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Abstract

In this paper, we investigate some basic properties of fractional powers. In this
regard, we show that for any non-bipartite graph G and positive rational numbers
2r+1
2s+1 < 2p+1

2q+1 , we have G
2r+1
2s+1 < G

2p+1
2q+1 . Next, we study the power thickness of G,

that is, the supremum of rational numbers 2r+1
2s+1 such that G and G

2r+1
2s+1 have the

same chromatic number. We prove that the power thickness of any non-complete
circular complete graph is greater than one. This provides a sufficient condition for
the equality of the chromatic number and the circular chromatic number of graphs.
Finally, we introduce an equivalent definition for the circular chromatic number of
graphs in terms of fractional powers. Also, we show that for any non-bipartite graph

G if 0 < 2r+1
2s+1 6

χ(G)
3(χ(G)−2) , then χ(G

2r+1
2s+1 ) = 3. Moreover, χ(G) 6= χc(G) if and only

if there exists a rational number 2r+1
2s+1 >

χ(G)
3(χ(G)−2) for which χ(G

2r+1
2s+1 ) = 3.

1 Introduction

Throughout this paper we only consider finite simple graphs, unless otherwise stated.
For a graph G, let V (G) and E(G) denote its vertex and edge sets, respectively. Denote
two isomorphic graphs G and H by the symbol G ∼= H . Also, a homomorphism from
G to H is a map f : V (G) −→ V (H) such that adjacent vertices in G are mapped into
adjacent vertices in H , i.e., uv ∈ E(G) implies f(u)f(v) ∈ E(H). For simplicity, the
existence of a homomorphism is indicated by the symbol G −→ H . Two graphs G and
H are homomorphically equivalent, denoted by G ←→ H , if G −→ H and H −→ G.
Also, G < H means that G −→ H and there is no homomorphism from H to G. The
symbol Hom(G, H) is used to denote the set of all homomorphisms from G to H . In this
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terminology, we say that H is an upper bound for a class C of graphs, if G −→ H for all
G ∈ C. The problem of the existence of an upper bound for a class of graphs with some
special properties has been a subject of study in the theory of graph homomorphism.

Suppose that H is a subgraph of G. We say that G retracts to H, if there exists a
homomorphism r : G −→ H , called a retraction, such that r(u) = u for any vertex u of H .
A core is a graph which does not retract to a proper subgraph. Any graph is homomorphi-
cally equivalent to a unique core (for more on graph homomorphisms see [4, 5, 10, 13, 14]).

If n and d are positive integers with n > 2d, then the circular complete graph Kn
d

is
the graph with vertex set {v0 , v1, . . . , vn−1} in which v

i
is connected to v

j
if and only if

d 6 |i− j| 6 n− d. A graph G is said to be (n, d)-colorable if G admits a homomorphism
to Kn

d
. The circular chromatic number (also known as the star chromatic number [27])

χ
c
(G) of a graph G is the minimum of those ratios n

d
such that G admits a homomorphism

to Kn
d
. It is also known that one may equivalently define χc(G) in a similar way, by a

restriction to onto-vertex homomorphisms [28]. It is known [27, 28] that for any graph
G, χ(G) − 1 < χc(G) 6 χ(G), and hence χ(G) = ⌈χc(G)⌉. So χc(G) is a refinement of
χ(G), and χ(G) is an approximation of χc(G). The reader may consult [28] as an excellent
survey on this subject.

A rational number p is called an odd rational number if numerator and denominator
are both odd integers. As usual, we denote by [m] the set {1, 2, . . . , m}, and denote by
(

[m]
n

)

the collection of all n-subsets of [m]. The Kneser graph KG(m, n) is the graph on the

vertex set
(

[m]
n

)

, in which A is connected to B if and only if A∩B = ∅. It was conjectured
by Kneser [16] in 1955, and proved by Lovász [18] in 1978, that χ(KG(m, n)) = m−2n+2.
The Schrijver graph SG(m, n) is the subgraph of KG(m, n) induced by all 2-stable n-
subsets of [m]. It was proved by Schrijver [21] that χ(SG(m, n)) = χ(KG(m, n)) and
that every proper subgraph of SG(m, n) has a chromatic number smaller than that of
SG(m, n). Also, for a given graph G, the notation og(G) stands for the odd girth of G.

