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Abstract

Recently, by the Riordan identity related to tree enumerations,

n
∑

k=0

(

n

k

)

(k + 1)!(n + 1)n−k = (n + 1)n+1,

Sun and Xu have derived another analogous one,

n
∑

k=0

(

n

k

)

Dk+1(n + 1)n−k = nn+1,

where Dk is the number of permutations with no fixed points on {1, 2, . . . , k}. In the
paper, we utilize the λ-factorials of n, defined by Eriksen, Freij and Wästlund, to
give a unified generalization of these two identities. We provide for it a combinatorial
proof by the functional digraph theory and two algebraic proofs. Using the umbral
representation of our generalized identity and Abel’s binomial formula, we deduce
several properties for λ-factorials of n and establish interesting relations between the
generating functions of general and exponential types for any sequence of numbers
or polynomials.

Keywords: Derangement; λ-factorial of n; Charlier polynomial; Bell polynomial;
Hermite polynomial.

1 Introduction

Let Sn denote the set of permutations of [n] = {1, 2, . . . , n}. A fixed point of a permutation
π ∈ Sn is an element i ∈ [n] such that π(i) = i. Denote by fix(π) the number of fixed
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points of π. Recently, Eriksen, Freij and Wästlund [6] defined the polynomials, called the
λ-factorials of n, by setting

fn(λ) =
∑

π∈Sn

λfix(π), f0(λ) = 1.

They utilized the polynomials fn(λ) to give closed formulas for the number of derange-
ments (permutations with no fixed points) with descents in prescribed positions and de-
rived several nice properties for fn(λ) such as

fn(λ + µ) =

n
∑

k=0

(

n

k

)

fk(λ)µn−k, (1.1)

fn(λ) =
n

∑

k=0

(

n

k

)

k!(λ − 1)n−k, (1.2)

fn(λ) = nfn−1(λ) + (λ − 1)n, (1.3)

d

dλ
fn(λ) = nfn−1(λ). (1.4)

Clearly, we have fn(0) = Dn [17, A000166] and fn(1) = n!, where Dn is the number
of derangements in Sn. The relation (1.4) indicates that fn(λ) (n = 0, 1, . . . ) form a kind
of special Appell polynomials [2]. According to the definition, fn(λ) also has another
expression

fn(λ) =
n

∑

k=0

(

n

k

)

Dkλ
n−k. (1.5)

It should be noted that fn(λ) has close relation to the (re-normalized) Charlier polynomials
Cn(α, u) [7] defined by

Cn(α, u) =

n
∑

k=0

(

n

k

)

(α)ku
n−k,

where (α)k = α(α + 1) · · · (α + k − 1). Clearly, fn(λ) = Cn(1, λ − 1).
Using the Riordan identity [5, P173] and [13]

n
∑

k=0

(

n

k

)

(k + 1)!(n + 1)n−k = (n + 1)n+1,

Sun and Xu [20] deduced an analogous identity (also obtained by Riordan [12]),

n
∑

k=0

(

n

k

)

Dk+1(n + 1)n−k = nn+1.

Motivated by these two remarkable identities, we give the following general one and
provide with a combinatorial interpretation by the functional digraph theory.
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Theorem 1.1. For any integer n ≥ 0 and any indeterminate λ, there holds

n
∑

k=0

(

n

k

)

fk+1(λ)(n + 1)n−k = (n + λ)n+1. (1.6)

Using the umbral representation of (1.6) and Abel’s binomial formula, we have the
second main result.

Theorem 1.2. For any sequence (an)n≥0, let A(x) =
∑

n≥0 an
xn

n!
. Then

∑

n≥0

anfn(λ)
xn

n!
=

∑

k≥0

(k + λ − 1)k xkA(k)(−kx)

k!
, (1.7)

where A(k)(−kx) denotes the k-th derivative of A(x) taking value at −kx. In particular,

the case λ = 1 generates

∑

n≥0

anxn =
∑

k≥0

(kx)kA(k)(−kx)

k!
.

The organization of this paper is as follows. The next section is devoted to the proofs of
(1.6). In the third section, we focus on the proof of (1.7) and give some applications. In the
forth section, using the umbral representation of (1.6) we further investigate the properties
of fn(λ) and present many identities. In the final section, we give some comments and
provide several open problems.

