The orderings of bicyclic graphs and connected graphs by algebraic connectivity*

Jianxi Li
Department of Mathematics \& Information Science
Zhangzhou Normal University
Zhangzhou, Fujian, P. R. China
fzjxli@tom.com
Ji-Ming Guo
Department of Applied Mathematics
China University of Petroleum
Dongying, Shandong, P. R. China
jimingguo@hotmail.com
Wai Chee Shiu
Department of Mathematics
Hong Kong Baptist University
Kowloon Tong, Hong Kong, P. R. China
wcshiu@hkbu.edu.hk

Submitted: May 31, 2010; Accepted: Nov 15, 2010; Published: Dec 3, 2010
Mathematics Subject Classifications: 05C50
Keywords: bicyclic graph, connected graph, algebraic connectivity, order

Abstract

The algebraic connectivity of a graph G is the second smallest eigenvalue of its Laplacian matrix. Let \mathscr{B}_{n} be the set of all bicyclic graphs of order n. In this paper, we determine the last four bicyclic graphs (according to their smallest algebraic connectivities) among all graphs in \mathscr{B}_{n} when $n \geqslant 13$. This result, together with our previous results on trees and unicyclic graphs, can be used to further determine the last sixteen graphs among all connected graphs of order n. This extends the results of Shao et al. [The ordering of trees and connected graphs by their algebraic connectivity, Linear Algebra Appl. 428 (2008) 1421-1438].

[^0]
1 Introduction

Let G be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E(G)$. For $v \in V(G)$, let $N_{G}(v)$ (or $N(v)$ for short) be the set of vertices which are adjacent to v in G and $d(v)=|N(v)|$ be the degree of v. For any $e \in E(G)$, we use $G-e$ to denote the graph obtained by deleting e from G. Readers are referred to [2] for undefined terms.

Let $A(G)$ and $D(G)$ be the adjacency matrix and the diagonal matrix of vertex degrees of G, respectively. The Laplacian matrix of G is defined as $L(G)=D(G)-A(G)$. It is easy to see that $L(G)$ is a symmetric positive semidefinite matrix having 0 as an eigenvalue. Thus, the eigenvalues $\mu_{i}(G)$'s of $L(G)$ (or the Laplacian eigenvalues of G) satisfy

$$
\mu_{1}(G) \geqslant \mu_{2}(G) \geqslant \cdots \geqslant \mu_{n}(G)=0
$$

repeated according to their multiplicities. Fiedler [6] showed that the second smallest Laplacian eigenvalue $\mu_{n-1}(G)$ is 0 if and only if G is disconnected. Thus $\mu_{n-1}(G)$ is popularly known as the algebraic connectivity of G and is usually denoted by $\alpha(G)$. Recently, the algebraic connectivity has received much more attention, see [1] for survey. It has be found a lot of applications in theoretical chemistry, control theory, combinatorial optimization, etc (see $[1,4,6]$).

Let $\mathscr{T}_{n}, \mathscr{U}_{n} \mathscr{B}_{n}$ and \mathscr{G}_{n} be the sets of all trees, unicyclic graphs, bicyclic graphs and connected graphs of order n, respectively. Let \mathscr{U}_{n}^{g} be the set of all unicyclic graphs of order n with girth g. Let $C_{n, g}$ be the graph obtained by appending a cycle C_{g} to a pendant vertex of P_{n-g}. Clearly, $C_{n, g} \in \mathscr{U}_{n}^{g}$.

Cvetković et al. [4] proposed some possible directions for further investigations on graph spectra. One of which is how to order graphs according to their (Laplacian) eigenvalues. Hence ordering graphs with various properties by their spectra, specially by their algebraic connectivity becomes an attractive topic. In particular, Shao et al. [12] determined the last four trees (according to their smallest algebraic connectivities) among all trees in \mathscr{T}_{n}. In [10], we further extend this result to the last eight trees. Those results can be combined into the following theorem.

Theorem 1.1 ([12, 10]) Let $T \in \mathscr{T}_{n} \backslash\left\{T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}, T_{7}, T_{8}\right\}$ with $n \geqslant 13$. Then $\alpha(T)>\max \left\{\alpha\left(T_{7}\right), \alpha\left(T_{8}\right)\right\}$. Moreover, $\alpha\left(T_{1}\right)<\alpha\left(T_{2}\right)<\alpha\left(T_{3}\right)<\alpha\left(T_{4}\right)<\alpha\left(T_{5}\right)<$ $\alpha\left(T_{6}\right)<\min \left\{\alpha\left(T_{7}\right), \alpha\left(T_{8}\right)\right\}$, where T_{1}, \ldots, T_{8} are shown in Fig. 1.