For a graph G, let G
k

be the kth power of G, which is obtained on the vertex set
V (G), by connecting any two vertices u and v for which there exists a walk of length k

between u and v in G. Note that the kth power of a simple graph is not necessarily a
simple graph itself. For instance, the kth power may have loop edges on its vertices if k is
an even integer. The chromatic number of graph powers has been studied in the literature
(see [3, 7, 8, 11, 22, 26]).

Remark 1. It should be noted that throughout the literature one may encounter another
definition of the kth power of a graph for which two vertices are joined by an edge if the
length of the shortest path between them is at most k (e.g. [1, 2]). Although, in this
paper, the edge set of kth power of a graph G consists of all pairs u and v for which
there exists a walk of length k between u and v in G. In fact, we stick to this definition
of power, since it inherits some properties from power in numbers. Furthermore, the
adjacency matrix of G

k

is obtained from the kth power of the adjacency matrix of G, by
replacing any non-zero entries with one.

The following simple and useful lemma was used in several papers (e.g. [7, 20, 26]).
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Lemma A. Let G and H be two simple graphs such that Hom(G, H) 6= ∅. Then for

any positive integer k, Hom(G
k

, H
k

) 6= ∅.

Note that if H contains a closed walk of length k, then H
k

contains a loop edge. In
this case, Lemma A trivially holds. Now, we recall a definition from [11].

Definition 1. Let m, n, and k be positive integers with m > 2n. Set H(m, n, k) to
be the helical graph whose vertex set consists of all k-tuples (A1, . . . , Ak) such that for
any 1 6 r 6 k, Ar ⊆ [m], |A1| = n, |Ar| > n and for any s 6 k − 1 and t 6 k − 2,
As∩As+1 = ∅, At ⊆ At+2. Also, two vertices (A1, . . . , Ak) and (B1, . . . , Bk) of H(m, n, k)
are adjacent if for any 1 6 i, j + 1 6 k, Ai ∩ Bi = ∅, Aj ⊆ Bj+1, and Bj ⊆ Aj+1. ♠

Roughly speaking, the vertices of H(m, n, k) encode the set of colors that can be found
in certain walks in an n-tuple coloring. Note that H(m, 1, 1) is the complete graph Km

and H(m, n, 1) is the Kneser graph KG(m, n). Also, it is easy to verify that if m > 2n,
then the odd girth of H(m, n, k) is greater than or equal to 2k + 1.

Theorem A. [11] Let m, n, and k be positive integers with m > 2n and G be a non-empty

graph with odd girth at least 2k + 1. Then we have Hom(G2k−1, KG(m, n)) 6= ∅ if and

only if Hom(G, H(m, n, k)) 6= ∅. Moreover, the chromatic number of the helical graph

H(m, n, k) is equal to m− 2n + 2.

A graph H is said to be a subdivision of a graph G if H is obtained from G by
subdividing some of the edges. The graph G

1
s is said to be the s-subdivision of a graph

G if G
1
s is obtained from G by replacing each edge with a path with exactly s− 1 inner

vertices. In this terminology, G
1
1 is isomorphic to G.

Hereafter, for a given graph G, we use the following notation for convenience. Set

G
r
s

def
= (G

1
s )r,

where r and s are positive integers. Note that when s is an even integer, then G
r
s is a

bipartite graph. Furthermore, if r is an even integer and G is a non-empty graph, then the
graph G

r
s contains loop edges. On the other hand, for bipartite graphs or graphs with loop

edges, one can easily recognize the existence of a graph homomorphism. Hence, hereafter
we consider just odd rational numbers as power of graphs. The symbol Cn stands for the
cycle on n vertices.