2 Three Proofs for (1.6)

In this section, we give three different proofs for (1.6), one is a combinatorial proof by the
functional digraph theory, one is a generating function proof, and the other is a proof by
the umbral calculus method.

2.1 First proof of (1.6).

In order to give the combinatorial proof of (1.6), we need some notations. A rooted labeled

tree on [n] is an acyclic connected graph on the vertex set [n] such that one vertex, called
the root, is distinguished. A labeled forest is a graph such that every connected component
is a rooted labeled tree. We denote by Fn the set of labeled forests on [n+1] and by Fn,k

the set of labeled forests [n + 1] with exactly k + 1 components. It is well known that
Cayley’s formulas [3] state that |Fn| = (n + 2)n and |Fn,k| =

(

n

k

)

(n + 1)n−k.
Let Mn denote the set of maps σ : [n] → [n]. Clearly |Mn| = nn. For any σ ∈ Mn, we

represent σ as a directed graph Gσ by drawing arrows from i to σ(i). For any component
of Gσ, it contains equally many vertices and edges, and hence has exactly one directed
cycle. Let R denote the set of all the vertices of these cycles of Gσ. Precisely, σ|R, the
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restriction of σ onto R is just a permutation on R. If deleting all the directed edges in
these cycles, the remainders (omitting the directions, since all edges are directed towards
the roots) form a labeled forest F on [n]. Conversely, it is not difficult to recover the map
σ from the pair (F, π), where π is a permutation of the set RF of the roots of F . Hence
there exists a bijection between the set Pn of the pairs (F, π) and Mn+1, where F ∈ Fn.
See [1, 9] for more details.

Now we can give a combinatorial interpretation for (1.6).
It suffices to prove (1.6) for the cases when λ are nonnegative integers. Let M∗

n+λ+1

be the set σ ∈ Mn+λ+1 such that σ−1(n + 1) = ∅ and σ(k) = k for n + 2 ≤ k ≤ n + λ + 1.
Clearly, |M∗

n+λ+1| = (n + λ)n+1.
For any σ ∈ M∗

n+λ+1, it can uniquely determine a map τ from [n + 1] to [n + 1] such
that the fixed points of τ have λ colors, say, c1, c2, . . . , cλ. The map τ is defined as follows.

τ(i) =







σ(i), if σ(i) 6= i and σ(i) ∈ [n],
n + 1, if σ(i) = i and i ∈ [n],
icj

, if σ(i) = n + j + 1 and i ∈ [n + 1], j ∈ [λ],

where τ(i) = icj
means τ(i) = i and i has color cj. Conversely, one can uniquely recover

σ from τ by the following manner,

σ(i) =







τ(i), if τ(i) 6= i and τ(i) ∈ [n],
i, if τ(i) = n + 1 and i ∈ [n],

n + j + 1, if τ(i) = icj
and i ∈ [n + 1], j ∈ [λ].

In other words, Gτ is obtained from Gσ by the three steps:

(i) Each directed cycle from i to itself for i ∈ [n] is transferred to be a directed edge
from i to n + 1;

(ii) Each directed edge from i to n + j + 1 for j ∈ [λ] is transferred to be a directed
cycle from i to itself for i ∈ [n + 1], and such i is assigned a color cj;

(iii) Remove all the vertices n + j + 1 for j ∈ [λ].

It is clear that the procedure above is invertible and it is easy to recover Gσ from
Gτ . So such maps τ are counted by (n + λ)n+1. On the other hand, we have also known
that τ is bijected to a pair (F, π) ∈ Pn such that the fixed points of π (also the fixed
points of τ) have λ colors. If we restrict F ∈ Fn,k, then π is a permutation on RF with
k + 1 vertices such that the fixed points of π have λ colors. So such F are counted by
|Fn,k| =

(

n

k

)

(n + 1)n−k and such π are counted by fk+1(λ). Summering all possible cases
for 0 ≤ k ≤ n, we get (1.6).
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2.2 Second proof of (1.6)

Let y := y(x) denote the exponential generating function for the labeled rooted trees on
[n] which are counted by the sequence (nn−1)n≥1, that is

y =
∑

n≥1

nn−1xn

n!
.