Guo $[7,8]$ proved the following theorem which was conjectured by Fallat and Kirkland [5].

Theorem $1.2([7,8])$ Let G be a connected graph of order n with girth $g \geqslant 3$. Then
(1) $\alpha(G) \geqslant \alpha\left(C_{n, g}\right)$, and the equality holds if and only if $G \cong C_{n, g}$.
(2) $\alpha\left(C_{n, g+1}\right)>\alpha\left(C_{n, g}\right)$.

Figure 1: Trees $T_{i}(1 \leqslant i \leqslant 8)$.

Moreover, this result was used by Guo [8] to determine the graph with first smallest algebraic connectivity among all graphs in \mathscr{U}_{n}. Recently, Liu and Liu [11] further determined the graphs with the second and the third smallest algebraic connectivities among all graphs in \mathscr{U}_{n}, respectively. So, the last three unicyclic graphs (according to their smallest algebraic connectivities) are determined as U_{1}, U_{2} and U_{3} (shown in Fig. 2), respectively. In [9], we further determine the fourth to seventh unicyclic graphs, which are U_{4}, U_{5}, U_{6} and U_{7} (shown in Fig. 2), respectively. We combine these results into the following theorem.

Theorem $1.3([8,11,9])$ Let $U \in \mathscr{U}_{n} \backslash\left\{U_{1}, U_{2}, U_{3}, U_{4}, U_{5}, U_{6}, U_{7}\right\}$ with $n \geqslant 13$. Then $\alpha(U)>\alpha\left(U_{7}\right)$. Moreover, $\alpha\left(U_{1}\right)<\alpha\left(U_{2}\right)<\alpha\left(U_{3}\right)<\alpha\left(U_{4}\right)<\alpha\left(U_{5}\right)<\alpha\left(U_{6}\right)<\alpha\left(U_{7}\right)$.

Figure 2: Unicyclic graphs $U_{i}(1 \leqslant i \leqslant 7)$.
Moreover, Shao et al. [12] determined the last six graphs (according to their smallest algebraic connectivities) among all connected graphs in \mathscr{G}_{n} when $n \geqslant 9$. In this six graphs, only one graph B_{1} (shown in Fig. 4) is a bicyclic graph. That is to say, they also determined the graph B_{1} which has the minimum algebraic connectivity among all graphs
in \mathscr{B}_{n}. In this paper, we further extend their result to the last four bicyclic graphs. These together with the previous result on the trees and unicyclic graphs, we can extend the ordering of connected graphs by their smallest algebraic connectivities form the last six connected graphs to the last sixteen connected graphs.

2 Preliminaries

In this section, we present some lemmas which will be used in the subsequent sections.
Lemma 2.1 ([3]) Let G be a graph of order n which does not isomorphic to the complete graph K_{n} and let $G^{\prime}=G+e$ be the graph obtained from G by adding a new edge e. Then the Laplacian eigenvalues of G and G^{\prime} interlace, that is

$$
\mu_{i+1}\left(G^{\prime}\right) \leqslant \mu_{i}(G) \leqslant \mu_{i}\left(G^{\prime}\right) \text { for } 1 \leqslant i \leqslant n-1
$$

Lemma 2.2 ([12]) Let G be a connected graph of order n. Suppose that $v_{1}, \ldots, v_{s}(s \geqslant 2)$ are non-adjacent vertices of G and $N\left(v_{1}\right)=\cdots=N\left(v_{s}\right)$. Let G_{t} be a graph obtained from G by adding any $t\left(0 \leqslant t \leqslant \frac{s(s-1)}{2}\right)$ edges among v_{1}, \ldots, v_{s}. If $\alpha(G) \neq d\left(v_{1}\right)$, then $\alpha(G)=\alpha\left(G_{t}\right)$.

In [9], we proved two useful results on the smallest algebraic connectivity of unicyclic graphs with girth 3 or 4.

Lemma 2.3 ([9]) Let $U \in \mathscr{U}_{n}^{3} \backslash\left\{U_{1}, U_{2}, U_{3}, U_{5}, U_{6}, U_{7}\right\}$ with $n \geqslant 13$, where U_{i} are shown in Fig. 2. Then $\alpha(U)>\alpha\left(U_{7}\right)$. Moreover $\alpha\left(U_{1}\right)<\alpha\left(U_{2}\right)<\alpha\left(U_{3}\right)<\alpha\left(U_{5}\right)<\alpha\left(U_{6}\right)<$ $\alpha\left(U_{7}\right)$.