Theorem B. [11] Let G be a graph with odd girth at least 2k + 1. Then χ(G
2k+1

3 ) 6 3 if

and only if Hom(G, C2k+1) 6= ∅.

For given graphs G and H with v ∈ V (G), set

Ni(v)
def
= {u|there is a walk of length i joining u and v}.

the electronic journal of combinatorics 17 (2010), #R17 3



Also, for a graph homomorphism f : G −→ H , define

f(Ni(v))
def
=

⋃

u∈Ni(v)

f(u).

For two subsets A and B of the vertex set of a graph G, we write A ⊲⊳ B if every
vertex of A is joined to every vertex of B. Also, for any non-negative integer s, define the

graph G− 1
2s+1 as follows.

V (G− 1
2s+1 )

def
= {(A1, . . . , As+1)| Ai ⊆ V (G), |A1| = 1, ∅ 6= Ai ⊆ Ni−1(A1) , i 6 s + 1}.

Two vertices (A1, . . . , As+1) and (B1, . . . , Bs+1) are adjacent in G− 1
2s+1 if for any 1 6

i 6 s and 1 6 j 6 s + 1, Ai ⊆ Bi+1, Bi ⊆ Ai+1, and Aj ⊲⊳ Bj . Also, for any graph G

define the graph G− 2r+1
2s+1 as follows.

G− 2r+1
2s+1

def
= (G− 1

2s+1 )2r+1.

The graph G− 1
3 was first defined by C. Tardif, with different notation (P−1

3 (G)), to

study multiplicative graphs, see [26]. Also, the graph K
− 1

2k+1
n was defined in a completely

different way in [3, 8, 9, 22]. It is readily seen that K
− 1

2k+1
n

∼= H(n, 1, k +1) and K
− 1

2k+1

3
∼=

C6k+3.

Theorem C. [11] Let G and H be two graphs and 2r+1 < og(G). We have G2r+1 −→ H

if and only if G −→ H− 1
2r+1 .

In what follows we are concerned with fractional powers. The paper is organized as follows.
In the second section, we introduce some basic properties of fractional powers. In this
regard, we introduce some properties of graph powers similar to power in numbers. For
instance, we show that when q is an odd integer, then G

rq

sq and G
r
s are homomorphically

equivalent. Also, we present reduction results for the graph homomorphism problem.

Next, we introduce some density-type results. Indeed, we show that G
2r+1
2s+1 < G

2p+1
2q+1

provided that G is a non-bipartite graph and 0 < 2r+1
2s+1

< 2p+1
2q+1

< og(G). In the third
section, we investigate some properties of power thickness, that is, the supremum of

rational numbers 2r+1
2s+1

such that G and G
2r+1
2s+1 have the same chromatic number. In this

section, we determine the power thickness of helical graphs and uniquely colorable graphs.
In the fourth section, we introduce an equivalent definition for the circular chromatic
number of graphs in terms of fractional powers. Also, we introduce some necessary and
sufficient conditions for the equality of the chromatic number and the circular chromatic
number of graphs. In this regard, we prove that the power thickness of any non-complete
circular complete graph is greater than one. This provides a sufficient condition for the
equality of the chromatic number and the circular chromatic number of graphs. Also,

we show that for any non-bipartite graph G if 0 < 2r+1
2s+1

6
χ(G)

3(χ(G)−2)
, then χ(G

2r+1
2s+1 ) = 3.

Moreover, χ(G) 6= χc(G) if and only if there exists a rational number 2r+1
2s+1

>
χ(G)

3(χ(G)−2)

for which χ(G
2r+1
2s+1 ) = 3. Finally, in the fifth section, we make some concluding remarks

about open problems and natural directions of generalization.
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2 Fractional Powers

2.1 Basic Properties

In this subsection, we investigate some basic properties of graph powers. First, we intro-
duce some notation used for the remainder of the paper. Let G be a graph which does

not contain isolated vertices. Set the vertex set of G
1

2s+1 as follows. By abuse of notation,

for any edge uv ∈ E(G), define (uv)0
def
= u and (vu)0

def
= v. Note that a vertex may have

several representations. Moreover, (2s+1)th subdivision of the edge uv is a path of length
2s + 1, say Puv, set the vertices and the edges of this path, respectively, as follows.

