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Abstract

A classic problem in enumerative combinatorics is to count the number of de-
rangements, that is, permutations with no fixed point. Inspired by a recent gen-
eralization to facet derangements of the hypercube by Gordon and McMahon, we
generalize this problem to enumerating derangements in the wreath product of any
finite cyclic group with the symmetric group. We also give q- and (q, t)-analogs for
cyclic derangements, generalizing results of Gessel, Brenti and Chow.

1 Derangements

A derangement is a permutation that leaves no letter fixed. Algebraically, this is an
element σ of the symmetric group Sn such that σ(i) 6= i for any i, or, equivalently, no
cycle of σ has length 1. Geometrically, a derangement is an isometry in R

n−1 of the regular
(n − 1)-simplex that leaves no facet unmoved. Combinatorially, these are matrices with
entries from {0, 1} such that each row and each column has exactly one nonzero entry
and no diagonal entry is equal to 1.

Let Dn denote the set of derangements in Sn, and let dn = |Dn|. The problem of count-
ing derangements is the quintessential example of the principle of Inclusion-Exclusion [20]:

dn = n!
n
∑

i=0

(−1)i

i!
. (1)

For example, the first few derangement numbers are 0, 1, 2, 9, 44, 265.
From (1) one can immediately compute that the probability that a random permuta-

tion has no fixed points is approximately 1/e. Another exercise that often accompanies
counting derangements is to prove the following two term recurrence relation for n > 2,

dn = (n − 1) (dn−1 + dn−2) , (2)
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with initial conditions d0 = 1 and d1 = 0; see [20]. From (2) one can derive the following
single term recurrence for derangement numbers,

dn = ndn−1 + (−1)n. (3)

Recently, Gordon and McMahon [13] considered isometries of the n-dimensional hy-
percube that leave no facet unmoved. Algebraically, such an isometry is an element σ of
the hyperoctahedral group Bn for which σ(i) 6= i for any i. Combinatorially, the problem
then is to enumerate n × n matrices with entries from {0,±1} such that each row and
column has exactly one nonzero entry and no diagonal entry equals 1. Gordon and McMa-
hon derive a formula for the number of facet derangements similar to (1), an expression
of facet derangements in terms of permutation derangements, and recurrence relations for
facet derangements similar to (2) and (3).

In Section 2, we consider elements σ in the wreath product Cr ≀Sn, where Cr is the finite
cyclic group of order r and Sn is the symmetric group on n objects. A cyclic derangement
is an element of Cr ≀ Sn with no fixed point. Denote the set of cyclic derangements of
Cr ≀ Sn by D

(r)
n , and denote their number by d

(r)
n = |D

(r)
n |. Combinatorially, d

(r)
n is also

the number of matrices with entries from {0, 1, ζ, . . . , ζr−1}, where ζ is a primitive rth
root of unity, such that each row and each column has exactly one nonzero entry and no
diagonal entry equals 1. We derive a formula for d

(r)
n that specializes to (1) when r = 1

and to the Gordon-McMahon formula for facet derangements when r = 2. We also give
an expression for d

(r)
n in terms of dn as well as a two recurrence relations specializing to

(2) and (3) when r = 1.
Gessel [12] introduced a q-analog for derangements of Sn, q-counted by the major

index, that has applications to character theory [17]. In Section 3, we give a q, t-analog
for cyclic derangements of Cr ≀ Sn q-counted by a generalization of major index and t-
counted by signs that specializes to Gessel’s formula at r = 1 and t = 1. Generalizing
results in Section 2, we show that the cyclic q, t-derangements satisfy natural q, t-analogs
of (1), (2) and (3). These results also generalize formulas of Garsia and Remmel [11]
who first introduced q-analogs for (2) and (3) for r = 1 using a different (though equi-
distributed) permutation statistic. The analogs we present are similar to results of Chow
[5] and Foata and Han [9] when r = 2, though the statistic we use differs slightly.