Lemma 2.4 ([9]) For each $U \in \mathscr{U}_{n}^{4} \backslash\left\{C_{n, 4} \cong U_{4}\right\}$ with $n \geqslant 8, \alpha(U)>\alpha\left(U_{7}\right)$.

3 Bicyclic graphs

Firstly, we introduce some notations that are used in this section. Let ∞ (coalescence of two cycles C_{3}) be the graph shown in Fig. 3. Let \mathscr{B}_{n}^{∞} be the set of all bicyclic graphs of order n which consist of ∞ and five trees $T_{1}, T_{2}, T_{3}, T_{4}$ and T_{5} attached at the vertices $v_{1}, v_{2}, v_{3}, v_{4}$ and v_{5}, respectively, where $v_{i} \in V\left(T_{i}\right)$ for $i=1,2,3,4,5$. Let θ (shown in Fig. 3) be the graph obtained from a cycle $C_{4}\left(=v_{1} v_{2} v_{3} v_{4} v_{1}\right)$ by adding a new edge $v_{1} v_{3}$. Let \mathscr{B}_{n}^{θ} be the set of all bicyclic graphs of order n which consist of θ and four trees T_{1}, T_{2}, T_{3} and T_{4} attached at the vertices v_{1}, v_{2}, v_{3} and v_{4}, respectively. Assume that $\left|V\left(T_{i}\right)\right|=n_{i}$ for $i=1,2,3,4$. Clearly, $n_{1}+n_{2}+n_{3}+n_{4}=n$. Then for each $B \in \mathscr{B}_{n}^{\theta}$, we write $B=\theta_{4}\left(T_{1}, T_{2}, T_{3}, T_{4}\right)$. We also write $B=\theta_{4}(i, j, k, l)$ instead of $\theta_{4}\left(P_{i+1}, P_{j+1}, P_{k+1}, P_{l+1}\right)$, where $i, j, k, l \geqslant 0$. Clearly, $B_{2}=\theta_{4}(0, n-4,0,0)$ and $B_{3}=\theta_{4}(n-4,0,0,0)$, where B_{2} and B_{3} are shown in Fig. 4.

Now, we give the first four bicyclic graphs of order $n \geqslant 13$ with smallest algebraic connectivity.

∞

θ

Figure 3: Bicyclic graphs ∞ and θ.

Theorem 3.1 Let $B \in \mathscr{B}_{n} \backslash\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}$ with $n \geqslant 13$. Then $\alpha(B)>\alpha\left(B_{4}\right)$. Moreover, $\alpha\left(B_{1}\right)<\alpha\left(B_{2}\right)<\alpha\left(B_{3}\right)<\alpha\left(B_{4}\right)$, where $B_{1}, B_{2}, B_{3}, B_{4}$ are shown in Fig. 4 .

Figure 4: Bicyclic graphs $B_{i}(1 \leqslant i \leqslant 4)$.
Proof. Firstly, by Lemma 2.2, it is easy to see that $\alpha\left(B_{1}\right)=\alpha\left(U_{2}\right), \alpha\left(B_{2}\right)=\alpha\left(U_{4}\right)$, $\alpha\left(B_{3}\right)=\alpha\left(U_{5}\right)$ and $\alpha\left(B_{4}\right)=\alpha\left(U_{7}\right)$. Thus, by Theorem 1.3, we have $\alpha\left(B_{1}\right)<\alpha\left(B_{2}\right)<$ $\alpha\left(B_{3}\right)<\alpha\left(B_{4}\right)$.

For each $B \in \mathscr{B}_{n}$, let C_{k} and C_{l} be two independent cycles in B, where $3 \leqslant k \leqslant l$. If $l \geqslant 5$, then we may delete one of the edges in $E\left(C_{k}\right)$, say e, such that $B-e \in \mathscr{U}_{n}^{l}$. Thus, by Lemma 2.1 and Theorems 1.2 and 1.3, we have

$$
\alpha(B) \geqslant \alpha(B-e) \geqslant \alpha\left(C_{n, l}\right) \geqslant \alpha\left(C_{n, 5}\right)>\alpha\left(U_{7}\right)=\alpha\left(B_{4}\right) .
$$

In the following we suppose that $l \leqslant 4$. We consider the following two cases.
Case $1\left|V\left(C_{k}\right) \cap V\left(C_{l}\right)\right| \leqslant 1$.
(a) $l=4$.