V (Puv)
def
= {(uv)0, (uv)1, . . . , (uv)s, (vu)0, (vu)1, . . . , (vu)s}

and
E(Puv)

def
= {(uv)i(vu)s−i, (vu)s−j+1(uv)j| 0 6 i 6 s, 1 6 j 6 s}.

Also, note that the graph G
2r+1
2s+1 is (2r + 1)th power of G

1
2s+1 . Hence, we follow the

aforementioned notation for the vertex set of G
2r+1
2s+1 .

If 2r+1
2s+1

6 1, then Hom(G
2r+1
2s+1 , G) 6= ∅. To see this, for any vertex (uv)i ∈ G

2r+1
2s+1

(0 6 i 6 s), set f((uv)i)
def
= u. One can check that f ∈ Hom(G

2r+1
2s+1 , G). Similarly, the

following simple lemma can easily be proved by constructing graph homomorphisms and
its proof is omitted for the sake of brevity.

Lemma 1. Let G be a graph.

a) If q, r and s are non-negative integers, then G
(2r+1)(2q+1)
(2s+1)(2q+1) ←→ G

2r+1
2s+1 .

b) If s is a non-negative integer where 2s + 1 < og(G), then (G2s+1)
1

2s+1 −→ G.

The next lemma will be useful throughout the paper. We should mention that an
extended version of this lemma has been appeared in [14] as Lemma 5.5.

Lemma 2. Let G and H be two graphs where 2s + 1 < og(H). Then G
1

2s+1 −→ H if and

only if G −→ H2s+1.

Proof. Let G
1

2s+1 −→ H , then (G
1

2s+1 )2s+1 −→ H2s+1. In view of Lemma 1(a), we

have G −→ (G
1

2s+1 )2s+1 −→ H2s+1. Conversely, assume that G −→ H2s+1. Hence,

G
1

2s+1 −→ (H2s+1)
1

2s+1 . On the other hand, Lemma 1(b) shows that (H2s+1)
1

2s+1 −→ H ,
as desired. �

It is easy to verify that if r is a non-negative integer and H is a non-bipartite graph,

then the odd girth of H− 1
2r+1 is greater than or equal to 2r + 3. To see this, note that

the statement is true for r = 0, hence, assume that r > 1. Indirectly, assume that C2l+1

is an odd cycle of H− 1
2r+1 where 1 6 l 6 r. Suppose that u = (A1, . . . , Ar+1) ∈ V (C2l+1).
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Consider two adjacent vertices v = (B1, . . . , Br+1) and w = (B′
1, . . . , B

′
r+1) of C2l+1 at

distance exactly l from u. In view of the definition of H− 1
2r+1 , we should have A1 ⊆ Br+1

and A1 ⊆ B′
r+1. On the other hand, v and w are adjacent, consequently, Br+1∩B′

r+1 = ∅
which is a contradiction.

Lemma 3. Let H be a non-bipartite graph and r be a non-negative integer. Then

(2r + 1)(og(H)− 2) < og(H− 1
2r+1 ) 6 (2r + 1)og(H).

Proof. First, assume that og(H− 1
2r+1 ) = 2l + 1 > 2r + 3. Hence, C2l+1 −→ H− 1

2r+1 .
Subsequently, in view of Theorem C, C2r+1

2l+1 −→ H , which implies that og(C2r+1
2l+1 ) > og(H).

Also, it is easy to check that og(C2r+1
2l+1 ) is the smallest positive odd integer greater than

or equal to 2l+1
2r+1

. Thus, og(H− 1
2r+1 ) > (2r + 1)(og(H)− 2). Next, in view of Theorem C,

we have H
1

2r+1 −→ H− 1
2r+1 . Consequently, og(H− 1

2r+1 ) 6 (2r + 1)og(H). �

The following theorem is a generalization of Theorem C and Lemma 3(ii) of [26].