Brenti [1] gave another q-analog for derangements of Sn q-counted by weak excedances
and conjectured many nice properties for these numbers that were later proved by Canfield
(unpublished) and Zhang [22]. More recently, Chow [6] and Chen, Tang and Zhao [4]
independently extended these results to derangements of the hyperoctahedral group. In
Section 4, we show that these results are special cases of cyclic derangements of Cr ≀ Sn

q-counted by a generalization of weak excedances.
The proofs for all of these generalizations are combinatorial, following the same rea-

soning as the classical proofs of (1) and (2). This suggests that studying derangements
in this more general setting is very natural. In Section 5, we discuss possible directions
for further study generalizing other results for permutations derangements.
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2 Cyclic derangements

Let Sn denote the symmetric group of permutations of a set of n objects, and let Cr

denote the cyclic group of order r. The wreath product Cr ≀Sn is the semi-direct product
(Cr)

×n
⋊ Sn, where Sn acts on n copies of Cr by permuting the coordinates. Let ζ

be a generator for Cr, e.g. take ζ to be a primitive rth root of unity. We regard an
element σ ∈ Cr ≀ Sn as a word σ = (ǫ1s1, . . . , ǫnsn) where ǫi ∈ {1, ζ, . . . , ζr−1} and
{s1, . . . , sn} = {1, . . . , n}.

In this section we show that all of the usual formulas and proofs for classical de-
rangement numbers generalize to these wreath products. We begin with (1), giving the
following formula for the number of cyclic derangements. The two proofs below are es-
sentially the same, though the first is slightly more direct while the latter will be useful
for establishing q and q, t analogs.

Theorem 2.1. The number of cyclic derangements in Cr ≀ Sn is given by

d(r)
n = rnn!

n
∑

i=0

(−1)i

rii!
. (4)

Inclusion-Exclusion Proof. Let Ai be the set of σ ∈ Cr ≀ Sn such that σi = +1 · i. Then
|Aj1 ∩ · · · ∩ Aji

| = rn−i(n − i)!, since the positions j1, . . . , ji are determined and the
remaining n− i positions may be chosen arbitrarily. Therefore by the Inclusion-Exclusion
formula, we have

∣

∣D
(r)
n

∣

∣ = |Cr ≀ Sn| − |A1 ∪ · · · ∪ An|

= rnn! −
n
∑

i=1

∑

j1<···<ji

(−1)i−1 |Aj1 ∩ · · · ∩ Aji
|

=

n
∑

i=0

(

n

i

)

(−1)irn−i(n − i)! = rnn!

n
∑

i=0

(−1)i

rii!
.

Möbius Inversion Proof. For S = {s1 < s2 < · · · < sm} ⊆ [n] and σ ∈ Cr ≀ SS, define the
reduction of σ to be the permutation in Cr ≀ Sm that replaces ǫisi with ǫii. If σ ∈ Cr ≀ Sn

has exactly k fixed points, then define dp(σ) ∈ D
(r)
n−k to be the reduction of σ to the

non-fixed points. For example, dp(5314762) =reduction of 53172 = 43152 and any signs
are carried over.

The map dp is easily seen to be an
(

n
k

)

to 1 mapping of cyclic permutations with

exactly k fixed points onto D
(r)
n−k. Therefore

rnn! =
n
∑

k=0

(

n

k

)

d
(r)
n−k. (5)

The theorem now follows by Möbius inversion [20].
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An immediate consequence of Theorem 2.1 is that the probability that a random
element of Cr ≀Sn is a derangement is approximately e−1/r. This verifies the intuition that
as n and r grow, most elements of Cr ≀ Sn are in fact derangements. Table 1 gives values
for d

(r)
n for r 6 5 and n 6 6.

Table 1: Cyclic derangement numbers d
(r)
n for r 6 5, n 6 6.

r \ n 0 1 2 3 4 5 6
1 1 0 1 2 9 44 265
2 1 1 5 29 233 2329 27949
3 1 2 12 116 1393 20894 376093
4 1 3 25 299 4785 95699 2296777
5 1 4 41 614 12281 307024 9210721

We also have the following generalization of [13](Proposition 3.2), giving a formula re-
lating the number of cyclic derangements with the number of permutation derangements.

Proposition 2.2. For r > 2 we have

d(r)
n =

n
∑

i=0

(

n

i

)

ri(r − 1)n−idi (6)

where di = |Di| is the number of derangements in Si.