In this case, we always can choose some edge, say e, in $C_{k}(k=3,4)$ such that $B-e \in \mathscr{U}_{n}^{4}$ and $B-e$ does not isomorphic to $C_{n, 4}$. Thus, Lemmas 2.1 and 2.4 imply that

$$
\alpha(B) \geqslant \alpha(B-e)>\alpha\left(U_{7}\right)=\alpha\left(B_{4}\right)
$$

(b) $k=l=3$

If $\left|V\left(C_{k}\right) \cap V\left(C_{l}\right)\right|=1$, then $B \in \mathscr{B}_{n}^{\infty}$. In this case, we always can choose
some edge, say e, in C_{k} or C_{l} such that $B-e \in \mathscr{U}_{n}^{3}$ and $B-e$ does not isomorphic to one of graphs $U_{1}, U_{2}, U_{3}, U_{5}, U_{6}, U_{7}$. Thus, Lemmas 2.1 and 2.3 imply that

$$
\alpha(B) \geqslant \alpha(B-e)>\alpha\left(U_{7}\right)=\alpha\left(B_{4}\right)
$$

If $\left|V\left(C_{k}\right) \cap V\left(C_{l}\right)\right|=0$ and B does not isomorphic to B_{1} or B_{4}, then B must be a bicyclic graph which consists of the graph H (here H is a bicyclic graph obtained by joining the vertex u of $C_{3}\left(=u u_{1} u_{2} u\right)$ and the vertex v of $C_{3}\left(=v v_{1} v_{2} v\right)$ with a path $P_{u v}$, shown in Fig. 5) and some trees which attached at some vertices of H, respectively. If there is a tree T_{i} with $\left|V\left(T_{i}\right)\right| \geqslant 2$

Figure 5: Bicyclic graph H, where $u \neq v$.
attached at some vertex belonging to $P_{u v}($ in $H)$, then we have $B-u_{1} u_{2} \in \mathscr{U}_{n}^{3}$ (or $B-v_{1} v_{2} \in \mathscr{U}_{n}^{3}$) and $B-u_{1} u_{2}$ (or $B-v_{1} v_{2}$) does not isomorphic to one of graphs $U_{1}, U_{2}, U_{3}, U_{5}, U_{6}, U_{7}$. Thus, Lemmas 2.1 and 2.3 imply that

$$
\alpha(B) \geqslant \alpha\left(B-u_{1} u_{2}\right)\left(\text { or } \alpha\left(B-v_{1} v_{2}\right)\right)>\alpha\left(U_{7}\right)=\alpha\left(B_{4}\right)
$$

If there are four trees T_{1}, T_{2}, T_{3} and T_{4} attached at the vertices u_{1}, u_{2}, v_{1} and v_{2}, respectively. Suppose that $\left|V\left(T_{i}\right)\right|=n_{i} \geqslant 1$ for $i=1,2,3,4$, where $n_{1}+n_{2}+n_{3}+n_{4}=n-\left|V\left(P_{u v}\right)\right|$. If one of $n_{1}, n_{2}, n_{3}, n_{4}$ is more than 3 , then by the same reasoning, we may delete one of the edges $u_{1} u_{2}$ and $v_{1} v_{2}$ such that the resulting graph is in \mathscr{U}_{n}^{3} and does not isomorphic to one of graphs $U_{1}, U_{2}, U_{3}, U_{5}, U_{6}, U_{7}$. Thus the result follows.
Similarly, if $n_{1}=2$ and $n_{2}=2$ (or $n_{3}=2$ and $n_{4}=2$), the result also follows. Now, recall that B does not isomorphic to B_{1} or B_{4}, by symmetric, it suffices to consider $n_{1}=2, n_{2}=1, n_{3}=2$ and $n_{4}=1$, such a graph can be denoted by B^{\dagger}. Then by Lemmas 2.1 and 2.3, we have

$$
\alpha\left(B^{\dagger}\right) \geqslant \alpha\left(B^{\dagger}-u_{1} u_{2}\right)\left(\text { or } \alpha\left(B^{\dagger}-v_{1} v_{2}\right)\right)>\alpha\left(U_{7}\right)=\alpha\left(B_{4}\right)
$$

Case $2\left|V\left(C_{k}\right) \cap V\left(C_{l}\right)\right|>1$.
(a) $l=4$.