Theorem 1. Let G and H be two graphs. Also, assume that 2r+1
2s+1

< og(G) and 2s + 1 <

og(H− 1
2r+1 ). We have G

2r+1
2s+1 −→ H if and only if G −→ H− 2s+1

2r+1 .

Proof. Assume that G
2r+1
2s+1 −→ H . In view of Theorem C, one has G

1
2s+1 −→ H− 1

2r+1 ,

consequently, G −→ (G
1

2s+1 )2s+1 −→ (H− 1
2r+1 )2s+1. Conversely, suppose that G −→

H− 2s+1
2r+1 . Considering Lemma 2, we have G

1
2s+1 −→ H− 1

2r+1 . Now, in view of Theorem C,

one can conclude that G
2r+1
2s+1 −→ H . �

Although, we do not know the exact value of og(H− 1
2r+1 ), we specify the odd girth of

K
− 1

2r+1
n
d

in Corollary 1. Moreover, we introduce another lower bound for og(H− 1
2r+1 ) in

Corollary 2 in terms of the circular chromatic number.

Lemma 4. Let G be a non-bipartite graph. For any non-negative integer r we have

G− 2r+1
2r+1 ←→ G.

Proof. First, note that G− 1
2r+1 −→ G− 1

2r+1 . Hence, in view of Theorem 1, we have

(G− 1
2r+1 )2r+1 −→ G. Next, G

2r+1
2r+1 −→ G. Considering Theorem 1, we have G

1
2r+1 −→

G− 1
2r+1 . Thus, G −→ (G

1
2r+1 )2r+1 −→ (G− 1

2r+1 )2r+1, as required. �

The graphs (G2r+1)−
1

2r+1 and G are not homomorphically equivalent in general. For

instance, (C3
5)

− 1
3 = K

− 1
3

5 is not homomorphically equivalent to C5. In fact, χ(K
− 1

3
5 ) =

χ(H(5, 1, 2)) = 5, while χ(C5) = 3. Also, in view of Lemma 4, Theorem A, and The-
orem C, one can see that for given positive integers k, m, and n where m > 2n, the

helical graph H(m, n, k) and the graph KG(m, n)−
1

2k−1 are homomorphically equivalent.
Although, if k > 2 and n > 2, then the number of vertices of H(m, n, k) is less than that

of KG(m, n)−
1

2k−1 .
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Lemma 5. Let G be a non-bipartite graph. Also, assume that p and q are positive odd

rational numbers and t is a non-negative integer.

a) If p(2t + 1) < og(G), then Gp(2t+1) ←→ (Gp)2t+1.

b) If p < og(G) and pq < og(G), then (Gp)q −→ Gpq.

Proof. Part (a) follows by a simple argument. Assume that q = 2r+1
2s+1

. To prove
Part (b), note that

Gp −→ G
p(2s+1)
2s+1 (by Lemma 1(a))

⇒ Gp −→ (G
p

2s+1 )2s+1 (by Lemma 5(a))

⇒ (Gp)
1

2s+1 −→ G
p

2s+1 (by Lemma 2)

⇒ ((Gp)
1

2s+1 )2r+1 −→ (G
p

2s+1 )2r+1 (by Lemma A)

⇒ (Gp)
2r+1
2s+1 −→ G

p(2r+1)
2s+1 (by Lemma 5(a))

⇒ (Gp)q −→ Gpq.

�

An important observation is that the circular complete graph K 2n+1
n−t

is isomorphic to

C2t+1
2n+1. This allows us to investigate some coloring properties of circular complete graph

powers. The next lemma follows by a simple discussion.

Lemma 6. Let n and t be non-negative integers where n > t. Then C2t+1
2n+1

∼= K 2n+1
n−t

.

Now, we are ready to specify the odd girth of K
− 1

2r+1
n
d

.