This generating function satisfies the relation y = xey [19]. By the Lagrange inversion
formula, one can derive

yk

k!
=

∑

n≥k

(

n − 1

k − 1

)

nn−k xn

n!
, (2.1)

eλy

1 − y
=

∑

n≥0

(n + λ)n xn

n!
. (2.2)

By (1.2), the exponential generating function f(λ, t) for fn(λ) can be easily deduced

f(λ, t) =
∑

k≥0

fk(λ)
tk

k!
=

e(λ−1)t

1 − t
. (2.3)

Setting t := y in (2.3), by (2.1) and (2.2), extracting the coefficient of xn

n!
, we have

n
∑

k=1

(

n − 1

k − 1

)

fk(λ)nn−k = (n + λ − 1)n, (2.4)

which is equivalent to (1.6).

2.3 Third proof of (1.6)

Let D denote the umbra, given by Dn = Dn. See [7, 14, 15] for more information on
umbral calculus. By (1.5), fn(λ) can be represented umbrally as

fn(λ) = (D + λ)n. (2.5)

Then, we have

n
∑

k=0

(

n

k

)

fk+1(λ)(n + 1)n−k

= (D + λ)(D + λ + n + 1)n

= (D + λ + n + 1)n+1 − (n + 1)(D + λ + n + 1)n

= fn+1(λ + n + 1) − (n + 1)fn(λ + n + 1)

= (n + λ)n+1 (by (1.3)),

as desired.
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3 Proof of Theorem 1.2 and Its Applications

In this section, we first give a proof of Theorem 1.2, and then we provide several interesting
examples.

3.1 Proof of Theorem 1.2

Recall that Abel’s binomial theorem [5, P128] states

(a + b)n =

n
∑

k=0

(

n

k

)

a(a − kt)k−1(b + kt)n−k. (3.1)

Let A(x) =
∑

n≥0 an
xn

n!
be the exponential generating function for any sequence

(an)n≥0, then (3.1) is equivalent to the form [5, P130]

A(x) =
∑

k≥0

x(x − kt)k−1A(k)(kt)

k!
, (3.2)

where t is a new indeterminate and A(k)(kt) denotes the k-th derivative of A(x) taking
value at kt.

By (1.6) and (2.5), we have

(D + λ)(D + λ + n + 1)n = (n + λ)n+1. (3.3)

Setting x := (D + λ)x and t = −x in (3.2), by (3.3), one can obtain (1.7).

3.2 Applications of Theorem 1.2

In this subsection, as applications of Theorem 1.2, we only consider three special cases
when an are taken to be the Charlier, Bell and Hermite polynomials. Of course, one
can also consider other interesting cases such as an are the Bessel, Chebyshev, Legendre,
Jacobi, Laguerre, and ultraspherical polynomials and so on.

Example 3.1. Let an = Cn(α, u), the (re-normalized) Charlier polynomial, which has the

exponential generating function A(x) = eux

(1−x)α . It is easy to derive ∂
∂x

A(x) = α+u(1−x)
1−x

A(x)
and the recurrence relation

Cn+1(α, u) = αCn(α + 1, u) + uCn(α, u).

Using this recurrence and by induction on k, one can deduce

∂k

∂xk
A(x) =

Ck(α, u(1 − x))

(1 − x)k
A(x) =

Ck(α, u(1 − x))eux

(1 − x)α+k
.
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Then, by Theorem 1.2, we have

∑

n≥0

Cn(α, u)fn(λ)
xn

n!
=

∑

k≥0

(k + λ − 1)kxkCk(α, u(1 + kx))e−ukx

k!(1 + kx)α+k
. (3.4)

More generally, if let an = Cm+n(α, u) or A(x) = ∂m

∂xm
eux

(1−x)α , then

∂k

∂xk
A(x) =

∂m+k

∂xm+k

eux

(1 − x)α
=

Cm+k(α, u(1 − x))eux

(1 − x)α+m+k
.

In this case Theorem 1.2 generates

∑

n≥0

Cm+n(α, u)fn(λ)
xn

n!
=

∑

k≥0

(k + λ − 1)kxkCm+k(α, u(1 + kx))e−ukx

k!(1 + kx)α+m+k
. (3.5)

The parameter specializations in (3.4) and (3.5) produce several consequences.