In this case $\left|V\left(C_{k}\right) \cap V\left(C_{l}\right)\right| \leqslant 3$. If $\left|V\left(C_{k}\right) \cap V\left(C_{l}\right)\right|=3$, then $k=4$. Therefore, B must be a bicyclic graph which consists of the graph H^{\prime} (shown in Fig. 6) and five trees attached at each vertex of H^{\prime}, respectively. If B does not isomorphic to B^{*} (shown in Fig. 6), we may delete one of the common
edges, say e, in $E\left(C_{k}\right) \cap E\left(C_{l}\right)$ such that $B-e \in \mathscr{U}_{n}^{4}$ and $B-e$ does not isomorphic to $C_{n, 4}$. Then Lemmas 2.1 and 2.4 imply that

$$
\alpha(B) \geqslant \alpha(B-e)>\alpha\left(U_{7}\right)=\alpha\left(B_{4}\right)
$$

if $B \cong B^{*}$, we may delete one of the edges in $E\left(C_{k}\right) \cup E\left(C_{l}\right) / E\left(C_{k}\right) \cap E\left(C_{l}\right)$, by the same reasoning, the result follows. If $\left|V\left(C_{k}\right) \cap V\left(C_{l}\right)\right|=2$, then we can

Figure 6: Bicyclic graphs H^{\prime} and B^{*}.
delete the common edge, say e, of C_{k} and C_{l} such that $B-e \in \mathscr{U}_{n}^{5}$ or \mathscr{U}_{n}^{6}, the result follows from Theorem 1.2 and the fact $\alpha\left(C_{n, 5}\right)>\alpha\left(B_{4}\right)$.
(b) $k=l=3$.

Since $B \in \mathscr{B}_{n}^{\theta}, B$ can be rewrote as $B=\theta_{4}\left(T_{1}, T_{2}, T_{3}, T_{4}\right)$, and $\left|V\left(T_{i}\right)\right|=n_{i}$ for $i=1,2,3,4$, where $n_{1}+n_{2}+n_{3}+n_{4}=n$.
If at least two of $n_{1}, n_{2}, n_{3}, n_{4}$ are great than 1 , then $B-v_{1} v_{3} \in \mathscr{U}_{n}^{4}$ and $B-v_{1} v_{3}$ does not not isomorphic to $C_{n, 4}$. Then Lemmas 2.1 and 2.4 imply that

$$
\alpha(B) \geqslant \alpha(B-e)>\alpha\left(U_{7}\right)=\alpha\left(B_{4}\right)
$$

If only one of $n_{1}, n_{2}, n_{3}, n_{4}$ is more than 1 , by symmetric, we may assume that $n_{1} \geqslant 2$ or $n_{2} \geqslant 2$. Therefore, $B \cong \theta_{4}\left(T_{1}, P_{1}, P_{1}, P_{1}\right)$ or $B \cong \theta_{4}\left(P_{1}, T_{2}, P_{1}, P_{1}\right)$. If $\theta_{4}\left(T_{1}, P_{1}, P_{1}, P_{1}\right)$ does not isomorphic to B_{3} and $\theta_{4}\left(P_{1}, T_{2}, P_{1}, P_{1}\right)$ does not isomorphic to B_{2}. That is, $\theta_{4}\left(T_{1}, P_{1}, P_{1}, P_{1}\right)-v_{1} v_{3}$ and $\theta_{4}\left(P_{1}, T_{2}, P_{1}, P_{1}\right)-v_{1} v_{3}$ do not isomorphic to $C_{n, 4}$, respectively. Then Lemma 2.1 and Theorem 2.4 imply that

$$
\alpha\left(\theta_{4}\left(T_{1}, P_{1}, P_{1}, P_{1}\right)\right) \geqslant \alpha\left(\theta_{4}\left(T_{1}, P_{1}, P_{1}, P_{1}\right)-v_{1} v_{3}\right)>\alpha\left(U_{7}\right)=\alpha\left(B_{4}\right)
$$

and

$$
\alpha\left(\theta_{4}\left(P_{1}, T_{2}, P_{1}, P_{1}\right)\right) \geqslant \alpha\left(\theta_{4}\left(P_{1}, T_{2}, P_{1}, P_{1}\right)-v_{1} v_{3}\right)>\alpha\left(U_{7}\right)=\alpha\left(B_{4}\right)
$$

This completes the proof.

4 Connected graphs

In Section 3, we determined the last four bicyclic graphs according to their smallest algebraic connectivities among all graphs in \mathscr{B}_{n} with $n \geqslant 13$. Combing with the results on
the orderings of the trees and unicyclic graphs, in this section, we extend the ordering of connected graphs from the last six connected graphs to the last sixteen connected graphs. Before giving the main result of this section, the following preliminary results are needed.