Proof. For S ⊂ {1, 2, . . . , n} of size i, the number of derangements σ ∈ Cr ≀ Sn with
|σ(j)| = j if and only if j 6∈ S is equal to dir

i (choose a permutation derangement of these
indices and a sign for each) times (r−1)n−i (choose a nonzero sign for indices k such that
|σk| = k). There are

(

n
i

)

choices for each such S, thereby proving (6).

Gordon and McMahon [13] observed that for r = 2, the expression in (6) is precisely
the rising 2-binomial transform of the permutation derangement numbers as defined by
Spivey and Steil [18]. In general, this formula gives an interpretation for the mixed
rising r-binomial transform and falling (r − 1)-binomial transform of the permutation
derangements numbers.

The following two term recurrence relation for cyclic derangements generalizes (2).
We give two proofs of this recurrence, one generalizing the classical combinatorial proof
of (2) and the other using the exponential generating function for cyclic derangements.

Theorem 2.3. For n > 2, the number of cyclic derangements satisfies

d(r)
n = (rn − 1)d

(r)
n−1 + r(n − 1)d

(r)
n−2, (7)

with initial conditions d
(r)
0 = 1 and d

(r)
1 = r − 1.
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Combinatorial Proof. For σ ∈ D
(r)
n , consider the cycle decomposition of underlying per-

mutation |σ| ∈ Sn. There are three cases to consider. Firstly, if n is in a cycle of length

one, then there are r − 1 choices for ǫn 6= 1 and d
(r)
n−1 choices for a derangement of the

remaining n−1 letters. If n is in a cycle of length two in |σ|, then ǫn may be chosen freely
in r ways, there are (n − 1) choices for the other occupant of this two-cycle in |σ| and

d
(r)
n−2 choices for a cyclic derangement of the remaining n − 2 letters. Finally, if n is in a

cycle of length three or more, then there are r choices for ǫn, n − 1 possible positions for
n in |σ|, and d

(r)
n−1 choices for a derangement of the remaining n − 1 letters. Combining

these cases, we have

d(r)
n = (r − 1)d

(r)
n−1 + r(n − 1)d

(r)
n−2 + r(n − 1)d

(r)
n−1,

from which (7) now follows.

Algebraic Proof. First note that for fixed r,

e−x

1 − rx
=

(

∑

i>0

(−1)i

i!
xi

)(

∑

j>0

rjxj

)

=
∑

n>0

∑

i+j=n

(

n

i

)

(−1)irj

i!
xn =

∑

n>0

d(r)
n

xn

n!

is the exponential generating function for the number of cyclic derangements. Denoting
this function by D(r)(x), we compute

∑

(

(rn − 1)d
(r)
n−1 + (rn − r)d

(r)
n−2

) xn

n!

= r
∑

d
(r)
n−1

xn

(n − 1)!
−
∑

d
(r)
n−1

xn

n!
+ r

∑

d
(r)
n−2

xn

(n − 1)!
− r

∑

d
(r)
n−2

xn

n!

= rxD(r)(x) −

∫

D(r)(x) + rx

∫

D(r)(x) − r

∫ ∫

D(r)(x) = D(r)(x),

from which the recurrence now follows.

Finally, we have the following simple recurrence relation generalizing (3).

Corollary 2.4. For n > 1, the number of cyclic derangements satisfies

d(r)
n = rnd

(r)
n−1 + (−1)n, (8)

with initial condition d
(r)
0 = 1.

This recurrence follows by induction from the formula in Theorem 2.1 or the two term
recurrence in Theorem 2.3, though it would be nice to have a direct combinatorial proof
similar to that of Remmel [16] for the case r = 1.
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3 Cyclic q, t-derangements by major index

Gessel [12] derived a q-analog for the number of permutation derangements as a corollary
to a generating function formula for counting permutations in Sn by descents, major
index and cycle structure. In order to state Gessel’s formula, we begin by recalling the
q-analog of a positive integer i given by [i]q = 1+ q + · · ·+ qi−1. In the same vein, we also
have [i]q! = [i]q[i − 1]q · · · [1]q, where [0]q! is defined to be 1.