Case 1. When α = 1, u = µ − 1, Cm+n(1, µ − 1) = fm+n(µ). Then, by (3.5), we have

∑

n≥0

fm+n(µ)fn(λ)
xn

n!
=

∑

k≥0

(k + λ − 1)kxkfm+k(1 + (µ − 1)(1 + kx))e−(µ−1)kx

k!(1 + kx)m+k+1
.

which, when µ = λ = 0, by fn(0) = Dn, yields

∑

n≥0

Dm+nDn

xn

n!
=

∑

k≥0

(k − 1)kxkfm+k(−kx)ekx

k!(1 + kx)m+k+1
, (3.6)

and when λ = 1 leads to
∑

n≥0

fm+n(µ)xn =
∑

k≥0

(kx)kfm+k(1 + (µ − 1)(1 + kx))e−(µ−1)kx

k!(1 + kx)m+k+1
. (3.7)

The case µ = 0 in (3.7) gives the ordinary generating function for Dm+n,

∑

n≥0

Dm+nxn =
∑

k≥0

(kx)kfm+k(−kx)ekx

k!(1 + kx)m+k+1
.

Case 2. When u = 0, Cm+n(α, 0) = (α)m+n. Then, by (3.5), we have

∑

n≥0

(α)m+nfn(λ)
xn

n!
=

∑

k≥0

(α)m+k(k + λ − 1)kxk

k!(1 + kx)m+k+1
,

which, when α = 1, λ = 1 and α = 1, m = 0, leads respectively to the ordinary
generating function for (m + n)! and fn(λ),

∑

n≥0

(m + n)!xn =
∑

k≥0

(m + k)!

k!

(kx)k

(1 + kx)m+k+1
,

∑

n≥0

fn(λ)xn =
∑

k≥0

(k + λ − 1)kxk

(1 + kx)k+1
. (3.8)
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Remark 3.2. Gessel [7] utilized the umbral calculus method to derive the bilinear gen-
erating function for Charlier polynomials

∑

n≥0

Cn(α, u)Cn(β, v)
xn

n!
= euvx

∑

k≥0

(α)k

(1 − vx)α+k

(β)k

(1 − ux)β+k

xk

k!
,

which, when α = β = 1, u = v = −1, gives us another more interesting but considerably
more recondite formula analogous to the case m = 0 in (3.6),

∑

n≥0

DnDn

xn

n!
= ex

∑

k≥0

k!xk

(1 + x)2k+2
.

Remark 3.3. Clarke, Han and Zeng [4] utilized the Laplace transformation to deduce
another ordinary generating function for fn(µ) analogous to (3.8) or the case m = 0 in
(3.7),

∑

n≥0

fn(µ)xn =
∑

k≥0

k!xk

(1 − (µ − 1)x)k+1
.

Example 3.4. Let an = Bn(u), the nth Bell polynomial, which has the exponential
generating function A(x) = exp(u(ex − 1)). It is easy to derive ∂

∂x
A(x) = uexA(x) and

the recurrence relation

Bn+1(u) = uBn(u) + u
d

du
Bn(u).

Using this recurrence and by induction on k, one can deduce

∂k

∂xk
A(x) = Bk(uex)A(x) = Bk(uex) exp(u(ex − 1)).

Then, by Theorem 1.2, we have

∑

n≥0

Bn(u)fn(λ)
xn

n!
=

∑

k≥0

(k + λ − 1)kxkBk(ue−kx) exp (u(e−kx − 1))

k!
.

More generally, if let an = Bm+n(u) or A(x) = ∂m

∂xm exp(u(ex − 1)), then

∂k

∂xk
A(x) =

∂m+k

∂xm+k
exp(u(ex − 1)) = Bm+k(uex) exp(u(ex − 1)).

In this case Theorem 1.2 generates

∑

n≥0

Bm+n(u)fn(λ)
xn

n!
=

∑

k≥0

(k + λ − 1)kxkBm+k(ue−kx) exp (u(e−kx − 1))

k!
,

which, when u = λ = 1, leads to the ordinary generating function for the Bell numbers
Bm+n(1) = Bm+n [17, A000110],

∑

n≥0

Bm+nxn =
∑

k≥0

(kx)kBm+k(e
−kx) exp (e−kx − 1)

k!
. (3.9)
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Remark 3.5. Another classical ordinary generating function for the Bell numbers Bn is

∑

n≥0

Bnxn =
∑

k≥0

xk

(1 − x)(1 − 2x) · · · (1 − kx)
.