Lemma 4.1 Let G be a connected graph of order $n \geqslant 13$ which contains exactly $n+2$ edges. If $\Delta(G)=3$, then $\alpha(G) \geqslant \alpha\left(B_{4}\right)$.

Proof. Let v be a vertex of degree 3 in G, e be an edge on some cycle C of G such that e is not incident with v, and $G^{\prime}=G-e$. Then $G^{\prime} \in \mathscr{B}_{n}$ with $\Delta\left(G^{\prime}\right)=3$.

Case $1 G^{\prime}$ does not isomorphic to B_{1} or B_{2}.
Since $\Delta\left(G^{\prime}\right)=3$, by Theorem 3.1, we have $\alpha\left(G^{\prime}\right) \geqslant \alpha\left(B_{4}\right)$. This together with Lemma 2.1 imply that $\alpha(G) \geqslant \alpha\left(G^{\prime}\right) \geqslant \alpha\left(B_{4}\right)$.

Case $2 G^{\prime} \cong B_{1}$ or $G^{\prime} \cong B_{2}$.
If $G^{\prime} \cong B_{1}$ (shown in Fig. 4), let $e_{1}=u_{1} u_{2}$ and $e_{2}=v_{1} v_{2}$ be the edges on the cycles C_{1} and C_{2} of G^{\prime}, respectively, such that the degrees of u_{1}, u_{2}, v_{1} and v_{2} in G^{\prime} are all 2. Then in $G=G^{\prime}+e$, at least one of u_{1}, u_{2}, v_{1} and v_{2}, say u_{1}, has degree 2. Now, let $G^{\prime \prime}=G-e_{1}$. Then $G^{\prime \prime} \in \mathscr{B}_{n}$ with $\Delta\left(G^{\prime \prime}\right)=3$. Clearly, $G^{\prime \prime}$ does not isomorphic to B_{1} or B_{2}. Thus the result follows from Case 1.

Similarly, if $G^{\prime} \cong B_{2}$ (shown in Fig. 4), then in $G=G^{\prime}+e, u_{2} u_{3}$ and u_{4} have degrees 3 , respectively. Let $G^{\prime \prime}=G-u_{1} u_{2}$. Then $G^{\prime \prime} \in \mathscr{B}_{n}$ with $\Delta\left(G^{\prime \prime}\right)=3$. Clearly, $G^{\prime \prime}$ does not isomorphic to B_{1} or B_{2}. Thus the result also follows from Case 1. This completes the proof.

Lemma 4.2 Let G be a connected graph of order $n \geqslant 13$ with maximum degree $\Delta(G)=4$. If G does not isomorphic to one of $G_{11}, G_{12}, G_{13}, G_{14}$, then $\alpha(G)>\alpha\left(G_{15}\right)$ (or $\alpha\left(G_{16}\right)$), where $G_{11}, G_{12}, G_{13}, G_{14}, G_{15}$ and G_{16} are shown in Fig. 7.

Proof. By Lemma 2.2, we have $\alpha\left(G_{15}\right)=\alpha\left(G_{16}\right)$ and $\alpha\left(U_{7}\right)=\alpha\left(B_{4}\right)$. Thus Theorem 1.3 implies that $\alpha\left(B_{4}\right)>\alpha\left(G_{16}\right)$. Let $m=|E(G)|$ be the edge number of G. Since $G \in \mathscr{G}_{n}$ with $n \geqslant 13$, we consider the following three cases.

Case $1 m=n-1, n, n+1$
In this case, the results follow from Theorems 1.1, 1.3 and 3.1, respectively.
Case $2 m=n+2$
Let v be a vertex of degree 4 in G, e be an edge on some cycle C of G such that e is not incident with v. Let $G^{\prime}=G-e$. Then $G^{\prime} \in \mathscr{B}_{n}$ with $\Delta\left(G^{\prime}\right)=4$.

If G^{\prime} does not isomorphic to B_{3} (also does not isomorphic to one of B_{1}, B_{2}, B_{4}), then from Theorem 3.1, we have $\alpha\left(G^{\prime}\right)>\alpha\left(B_{4}\right)$. This together with Lemma 2.1 and $\alpha\left(B_{4}\right)>\alpha\left(G_{16}\right)$ lead to the result follows.