For a permutation σ ∈ Sn, the descent set of σ, denoted by Des(σ), is given by
Des(σ) = {i | σ(i) > σ(i + 1)}. MacMahon [14] used the descent set to define a funda-
mental permutation statistic, called the major index and denoted by maj(σ), given by
maj(σ) =

∑

i∈Des(σ) i. Finally, recall MacMahon’s formula [14] for q-counting permuta-
tions by major index,

∑

σ∈Sn

qmaj(σ) = [n]q!.

Along these lines, define the q-derangement numbers, denoted by dn(q), by

dn(q) =
∑

σ∈Dn

qmaj(σ). (9)

Gessel showed that the q-derangement numbers for Sn are given by

dn(q) = [n]q!

n
∑

i=0

(−1)i

[i]q!
q(

i

2). (10)

A nice bijective proof of (10) is given by Wachs in [21], where she constructs a descent-
preserving bijection between permutations with specified fixed points and shuffles of two
permutations and then makes use of a formula of Garsia and Gessel [10] for q-counting
shuffles. Garsia and Remmel [11] also studied q-derangement numbers using the inversion
statistic which is known to be equi-distributed with major index.

Gessel’s formula was generalized to the hyperoctahedral group by Chow [5] with further
results by Foata and Han [9] using the flag major index statistic. Faliharimalala and Zeng
[8] recently found a generalization of (10) to Cr ≀ Sn also using flag major index Here,
we give a different generalization to Cr ≀ Sn by q-counting with a different major index
statistic and t-counting by signs.

We begin with a generalized notion of descents derived from the following total order
on elements of (Cr × [n]) ∪ {0}:

ζr−1n < · · · < ζn < ζr−1(n−1) < · · · < ζ1 < 0 < 1 < 2 < · · · < n (11)

For σ ∈ Cr ≀ Sn, an index 0 6 i < n is a descent of σ if σi > σi+1 with respect to this
total ordering, where we set σ0 = 0. Note that for σ ∈ Sn, this definition agrees with the
classical one. As with permutations, define the major index of σ by maj(σ) =

∑

i∈Des(σ) i.

We also want to track the signs of the letters of σ, which we do with the statistic sgn(σ)
defined by sgn(σ) = e1 + · · · + en, where σ = (ζe1s1, . . . , ζ

ensn) . This is a generalization
of the same statistic introduced by Reiner in [15].
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Remark 3.1. There is another total ordering on elements of (Cr×[n])∪{0} that is equally
as natural as the order given in (11), namely

ζr−1n < · · · < ζr−11 < ζr−2n < · · · < ζ1 < 0 < 1 < 2 < · · · < n. (12)

While using this alternate order will result in a different descent set and major index for
a given element of Cr ≀ Sn, the distribution of descent sets over Cr ≀ Sn and even D

(r)
n is

the same with either ordering. In fact, there are many possible total orderings that refine
the ordering on positive integers and yield the same distribution over Cr ≀ Sn and D

(r)
n ,

since the proof of Theorem 3.2 carries through easily for these orderings as well. We have
chosen to work with the ordering in (11) primarily to facilitate the combinatorial proof
of Theorem 3.6.

A first test that these statistics are indeed natural is to see that the q, t enumeration
of elements of Cr ≀ Sn by the major index and sign gives

∑

σ∈Cr ≀Sn

qmaj(σ)tsgn(σ) = [r]nt [n]q!, (13)

which is a natural (q, t)-analog for rnn! = |Cr ≀ Sn|.
Analogous to (9), define the cyclic (q, t)-derangement numbers by

d(r)
n (q, t) =

∑

σ∈D
(r)
n

qmaj(σ)tsgn(σ). (14)

In particular, d
(1)
n (q, t) = dn(q) as defined in (9). In general, we have the following (q, t)-

analog of (4) that specializes to (10) when r = 1.