Klazar [10] in depth investigated this generating function and proved that it satisfies no
algebraic differential equation over the complex field.

Example 3.6. Let an = Hn(u), the nth (re-normalized) Hermite polynomial, whose
exponential generating function is A(x) = exp(ux + x2

2
). The polynomial Hn(u) also

counts involutions on [n] such that the fixed points have u colors. It is easy to derive
∂
∂x

A(x) = (u + x)A(x) and the recurrence relation

Hn+1(u) = uHn(u) +
d

du
Hn(u).

Using this recurrence and by induction on k, one can deduce

∂k

∂xk
A(x) = Hk(u + x)A(x) = Hk(u + x) exp(ux +

x2

2
).

Then, by Theorem 1.2, we have

∑

n≥0

Hn(u)fn(λ)
xn

n!
=

∑

k≥0

(k + λ − 1)kxkHk(u − kx) exp (−ukx + (kx)2

2
)

k!
.

More generally, if let an = Hm+n(u) or A(x) = ∂m

∂xm exp(ux + x2

2
), then

∂k

∂xk
A(x) =

∂m+k

∂xm+k
exp(ux +

x2

2
) = Hm+k(u + x) exp(ux +

x2

2
).

In this case Theorem 1.2 generates

∑

n≥0

Hm+n(u)fn(λ)
xn

n!
=

∑

k≥0

(k + λ − 1)kxkHm+k(u − kx) exp (−ukx + (kx)2

2
)

k!
. (3.10)

The cases when λ = 1 and u = 1 or u = 0 in (3.10), lead respectively to the ordinary
generating functions for the involution numbers Im+n = Hm+n(1) [17, A000085] and the
matching numbers Mm+n = Hm+n(0) [17, A001147],

∑

n≥0

Im+nxn =
∑

k≥0

(kx)kHm+k(1 − kx) exp (−kx + (kx)2

2
)

k!
,

∑

n≥0

Mm+nxn =
∑

k≥0

(kx)kHm+k(−kx) exp ( (kx)2

2
)

k!
.
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4 Further Properties of fn(λ)

Theorem 4.1. For any integer n ≥ 0 and any indeterminates λ, µ, there hold

n
∑

k=0

(

n

k

)

fk(λ)(µ + k − n)µn−k−1 = (λ + µ − 1)n, (4.1)

n
∑

k=0

(

n

k

)

fk(λ)fn−k(µ + 1) = (λ + µ − 1)n+1 + (n − λ − µ + 2)fn(λ + µ). (4.2)

Proof. For (4.1), we have

n
∑

k=0

(

n

k

)

fk(λ)(µ + k − n)µn−k−1

= fn(λ + µ) −
∂

∂µ
fn(λ + µ) (by (1.1))

= fn(λ + µ) − nfn−1(λ + µ) (by (1.4))

= (λ + µ − 1)n (by (1.3)).

For (4.2), we have

n
∑

k=0

(

n

k

)

fk(λ)(µ + k − n)µn−k
∣

∣

∣

µ:=D+µ+n+1

=
n

∑

k=0

(

n

k

)

fk(λ)(D + µ + n + 1 + k − n)(D + µ + n + 1)n−k

=
n

∑

k=0

(

n

k

)

fk(λ)
(

fn−k+1(µ + n + 1) − (n − k)fn−k(µ + n + 1)
)

(by (2.5))

=

n
∑

k=0

(

n

k

)

fk(λ)
(

fn−k(µ + n + 1) + (µ + n)n−k+1
)

(by (1.3))

=

n
∑

k=0

(

n

k

)

fk(λ)fn−k(µ + n + 1) + (µ + n)fn(λ + µ + n) (by (1.1)). (4.3)

On the other hand, we have

µ(λ + µ − 1)n
∣

∣

∣

µ:=D+µ+n+1

= (D + µ + n + 1)(D + λ + µ + n)n

= (D + λ + µ − 1)(D + λ + µ + n)n + (n − λ + 2)(D + λ + µ + n)n

= (λ + µ + n − 1)n+1 + (n − λ + 2)fn(λ + µ + n) (by (1.3)). (4.4)

Then, by (4.1), (4.2) can be deduced by setting µ := µ − n in (4.3) and (4.4).
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Remark 4.2. It should be noted that (4.1) in the case µ = 1 and (1.5) form a new inverse
relation. In general, for any two sequences (an)n≥0 and (bn)n≥0,

bn =
n

∑

k=0

(

n

k

)

Dn−kak ⇔ an =
n

∑

k=0

(

n

k

)

(1 + k − n)bk.