Corollary 1. Let n, d, and r be positive integers where n > 2d. The odd girth of K
− 1

2r+1
n
d

is equal to 2r + 1 + 2⌈2r+1
n
d
−2
⌉.

Proof. Assume that og(K
− 1

2r+1
n
d

) = 2l + 1 > 2r + 3. Then

C2l+1 −→ K
− 1

2r+1
n
d

⇐⇒ C2r+1
2l+1 −→ Kn

d
(by Theorem 1)

⇐⇒ K 2l+1
l−r
−→ Kn

d
(by Lemma 6)

⇐⇒ 2l+1
l−r

6 n
d

⇐⇒ 2l + 1 > 2r + 1 + 2⌈2r+1
n
d
−2
⌉.

Thus,

og(K
− 1

2r+1
n
d

) = 2r + 1 + 2⌈
2r + 1
n
d
− 2
⌉.

�

The following corollary is a consequence of Lemma 4, Theorem 1, and the aforemen-
tioned corollary.

Corollary 2. Let G be a non-bipartite graph and r be a positive integer. Then we have

og(G− 1
2r+1 ) > 2r + 1 + 2⌈ 2r+1

χc(G)−2
⌉.
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2.2 Density-Type Results

An important property of the family of circular complete graphs is that K r
s

< K p

q
if and

only if r
s

< p

q
. Fortunately, for a given non-bipartite graph G, we have a similar property

for the family of fractional powers of G.

Theorem 2. Let G be a non-bipartite graph and 0 < 2r+1
2s+1

< 2p+1
2q+1

< og(G). Then

G
2r+1
2s+1 < G

2p+1
2q+1 .

Proof. We first show that if 1 < 2r+1
2s+1

< og(G), then G < G
2r+1
2s+1 . We know that

G −→ G
2r+1
2s+1 . Hence, it is sufficient to show that there is no homomorphism from G

2r+1
2s+1

to G. First, we prove that if G is a core, then the statement is true. On the contrary,

suppose that there is a homomorphism from G
2r+1
2s+1 to G. Since, G is a core and a subgraph

of G
2r+1
2s+1 , this homomorphism provides an isomorphism between two copies of G. For any

edge e = uv ∈ E(G), the vertex (uv)1 ∈ V (G
2r+1
2s+1 ) (resp. (vu)1 ∈ V (G

2r+1
2s+1 )) is adjacent

to all the neighborhoods of the vertex u (resp. v) in G ⊆ G
2r+1
2s+1 (as a subgraph of G

2r+1
2s+1 ).

The graph G is a core, therefore, the image of (uv)1 (resp. (vu)1) should be the same as
u (resp. v). By induction, one can show that the image of (uv)k (resp. (vu)k) should
be the same as u (resp. v) whenever 1 6 k 6 s. Note that, since G is a non-bipartite
graph, it contains a triangle or an induced path of length three. Assume that G contains
a triangle with vertex set {u, v, w}. Consider two vertices (uv)s and (uw)s. It was shown
that images of (uv)s and (uw)s should be u. Also, 1 < 2r+1

2s+1
, consequently, (uv)s and

(uw)s are adjacent which is a contradiction. Similarly, if G contains an induced path of
length three, we get a contradiction.

Now, suppose that G is an arbitrary non-bipartite graph. It is well known that G

contains a core, say H , as an induced subgraph. On the contrary, suppose that G
2r+1
2s+1 −→

G. Then we have H
2r+1
2s+1 −→ G

2r+1
2s+1 −→ G −→ H, which is a contradiction. Consequently,

if 1 < 2r+1
2s+1

< og(G), then G < G
2r+1
2s+1 .

Now, it is easy to verify that

G
2r+1
2s+1 ←→ G

(2r+1)(2q+1)
(2s+1)(2q+1) and G

2p+1
2q+1 ←→ G

(2p+1)(2s+1)
(2q+1)(2s+1) .

On the other hand, we have 2r+1
2s+1

< 2p+1
2q+1

, hence, G
(2r+1)(2q+1)
(2s+1)(2q+1) −→ G

(2p+1)(2s+1)
(2q+1)(2s+1) . It remains

to show that the inequality is strict. On the contrary, assume that G
2p+1
2q+1 −→ G

2r+1
2s+1 .