Theorem 3.2. The cyclic (q, t)-derangement numbers are given by

d(r)
n (q, t) = [r]nt [n]q!

n
∑

i=0

(−1)i

[r]it[i]q!
q(

i

2). (15)

The proof of Theorem 3.2 is completely analogous to Wachs’s proof [21] for Sn which
generalizes the second proof of Theorem 2.1. To begin, we define a map ϕ that is a sort
of inverse to the map dp. Say that σi is a subcedant of σ if σi < i with respect to the total
order in (11), and let sub(σ) denote the number of subcedants of σ. For σ ∈ Cr ≀ Sm, let
s1 < · · · < ssub(σ) be the absolute values of subcedants of σ. If σ has k fixed points, let
f1 < · · · < fk be the fixed points of σ. Finally, let x1 > · · · > xm−sub(σ)−k be the remaining
letters in [m]. For fixed n, ϕ(σ) is obtained from σ by the following replacements:

ǫisi 7→ ǫii fi 7→ i + sub(σ) xi 7→ n − i + 1.

For example, for n = 8 we have ϕ(3, 2,−6, 5, 4,−1) = (7, 4,−3, 8, 2,−1).
For disjoint sets A and B, a shuffle of α ∈ Cr ≀ SA and β ∈ Cr ≀ SB is an element of

Cr ≀SA∪B containing α and β as complementary subwords. Let Sh(α, β) denote the set of
shuffles of α and β. Then we have the following generalization of [21](Theorem 2).
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Lemma 3.3. Let α ∈ D
(r)
n−k and γ = (sub(α)+1, , . . . , sub(α)+k). Then the map ϕ gives

a bijection {σ ∈ Cr ≀ Sn | dp(σ) = α}
∼

−→ Sh(ϕ(α), γ) such that Des(ϕ(σ)) = Des(σ) and
sgn(ϕ(σ)) = sgn(σ).

Proof. The preservation of sgn is obvious by construction. To see that the descent set is
preserved, note that ǫi 6= 1 only if σi is a subcedant and the relative order of subcedants,
fixed points and the remaining letters is preserved by the map. It remains only to show
that ϕ is an invertible map with image Sh(ϕ(α), γ). For this, the proof of [21](Theorem
2) carries through verbatim thanks to the total ordering in (11).

The only remaining ingredient to prove Theorem 3.2 is the formula of Garsia and
Gessel [10] for q-counting shuffles. Though their theorem was stated only for Sn, the
result holds in this more general setting.

Lemma 3.4. Let α and β be cyclic permutations of lengths a and b, respectively, and let
Sh(α, β) denotes the set of shuffles of α and β. Then

∑

σ∈Sh(α,β)

qmaj(σ)tsgn(σ) =

[

a + b

a

]

q

qmaj(α)+maj(β)tsgn(α)+sgn(β). (16)

Proof of Theorem 3.2. For γ as in Lemma 3.3, observe maj(γ) = 0 = sgn(γ). Thus
applying Lemma 3.3 followed by Lemma 3.4 allows us to compute

[r]nt [n]q! =
∑

σ∈Cr ≀Sn

qmaj(σ)tsgn(σ)

=

n
∑

k=0

∑

α∈D
(r)
n−k

∑

dp(σ)=α

qmaj(σ)tsgn(σ)

=

n
∑

k=0

∑

α∈D
(r)
n−k

∑

σ∈Sh(ϕ(α),γ)

qmaj(σ)tsgn(σ)

=
n
∑

k=0

∑

α∈D
(r)
n−k

[

n

k

]

q

qmaj(α)tsgn(α)

=
n
∑

k=0

[

n

k

]

q

d
(r)
k (q, t).

Applying Möbius inversion to the resulting equation yields (15).

Proposition 2.2 also generalizes, though in order to prove the generalization we rely
on the (q, t)-analog of the recurrence relation given in Theorem 3.6 below. It would be
nice to have a combinatorial proof as well.

the electronic journal of combinatorics 17 (2010), #R163 8



Proposition 3.5. For r > 2 we have

d(r)
n (q, t) =

n
∑

i=0

[

n

i

]

q

[r]it

(

n−i−1
∏

k=0

([r]t − qk)

)

di(q, t). (17)

The recurrence relation (7) in Theorem 2.3 also has a natural (q, t)-analog. Note that
this specializes to the formula of Garsia and Remmel [11] in the case r = 1. The proof is
combinatorial, though it would be nice to have a generating function proof as well.