If $G^{\prime} \cong B_{3}$ (shown in Fig. 4), since G does not isomorphic to G_{14}, then in $G=G^{\prime}+e$, at least one of u_{2} and u_{4}, say u_{2}, has degree 2 . Let $G^{\prime \prime}=G-u_{1} u_{2}$. Clearly, $G^{\prime \prime} \in \mathscr{B}_{n}$ with $\Delta\left(G^{\prime \prime}\right)=4$ and $G^{\prime \prime}$ does not isomorphic to B_{3} since $G^{\prime \prime}$ contains a vertex u_{2} with degree 1. Thus the result also follows from Lemma 2.1 and Theorem 3.1 with $\alpha\left(B_{4}\right)>\alpha\left(G_{16}\right)$.

Case $3 m \geqslant n+3$
In this case, it suffices to prove that for any connected graph G of order $n \geqslant 13$ with exactly $n+3$ edges, if $\Delta(G)=4$, then $\alpha(G)>\alpha\left(G_{15}\right)$ (or $\alpha\left(G_{16}\right)$) (since if G with $m>n+3$, we may delete $m-(n+3)$ edges from G such that the resulting graph (with $n+3$ edges) is connected). Let v be a vertex of degree 4 in G, e be an edge on some cycle C of G such that e is not incident with v, and $G^{\prime}=G-e$. Then G^{\prime} with exactly $n+2$ edges and $\Delta\left(G^{\prime}\right)=4$.
If G^{\prime} does not isomorphic to G_{14}, then the result follows from Case 2 and Lemma 2.1.
If $G^{\prime} \cong G_{14}$, let v_{1}, v_{2} and v_{3} (where v_{1} is join to the vertex with degree 4) be the vertices of G^{\prime} with degrees 3 , respectively. In $G=G^{\prime}+e$, we delete the edges $v_{1} v_{2}$ and $v_{1} v_{3}$, and the resulting graph is denoted by $G^{\prime \prime}$. Clearly, $G^{\prime \prime} \in \mathscr{B}_{n}$ with $\Delta\left(G^{\prime \prime}\right)=4$ and $G^{\prime \prime}$ does not isomorphic to B_{3}. Then by Lemma 2.1 and Theorem 3.1, we have $\alpha(G) \geqslant \alpha\left(G^{\prime \prime}\right)>\alpha\left(B_{4}\right)>\alpha\left(G_{15}\right)=\alpha\left(G_{16}\right)$.

The proof is completed.
Now, we give the main result of this section.
Theorem 4.3 Let $G \in \mathscr{G}_{n} \backslash\left\{G_{1}, G_{2}, \ldots, G_{16}\right\}$ with $n \geqslant 13$. Then $\alpha(G)>\alpha\left(G_{16}\right)$. Moreover, $\alpha\left(G_{1}\right)<\alpha\left(G_{2}\right)=\alpha\left(G_{3}\right)<\alpha\left(G_{4}\right)=\alpha\left(G_{5}\right)=\alpha\left(G_{6}\right)<\alpha\left(G_{7}\right)<\alpha\left(G_{8}\right)<$ $\alpha\left(G_{9}\right)=\alpha\left(G_{10}\right)<\alpha\left(G_{11}\right)=\alpha\left(G_{12}\right)=\alpha\left(G_{13}\right)=\alpha\left(G_{14}\right)<\alpha\left(G_{15}\right)=\alpha\left(G_{16}\right)$, where G_{1}, \ldots, G_{16} are shown in Fig. 7 and $G_{1} \cong T_{1}, G_{2} \cong T_{2}, G_{3} \cong U_{1}, G_{4} \cong T_{3}, G_{5} \cong U_{2}, G_{6} \cong$ $B_{1}, G_{7} \cong T_{4}, G_{8} \cong U_{3}, G_{9} \cong U_{4}, G_{10} \cong B_{2}, G_{11} \cong T_{5}, G_{12} \cong U_{5}, G_{13} \cong B_{3}, G_{15} \cong T_{6}, G_{16} \cong$ U_{6}.

Proof. By Lemma 2.2, we have $\alpha\left(G_{2}\right)=\alpha\left(G_{3}\right), \alpha\left(G_{4}\right)=\alpha\left(G_{5}\right)=\alpha\left(G_{6}\right), \alpha\left(G_{9}\right)=$ $\alpha\left(G_{10}\right), \alpha\left(G_{11}\right)=\alpha\left(G_{12}\right)=\alpha\left(G_{13}\right)=\alpha\left(G_{14}\right), \alpha\left(G_{15}\right)=\alpha\left(G_{16}\right)$ and $\alpha\left(U_{7}\right)=\alpha\left(B_{4}\right)$. This together with Theorems 1.1, 1.3 and 3.1, we have $\alpha\left(G_{1}\right)<\alpha\left(G_{2}\right)=\alpha\left(G_{3}\right)<\alpha\left(G_{4}\right)=$ $\alpha\left(G_{5}\right)=\alpha\left(G_{6}\right)<\alpha\left(G_{7}\right)<\alpha\left(G_{8}\right)<\alpha\left(G_{9}\right)=\alpha\left(G_{10}\right)<\alpha\left(G_{11}\right)=\alpha\left(G_{12}\right)=\alpha\left(G_{13}\right)=$ $\alpha\left(G_{14}\right)<\alpha\left(G_{15}\right)=\alpha\left(G_{16}\right)$ and $\alpha\left(B_{4}\right)>\alpha\left(G_{16}\right)$.

