T2, P1, P1) − v1v3) > α(U7) = α(B4).

This completes the proof. �

4 Connected graphs

In Section 3, we determined the last four bicyclic graphs according to their smallest
algebraic connectivities among all graphs in Bn with n > 13. Combing with the results on

the electronic journal of combinatorics 17 (2010), #R162 7



the orderings of the trees and unicyclic graphs, in this section, we extend the ordering of
connected graphs from the last six connected graphs to the last sixteen connected graphs.
Before giving the main result of this section, the following preliminary results are needed.

Lemma 4.1 Let G be a connected graph of order n > 13 which contains exactly n + 2
edges. If ∆(G) = 3, then α(G) > α(B4).

Proof. Let v be a vertex of degree 3 in G, e be an edge on some cycle C of G such that
e is not incident with v, and G′ = G − e. Then G′ ∈ Bn with ∆(G′) = 3.

Case 1 G′ does not isomorphic to B1 or B2.

Since ∆(G′) = 3, by Theorem 3.1, we have α(G′) > α(B4). This together with
Lemma 2.1 imply that α(G) > α(G′) > α(B4).

Case 2 G′ ∼= B1 or G′ ∼= B2.

If G′ ∼= B1 (shown in Fig. 4), let e1 = u1u2 and e2 = v1v2 be the edges on the
cycles C1 and C2 of G′, respectively, such that the degrees of u1, u2, v1 and v2 in
G′ are all 2. Then in G = G′ + e, at least one of u1, u2, v1 and v2, say u1, has
degree 2. Now, let G′′ = G − e1. Then G′′ ∈ Bn with ∆(G′′) = 3. Clearly, G′′

does not isomorphic to B1 or B2. Thus the result follows from Case 1.

Similarly, if G′ ∼= B2 (shown in Fig. 4), then in G = G′ + e, u2 u3 and u4 have
degrees 3, respectively. Let G′′ = G − u1u2. Then G′′ ∈ Bn with ∆(G′′) = 3.
Clearly, G′′ does not isomorphic to B1 or B2. Thus the result also follows from
Case 1. This completes the proof. �

Lemma 4.2 Let G be a connected graph of order n > 13 with maximum degree ∆(G) = 4.
If G does not isomorphic to one of G11, G12, G13, G14, then α(G) > α(G15) (or α(G16)),
where G11, G12, G13, G14, G15 and G16 are shown in Fig. 7.

Proof. By Lemma 2.2, we have α(G15) = α(G16) and α(U7) = α(B4). Thus Theorem 1.3
implies that α(B4) > α(G16). Let m = |E(G)| be the edge number of G. Since G ∈ Gn

with n > 13, we consider the following three cases.

Case 1 m = n − 1, n, n + 1

In this case, the results follow from Theorems 1.1, 1.3 and 3.1, respectively.

Case 2 m = n + 2

Let v be a vertex of degree 4 in G, e be an edge on some cycle C of G such that
e is not incident with v. Let G′ = G − e. Then G′ ∈ Bn with ∆(G′) = 4.

If G′ does not isomorphic to B3 (also does not isomorphic to one of B1, B2, B4),
then from Theorem 3.1, we have α(G′) > α(B4). This together with Lemma 2.1
and α(B4) > α(G16) lead to the result follows.
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If G′ ∼= B3 (shown in Fig. 4), since G does not isomorphic to G14, then in
G = G′ + e, at least one of u2 and u4, say u2, has degree 2. Let G′′ = G − u1u2.
Clearly, G′′ ∈ Bn with ∆(G′′) = 4 and G′′ does not isomorphic to B3 since G′′

contains a vertex u2 with degree 1. Thus the result also follows from Lemma 2.1
and Theorem 3.1 with α(B4) > α(G16).

Case 3 m > n + 3

In this case, it suffices to prove that for any connected graph G of order n > 13
with exactly n + 3 edges, if ∆(G) = 4, then α(G) > α(G15) (or α(G16)) (since
if G with m > n + 3, we may delete m − (n + 3) edges from G such that the
resulting graph (with n + 3 edges) is connected). Let v be a vertex of degree 4
in G, e be an edge on some cycle C of G such that e is not incident with v, and
G′ = G − e. Then G′ with exactly n + 2 edges and ∆(G′) = 4.

If G′ does not isomorphic to G14, then the result follows from Case 2 and
Lemma 2.1.

If G′ ∼= G14, let v1, v2 and v3 (where v1 is join to the vertex with degree 4) be
the vertices of G′ with degrees 3, respectively. In G = G′ + e, we delete the
edges v1v2 and v1v3, and the resulting graph is denoted by G′′. Clearly, G′′ ∈ Bn

with ∆(G′′) = 4 and G′′ does not isomorphic to B3. Then by Lemma 2.1 and
Theorem 3.1, we have α(G) > α(G′′) > α(B4) > α(G15) = α(G16).

The proof is completed. �

Now, we give the main result of this section.

Theorem 4.3 Let G ∈ Gn \ {G1, G2, . . . , G16} with n > 13. Then α(G) > α(G16).
Moreover, α(G1) < α(G2) = α(G3) < α(G4) = α(G5) = α(G6) < α(G7) < α(G8) <
α(G9) = α(G10) < α(G11) = α(G12) = α(G13) = α(G14) < α(G15) = α(G16), where
G1, . . . , G16 are shown in Fig. 7 and G1

∼= T1, G2
∼= T2, G3

∼= U1, G4
∼= T3, G5

∼= U2, G6
∼=

B1, G7
∼= T4, G8

∼= U3, G9
∼= U4, G10

∼= B2, G11
∼= T5, G12

∼= U5, G13
∼= B3, G15

∼= T6, G16
∼=

U6.

Proof. By Lemma 2.2, we have α(G2) = α(G3), α(G4) = α(G5) = α(G6), α(G9) =
α(G10), α(G11) = α(G12) = α(G13) = α(G14), α(G15) = α(G16) and α(U7) = α(B4). This
together with Theorems 1.1, 1.3 and 3.1, we have α(G1) < α(G2) = α(G3) < α(G4) =
α(G5) = α(G6) < α(G7) < α(G8) < α(G9) = α(G10) < α(G11) = α(G12) = α(G13) =
α(G14) < α(G15) = α(G16) and α(B4) > α(G16).

Since G ∈ Gn with n > 13, we consider the following four cases.

Case 1 ∆(G) = 2.

Then G ∼= Cn since G does not isomorphic to Pn (or G1). From [3], we have

α(Cn) = 4 sin2 π
n

and α(Pn) = 4 sin2 π
2(n−1)

.
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Figure 7: Connected graphs Gi (1 6 i 6 16).

Moreover, Pn−1 is a subtree of T7. Combining with Lemma 2.1 and Theorem 1.1,
we have

α(Cn) > α(Pn−1) > α(T7) > α(G15) = α(G16).

Case 2 ∆(G) = 3.

Let m = |E(G)|. For m = n−1, n, n+1, the results follow from Theorems 1.1, 1.3
and 3.1, respectively. For m = n + 2, the result follows from Lemma 4.1 with
α(B4) > α(G16). For m > n + 2, we can delete m − (n + 2) edges from G such
that the resulting graph is also a connected graph with n + 2 edges. Thus the
result also follows from Lemmas 2.1 and 4.1.

Case 3 ∆(G) = 4.

The result follows from Lemma 4.2.

Case 4 ∆(G) > 5.

Then G contains a spanning tree T with ∆(T ) = ∆(G) > 5. Clearly, T does
not isomorphic to one of T1, . . . , T8. Thus the result follows from Lemma 2.1 and
Theorem 1.1.

The proof is completed. �
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