Theorem 3.6. The cyclic (q, t)-derangement numbers satisfy

d(r)
n (q, t) =

(

[r]t[n]q − qn−1
)

d
(r)
n−1(q, t) + qn−1[r]t[n − 1]qd

(r)
n−2(q, t), (18)

with initial conditions d
(r)
0 (q, t) = 1 and d

(r)
1 (q, t) = [r]t − 1.

Proof. As in the combinatorial proof of Theorem 2.3, consider the cycle decomposition of
underlying permutation |σ| ∈ Sn. We consider the same three cases, this time tracking
the major index and sign. If n is in a cycle of length one, then the r − 1 choices for
ǫn 6= 1 contribute t[r − 1]t, and there will necessarily be a descent in position n − 1, thus
contributing qn−1. This case then contributes

t[r − 1]tq
n−1d

(r)
n−1(q, t).

If n is in a cycle of length two in |σ|, then ǫn is arbitrary contributing [r]t, and the
n − 1 choices for the other occupant of the cycle will add at least n − 1 to the major
index beyond the major index of the permutation with these two letters removed. This
contributes a term of qn−1[n − 1]q, making the total contribution

[r]tq
n−1[n − 1]qd

(r)
n−2(q, t).

Finally, if n is in a cycle of length three or more, then each of the n − 1 possible
positions for n in |σ| increases the major index by one, contributing a factor of [n − 1]q.
The r choices for ǫn again contribute [r]t, giving a total of

[r]t[n − 1]qd
(r)
n−1(q, t).

Adding these three cases yields (18).

As before, we may use induction and (18) to derive the following single term recurrence
relation for cyclic (q, t)-derangements generalizing (8) of Corollary 2.4.

Corollary 3.7. The cyclic (q, t)-derangement numbers satisfy

d(r)
n (q, t) = [r]t[n]qd

(r)
n−1(q, t) + (−1)nq(

n

2), (19)

with initial condition d
(r)
0 (q, t) = 1.
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4 Cyclic q-derangements by weak excedances

Brenti [1] studied a different q-analog of derangement numbers, defined by q-counting
derangements by the number of weak excedances, in order to study certain symmetric
functions introduced by Stanley [19]. Later, Brenti [3] defined weak excedances for the
signed permutations to study analogous functions for the hyperoctahedral group. Further
results were discovered by Zhang [22] and Chow [6] and Chen, Tang and Zhao [4] for
the symmetric and hyperoctahedral groups. Below we extend these results to the wreath
product Cr ≀ Sn.

Recall that an index i is a weak excedant of σ if σ(i) = i or σ2(i) > σ(i). It has
long been known that the number of descents and the number of weak excedances are
equi-distributed over Sn and that both give the Eulerian polynomials An(q):

An(q)
def
=
∑

σ∈Sn

qdes(σ)+1 =
∑

σ∈Sn

qexc(σ), (20)

where des(σ) is the number of descents of σ and exc(σ) is the number of weak excedances
of σ. We generalize these statistics to Cr ≀ Sn by saying 1 6 i 6 n is a weak excedant of
σ ∈ Cr ≀ Sn if σ(i) = i or if |σ(i)| 6= i and σ2(i) > σ(i) with respect to the total order in
(11).

As with the number of descents, this statistic agrees with the classical number of weak
excedances for permutations and Brenti’s statistic for signed permutations. Moreover,
the equi-distribution of the number of non-descents and the number of weak excedances
holds in Cr ≀Sn, and the same bijective proof using canonical cycle form [20] holds in this

setting. Therefore define the cyclic Eulerian polynomial A
(r)
n (q) by

A(r)
n (q) =

∑

σ∈Cr ≀Sn

qn−des(σ) =
∑

σ∈Cr ≀Sn

qexc(σ). (21)

Note that A
(r)
n (q) is palindromic for r 6 2, i.e. A

(r)
n (q) = qnA

(r)
n (1/q). In particular, (21)

specializes to (20) when r = 1 and to Brenti’s type B Eulerian polynomial when r = 2.
For r > 3, the cyclic Eulerian polynomial is not palindromic.