Since $G \in \mathscr{G}_{n}$ with $n \geqslant 13$, we consider the following four cases.
Case $1 \Delta(G)=2$.
Then $G \cong C_{n}$ since G does not isomorphic to P_{n} (or G_{1}). From [3], we have

$$
\alpha\left(C_{n}\right)=4 \sin ^{2} \frac{\pi}{n} \text { and } \alpha\left(P_{n}\right)=4 \sin ^{2} \frac{\pi}{2(n-1)} .
$$

Figure 7: Connected graphs $G_{i}(1 \leqslant i \leqslant 16)$.

Moreover, P_{n-1} is a subtree of T_{7}. Combining with Lemma 2.1 and Theorem 1.1, we have
$\alpha\left(C_{n}\right)>\alpha\left(P_{n-1}\right) \geqslant \alpha\left(T_{7}\right)>\alpha\left(G_{15}\right)=\alpha\left(G_{16}\right)$.
Case $2 \Delta(G)=3$.
Let $m=|E(G)|$. For $m=n-1, n, n+1$, the results follow from Theorems 1.1, 1.3 and 3.1, respectively. For $m=n+2$, the result follows from Lemma 4.1 with $\alpha\left(B_{4}\right)>\alpha\left(G_{16}\right)$. For $m>n+2$, we can delete $m-(n+2)$ edges from G such that the resulting graph is also a connected graph with $n+2$ edges. Thus the result also follows from Lemmas 2.1 and 4.1.

Case $3 \Delta(G)=4$.
The result follows from Lemma 4.2.
Case $4 \Delta(G) \geqslant 5$.
Then G contains a spanning tree T with $\Delta(T)=\Delta(G) \geqslant 5$. Clearly, T does not isomorphic to one of T_{1}, \ldots, T_{8}. Thus the result follows from Lemma 2.1 and Theorem 1.1.

The proof is completed.

Acknowledgements

The authors are indebted to the anonymous referees for their valuable comments and suggestions.

References

[1] N. de Abreu, Old and new results on algebraic connectivity of graphs, Linear Algebra Appl., 423 (2007), 53-73.
[2] J. Bondy, U. Murty, Graph theory with applications, New York, MacMillan, 1976.
[3] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs, Academic Press, New York, 1980.
[4] D. Cvetković, M. Doob, I. Gutman and A. Torgas̃ev, Recent results in the theory of graph spetra, Ann. Discrete Math., 36, North-Holland, 1988.
[5] S. Fallat, S. Kirkland, Extremizing algebraic connectivity subject to graph theoretic constraints, Electron. J. Linear Algebra., 3 (1998), 48-74.
[6] M. Fiedler, Algebraic connectivity of graphs, Czech. Math. J., 23 (1973), 298-305.
[7] J.-M. Guo, On the Laplacian Eigenvalues of Graphs, Doctor Thesis, Tongji Unversity, P. R. China, 2006.
[8] J.-M. Guo, A conjecture on the algebraic connectivity of connected graphs with fixed girth, Discrete Math., 308 (2008), 5702-5711.
[9] J. Li, J.-M. Guo, W.C. Shiu, The smallest values of algebraic connectivity for unicyclic graphs, Discrete Applied Math., 158 (2010), 1633-1643.
[10] J. Li, J.-M. Guo, W.C. Shiu, Ordering trees by algebraic connectivity, Linear Algebra Appl., Submitted.
[11] Y. Liu, Y. Liu, The ordering of unicyclic graphs with the smallest algebraic connectivity, Discrete Math., 309 (2009), 4315-4325.
[12] J.-Y. Shao, J.-M. Guo, H.-Y. Shan, The ordering of trees and connected graphs by their algebraic connectivity, Linear Algebra Appl., 428 (2008), 1421-1438.

[^0]: *Supported by the National Science Foundation of China (No.10871204); the Fundamental Research Funds for the Central Universities (No.09CX04003A); FRG, Hong Kong Baptist University.