Remark 4.3. The case µ = n and n := n + 1 in (4.1) reduces to (1.6).

When µ = λ + n + 1 in (4.1), we have

Corollary 4.4. For any integer n ≥ 0 and any indeterminate λ, there holds

n
∑

k=0

(

n

k

)

fk(λ)(λ + k + 1)(λ + n + 1)n−k−1 = (n + 2λ)n. (4.5)

When λ + µ = n + 2, (4.2) reduces to the surprising result.

Corollary 4.5. For any integer n ≥ 0 and any indeterminate λ, there holds

n
∑

k=0

(

n

k

)

fk(λ)fn−k(n − λ + 3) = (n + 1)n+1.

Theorem 4.6. For any integer n ≥ 0 and any indeterminates λ, µ, there holds

fn(λ + µ) =

n
∑

k=0

(

n

k

)

(λ + k)k(µ − k − 1)n−k. (4.6)

Proof. Setting t = −1, a = D + λ + 1, b = µ − 1 in (3.1), we have

(D + λ + µ)n =

n
∑

k=0

(

n

k

)

(D + λ + 1)(D + λ + 1 + k)k−1(µ − k − 1)n−k,

which, by (2.5), is equivalent to (4.6).

Remark 4.7. Note that (4.6) in the case λ := 2λ, µ = −λ and (4.5) form another inverse
relation. In general, for any two sequences (an)n≥0 and (bn)n≥0,

bn =
n

∑

k=0

(

n

k

)

(λ + k)(λ + n)n−k−1ak ⇔ an =
n

∑

k=0

(−1)n−k

(

n

k

)

(λ + k)n−kbk, (4.7)

which is an Abel inverse pair [11, P95], also a special case of Gould-Hsu inversions [8].
When λ = 0, (4.7) reduces to another known inverse relation [5, P164], [11, P96],

bn =

n
∑

k=0

(

n − 1

k − 1

)

nn−kak ⇔ an =

n
∑

k=0

(−1)n−k

(

n

k

)

kn−kbk.

Using the inverse relation (4.7), by (4.6) in the case µ := −µ + 1, we have

n
∑

k=0

(

n

k

)

fk(λ − µ + 1)(µ + k)(µ + n)n−k−1 = (λ + n)n.
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When µ = 1 − λ in (4.6), by fn(1) = n!, we have the well-known difference identity

n
∑

k=0

(−1)n−k

(

n

k

)

(λ + k)n = n!.

By the inverse relation (4.7) in the case ak = k!, bk = (λ + k)k, we have

n
∑

k=0

(

n

k

)

k!(λ + k)(λ + n)n−k−1 = (λ + n)n, (4.8)

which, when λ = 1 or λ = 0 and n := n + 1, reduces to the Riordan identity [13]. Note
that (4.8) is also a special case when λ = 1, µ = λ + n in (4.1).

When µ = −λ in (4.6), by fn(0) = Dn, we have the following result.

Corollary 4.8. For any integer n ≥ 0 and any indeterminate λ, there holds

Dn =

n
∑

k=0

(−1)n−k

(

n

k

)

(λ + k)k(λ + k + 1)n−k. (4.9)

Remark 4.9. The case λ = −1 in (4.9) was obtained by Ryser [16] using the permanent
theory, and also appeared in [5, P201]. In fact, Dn is also the permanent of the matrix
J − I, where I is the n × n unit matrix and J is the n × n matrix with all entries being
equal to 1.

Remark 4.10. By the inverse relation (4.7) in the case ak = Dk, bk = (λ + k − 1)k and
by (4.9) in the case λ := λ − 1, we have

n
∑

k=0

(

n

k

)

Dk(λ + k)(λ + n)n−k−1 = (λ + n − 1)n. (4.10)

The inverse pair of (4.9) and (4.10) in the case λ = 0 have appeared in [8]. The case
λ = 0 in (4.10) reduces to the identity obtained by Riordan [12], Sun and Xu [20]. Note
that (4.10) is also a special case when λ = 0, µ = λ + n in (4.1).