Restricting to the set of cyclic derangements of Cr≀Sn, the number of descents and weak
excedances are no longer equi-distributed, even for r = 1. Define the cyclic q-derangement
polynomials D

(r)
n (q) by

D(r)
n (q) =

∑

σ∈D
(r)
n

qexc(σ). (22)

We justify this definition with the following two-term recurrence relation generalizing
Theorem 2.3. Note that this reduces to the result of Brenti [1] when r = 1 and the analog
for the hyperoctahedral group [6, 4] when r = 2.

Theorem 4.1. For n > 2, the cyclic q-derangement polynomials satisfy

D(r)
n = (n − 1)rq

(

D
(r)
n−1 + D

(r)
n−2

)

+ (r − 1)D
(r)
n−1 + rq(1 − q)

d

dq
D

(r)
n−1 (23)
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with initial conditions D
(r)
0 (q) = 1 and D

(r)
1 (q) = r − 1.

Proof. As in the combinatorial proof of Theorem 2.3, consider the cycle decomposition
of underlying permutation |σ| ∈ Sn. We consider the same three cases, now tracking
the number of weak excedances. If n is in a cycle of length one, then there are r − 1
choices for ǫn 6= 1, and n is not a weak excedant of σ. Removing this cycle leaves a cyclic
derangement in D

(r)
n−1 with the same number of weak excedances, thus contributing

(r − 1)D
(r)
n−1(q).

If n is in a cycle of length two in |σ|, then ǫn is arbitrary, and there are n − 1 choices
for the other occupant of the cycle, say k. Moreover, exactly one of k and n will be a
weak excedant, and so the contribution in this case is

r(n − 1)qD
(r)
n−2(q).

Finally, if n is in a cycle of length three or more, then ǫn is again arbitrary, but
the affect on weak excedances for the n − 1 possible placements of n is more subtle. If
n is placed between i and j with σ(j) = σ(σ(i)) > σ(i), then the number of (weak)
excedances remains unchanged when inserting n. However, if n is placed between i and
j with σ(j) = σ(σ(i)) < σ(i), then the insertion of n creates a new (weak) excedant.
Therefore we have

r
∑

τ∈D
(r)
n−1

(

exc(τ)qexc(τ) + (n − 1 − exc(τ))qexc(τ)+1
)

= r(n − 1)qD
(r)
n−1(q) + r(1 − q)q

d

dq
D

(r)
n−1(q).

Adding these three cases yields (23).

Using (23), we can also compute the exponential generating function of the cyclic
Eulerian polynomials and cyclic q-derangement polynomials.

Proposition 4.2. For r > 1, we have

∑

n>0

A(r)
n (q)

xn

n!
=

(1 − q)ex(1−q)

1 − qerx(1−q)
, (24)

and
∑

n>0

D(r)
n (q)

xn

n!
=

(1 − q)ex(r−1)

eqrx − qerx . (25)

Proof. Reversing the generating function proof of Theorem 2.3, it is straightforward to
show that (25) satisfies the recurrence relation in (23). Enumerating elements of Cr ≀ Sn

by the number of fixed points yields

A(r)
n (q) =

n
∑

k=0

(

n

k

)

qkD
(r)
n−k(q), (26)

from which (24) follows.
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Recall that a sequence a0, a1, . . . , am of real numbers is unimodal if for some j we have
a0 6 a1 6 · · · 6 aj > aj+1 > · · · > am. A sequence is log-concave if a2

i > ai−1ai+1 for all
i. It is not difficult to show that a log-concave sequence of positive numbers is unimodal.
More generally, a sequence is a Pólya frequency sequence if every minor of the (infinite)
matrix (aj−i) is nonnegative, where we take ak = 0 for k < 0 and k > m. Pólya frequency
sequences arise often in combinatorics, and one of the fundamental results concerning
them is the following.

Theorem 4.3. The roots of a polynomial a0+a1x+· · ·+amxm are all real and non-positive
if and only if the sequence a0, a1, . . . , am is a Pólya frequency sequence.

Using (23) and Theorem 4.3, we will show that for fixed n and r, the sequence am =

#{σ ∈ D
(r)
n | exc(σ) = m} is unimodal and log-concave.

Theorem 4.4. For n > 2, the roots of the cyclic q-derangement polynomial D
(r)
n (q)

interlace the roots of D
(r)
n+1(q). In particular, they are distinct, non-positive real numbers

and the coefficients of D
(r)
n (q) are a Pólya frequency sequence.

Proof. We proceed by induction on n. From (23), we have that the leading term of D
(r)
n (q)

is rnqn−1 and the constant term is (r − 1)n. In particular,

D
(r)
2 (q) = r2q + (r − 1)2 and D

(r)
3 (q) = r3q2 + (4r − 3)r2q + (r − 1)3.

Thus the root of D
(r)
2 (q) is −(r − 1)2/r2, which is indeed real and non-positive and lies

between the two distinct negative real roots of D
(r)
3 (q). This demonstrates the base case,

so assume the result for n − 1 > 2.
Let 0 > q1 > q2 > · · · > qn−2 be the simple roots of D

(r)
n−1(q). It is straightforward

to show that (D
(r)
n−1)

′(qi) has sign (−1)i+1, and by induction, the sign of D
(r)
n−2(qi) is also

(−1)i+1 as the roots are interlaced. By (23), we have

D(r)
n (qi) = (n − 1)rqiD

(r)
n−2(qi) + rqi(1 − qi)

(

D
(r)
n−1

)′

(qi),

from which it follows that the sign of D
(r)
n (qi) is (−1)i. Given the leading and constant

terms of D
(r)
n (q), by the Intermediate Value Theorem, the roots of D

(r)
n (q) are interlaced

with 0, q1, . . . , qn−2,−∞.

5 Further directions

Binomial transforms. Spivey and Steil [18] define two variants of the binomial trans-
form of a sequence: the rising k-binomial transform and the falling k-binomial transform
given by

rn =

n
∑

i=0

(

n

i

)

kiai and fn =

n
∑

i=0

(

n

i

)

kn−iai, (27)
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respectively. Gordon and McMahon noted that the number of derangements in the hype-
roctahedral group gives the rising 2-binomial transform of the derangement numbers for
Sn. More generally, Proposition 2.2 shows that the cyclic derangement numbers d

(r)
n give

a mixed version of the rising r-binomial transform and falling (r − 1)-binomial transform
of dn. This new hybrid k-binomial transform may share many of the nice properties of
Spivey and Steil’s transforms, including Hankel invariance and/or a simple description
of the change in the exponential generating function. Further, it could be interesting to
evaluate the expression in (6) for negative or even non-integer values of k. For instance,
taking k = 1/2 gives the binomial mean transform which is of some interest.

Limiting distributions. The explicit expression in (4) immediately gives approxi-
mations and asymptotics for the probability that a random element of Cr ≀ Sn is a de-
rangement. Moreover, this formula can be used to calculate the number of elements with
a given number of fixed points, and so, too, can be used to calculate the expected number
of fixed points of a random element. For instance, in Sn it is know that the number
of fixed points of a random permutation has a limiting Poisson distribution, and recent
work by Diaconis, Fulman and Guralnick [7] has extended this to primitive actions of
Sn. A natural extension would be use the combinatorics presented here to consider the
imprimitive action of Sn in Cr ≀ Sn.

Orthogonal idempotents. Another direction would be to generalize the work of
Schocker [17] where he uses derangement numbers to construct n mutually orthogonal
idempotents in Solomon’s descent algebra for Sn. In doing so, he also discovers a new
proof of Gessel’s formula for q-derangements. Thus extending these techniques to analogs
of the descent algebra for Cr ≀Sn could also lead to new proofs of the formulae in Section 3.

Symmetric unimodal polynomials. In [2], Brenti used symmetric functions to
define several new classes of symmetric unimodal polynomials. Brenti showed there is
an explicit connection between these polynomials and the q-Eulerian polynomials and
q-derangement polynomials of Sn counted by weak excedances. Brenti generalized much
of this work to the hyperoctahedral group, with additional results extended by Chow [6].
A natural question is to see if there exist analogs of these results for Cr ≀Sn involving the
polynomials A

(r)
n (q) and D

(r)
n (q) studied in Section 4.
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