Theorem 4.11. For any integer n ≥ 0 and any indeterminates λ, µ, there hold

n
∑

k=0

(

n

k

)

fk+1(λ)µn−k = (µ − (n + 1))

n
∑

k=0

(

n

k

)

(λ + k)k+1(µ − k − 1)n−k−1, (4.11)

n
∑

k=0

(

n

k

)

fk+1(λ)fn−k(µ + 1) =
n

∑

k=0

(

n

k

)

(λ + k)k+1(µ − k − 1)n−k. (4.12)

Proof. For (4.11), setting t = −1, a = µ − n − 1, b = D + λ + n + 1 in (3.1), we have

(D + λ + µ)n =

n
∑

k=0

(

n

k

)

(D + λ + n − k + 1)n−k(µ − n − 1)(µ − n + k − 1)k−1

=
n

∑

k=0

(

n

k

)

(D + λ + k + 1)k(µ − n − 1)(µ − k − 1)n−k−1.
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Then, by (2.5), we get

n
∑

k=0

(

n

k

)

fk+1(λ)µn−k = (D + λ)(D + λ + µ)n

=
n

∑

k=0

(

n

k

)

(D + λ)(D + λ + k + 1)k(µ − n − 1)(µ − k − 1)n−k−1

= (µ − (n + 1))
n

∑

k=0

(

n

k

)

(λ + k)k+1(µ − k − 1)n−k−1.

For (4.12), setting µ := D + µ + n + 1 in (4.11), by (2.5), we have

n
∑

k=0

(

n

k

)

fk+1(λ)fn−k(µ + n + 1)

=

n
∑

k=0

(

n

k

)

fk+1(λ)(D + µ + n + 1)n−k

=

n
∑

k=0

(

n

k

)

(λ + k)k+1(D + µ)(D + µ + n − k)n−k−1

=

n
∑

k=0

(

n

k

)

(λ + k)k+1(µ + n − k − 1)n−k,

which, by setting µ := µ − n, generates (4.12).

Remark 4.12. The case µ = n + 1 in (4.11) produces (1.6).

Setting µ = 1 − λ in (4.11) and (4.12), using the general difference identity [18]

n
∑

k=0

(−1)n−k

(

n

k

)

(λ + k)m =
m

∑

k=n

(−1)kS(m, k)(−k)n(−λ)k−n, (4.13)

where S(m, k) is the Stirling number of the second kind [17, A008277], and by S(n+1, n) =
(

n+1
2

)

, we have

Corollary 4.13. For any integer n ≥ 0 and any indeterminate λ, there hold

n
∑

k=0

(

n

k

)

fk+1(λ)(1 − λ)n−k = n!(λ + n),

n
∑

k=0

(

n

k

)

fk+1(λ)fn−k(2 − λ) = (n + 1)!(λ +
n

2
).
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Remark 4.14. The special case m = n + 1 in (4.13) produces

n
∑

k=0

(−1)n−k

(

n

k

)

(λ + k)n+1 = (n + 1)!(λ +
n

2
),

which, by the inverse relation (4.7), generates

n
∑

k=0

(

n

k

)

(k + 1)!(λ +
k

2
)(λ + k)(λ + n)n−k−1 = (λ + n)n+1.

5 Comments and Open Questions

In general, we can consider the generalization of (1.1) and (4.11), that is

Qn,m(λ, µ) =
n

∑

k=0

(

n

k

)

fk+m(λ)µn−k.

By (1.3), one can deduce the first recurrence relation for Qn,m(λ, µ),

Qn,m(λ, µ) = nQn−1,m(λ, µ) + mQn,m−1(λ, µ) + (λ − 1)m(λ + µ − 1)n (5.1)

with the initial conditions Q0,0(λ, µ) = 1, Qn,0(λ, µ) = Q0,m(λ, µ) = 0 whenever n, m < 0.
Clearly, (5.1) reduces to (1.3) when n = 0 and m := n or m = 0 and µ = 0.

Let Q(λ, µ; x, t) denote the exponential generating function for Qn,m(λ, µ), i.e.,

Q(λ, µ; t, x) =
∑

n,m≥0

Qn,m(λ, µ)
tn

n!

xm

m!
.

From (5.1), we can derive the explicit formula for Q(λ, µ; t, x),

Q(λ, µ; t, x) =
e(λ+µ−1)te(λ−1)x

1 − t − x
. (5.2)

By (5.2), one has

∂Q(λ, µ; t, x)

∂t
=

∂Q(λ, µ; t, x)

∂x
+ µQ(λ, µ; t, x),

which implies that there holds another recurrence relation for Qn,m(λ, µ),

Qn+1,m(λ, µ) = Qn,m+1(λ, µ) + µQn,m(λ, µ).

Note that the type of the exponential generating function Q(λ, µ; t, x) brings it into
the general framework considered in [20], which signifies that Qn,m(λ, µ) has many other
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interesting properties. For examples, setting t := tx in (5.2) and comparing the coefficients

of xN

N !
, we get

N
∑

n=0

(

N

n

)

QN−n,n(λ, µ)tN−n = (t + 1)NfN (λ +
µt

t + 1
).

Using the series expansion, we have

Q(λ, µ; t, x) =
e(λ+µ−1)te(λ−1)x

1 − t − x
=

e(λ+µ−1)t

1 − t

e(λ−1)x

1 − x
1−t

=
∑

m≥0

xm

m!

m
∑

j=0

(

m

j

)

j!(λ − 1)m−j e(λ+µ−1)t

(1 − t)j+1

=
∑

m≥0

xm

m!

m
∑

j=0

(

m

j

)

j!(λ − 1)m−j
∑

n≥0

tn

n!

n
∑

k=0

(

n

k

)

(j + 1)k(λ + µ − 1)n−k

=
∑

n≥0

∑

m≥0

tn

n!

xm

m!

n
∑

k=0

m
∑

j=0

(

n

k

)(

m

j

)

(k + j)!(λ + µ − 1)n−k(λ − 1)m−j .

Comparing the coefficients of tnxm

n!m!
, we get an explicit formula for Qn,m(λ, µ),

Qn,m(λ, µ) =
n

∑

k=0

m
∑

j=0

(

n

k

)(

m

j

)

(k + j)!(λ + µ − 1)n−k(λ − 1)m−j.

But here we have more interest in the type of formulas for Qn,m(λ, µ) similar to (4.6)
and (4.11).

Lemma 5.1. For any integers n, m ≥ 0 and any indeterminates λ, µ, there holds

Qn,m(λ, µ) = mQn,m−1(λ,D + µ + 1) + (λ − 1)mfn(λ + µ), (5.3)

or equivalently

Qn,m(λ, µ) = m

n
∑

k=0

(

n

k

)

fk+m−1(λ)fn−k(µ + 1) + (λ − 1)mfn(λ + µ). (5.4)

Proof. Note that
∑

n≥0

Qn,m(λ, µ)
tn

n!
=

∂m

∂xm
Q(λ, µ; t, x)

∣

∣

∣

x=0

=
∂m

∂xm

eµte(λ−1)(t+x)

1 − (t + x)

∣

∣

∣

x=0
= eµt ∂m

∂tm
e(λ−1)t

1 − t

= fm((λ − 1)(1 − t) + 1)
e(λ+µ−1)t

(1 − t)m+1
(by Example 3.1)

= mfm−1((λ − 1)(1 − t) + 1)
e(λ+µ−1)t

(1 − t)m+1
+ (λ − 1)me(λ+µ−1)t

1 − t
(by (1.3))

= m
eµt

1 − t

∂m−1

∂tm−1

e(λ−1)t

1 − t
+ (λ − 1)me(λ+µ−1)t

1 − t
.
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By (2.3), comparing the coefficient of tn

n!
, we get (5.4). By (2.5), fn−k(µ + 1) can be

represented umbrally as (D + µ + 1)n−k, which means that (5.4) is equivalent to (5.3) by
the definition of Qn,m(λ, µ).

Setting m = 2 in (5.4), by (4.6) and (4.12), we obtain

Theorem 5.2. For any integer n ≥ 0 and any indeterminates λ, µ, there holds

n
∑

k=0

(

n

k

)

fk+2(λ)µn−k =
n

∑

k=0

(

n

k

)

(λ2 + 2k + 1)(λ + k)k(µ − k − 1)n−k.

In general, it seems to be not easy to derive the explicit formula similar to (4.6) and
(4.11) for Qn,m(λ, µ), we leave it as an open problem to the interested readers. One can
also be asked to give combinatorial proofs for Corollary 4.4, 4.5 and 4.8.
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