Then, in view of Lemma 5(b), we have

(G
2p+1
2q+1 )

(2s+1)(2p+1)
(2r+1)(2q+1) −→ (G

2r+1
2s+1 )

(2s+1)(2p+1)
(2r+1)(2q+1) −→ G

2p+1
2q+1 .

Note that (2s+1)(2p+1)
(2r+1)(2q+1)

> 1 which is a contradiction. �

A similar result can be obtained for negative powers as follows.
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Theorem 3. Let G be a non-bipartite graph, 0 < 2r+1
2s+1

< 2p+1
2q+1

, and 2p + 1 < og(G− 1
2q+1 ).

Then

G− 2r+1
2s+1 < G

− 2p+1
2q+1 .

Proof. In view of Theorem 1, one can conclude that (G− 1
2s+1 )−

1
2q+1 is homomorphically

equivalent to G
− 1

(2s+1)(2q+1) . Subsequently,

G− 2r+1
2s+1 ←→ (((G− 1

2s+1 )−
1

2q+1 )2q+1)2r+1 (by Lemma 4)

←→ ((G− 1
(2s+1)(2q+1) )2q+1)2r+1

←→ G
−

(2r+1)(2q+1)
(2s+1)(2q+1) (by Lemma 5(a))

< G
− (2p+1)(2s+1)

(2q+1)(2s+1) (by Theorem 2)

←→ (((G− 1
2q+1 )−

1
2s+1 )2s+1)2p+1

←→ G
− 2p+1

2q+1 . (by Lemma 4)

�

3 Power Thickness

Theorem B shows that the chromatic number of graph powers can be used to investigate
the existence of graph homomorphisms into odd cycles, and this is our motivation for the
following definition.

Definition 2. Assume that G is a non-bipartite graph. Also, let i > −χ(G) + 3 be an
integer. The ith power thickness of G is defined as follows.

θi(G)
def
= sup{

2r + 1

2s + 1
|χ(G

2r+1
2s+1 ) 6 χ(G) + i,

2r + 1

2s + 1
< og(G)}.

For simplicity, when i = 0, the parameter is called the power thickness of G and is denoted
by θ(G). ♠

Note that, in view of Theorem 2, if G is a non-bipartite graph and 0 < 2r+1
2s+1

<

2p+1
2q+1

< og(G), then χ(G
2r+1
2s+1 ) 6 χ(G

2p+1
2q+1 ). Consequently, θi(G) > 2r+1

2s+1
implies that

χ(G
2r+1
2s+1 ) 6 χ(G) + i.

As an example, one can see that θ(C2n+1) = 2n+1
3

. To see this, note that C
2r+1
2s+1

2n+1 and
C2r+1

(2n+1)(2s+1) are isomorphic. Now, by considering Lemma 6 we have θ(C2n+1) = 2n+1
3

.

Lemma 7. Let G and H be two non-bipartite graphs with χ(G) = χ(H) − j, j > 0. If

G −→ H and i + j > −χ(G) + 3, then

θi+j(G) > θi(H).
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Proof. Consider a rational number 2r+1
2s+1

< og(H) for which χ(H
2r+1
2s+1 ) 6 χ(H) + i. We

know that og(G) > og(H) since G −→ H . Hence, 2r+1
2s+1

< og(G) and G
2r+1
2s+1 −→ H

2r+1
2s+1

which implies that χ(G
2r+1
2s+1 ) 6 χ(H) + i = χ(G) + i + j. �

Hereafter, we introduce some results to compute the power thickness of some graphs.
Now, we compute the power thickness of some helical graphs.

Theorem 4. Let k, l, and m be positive integers where m > 3 and 2l−1
2k−1

6 1. Then

θ(H(m, 1, k)2l−1) =
2k − 1

2l − 1
.

Proof. In view of Lemma 5(b) and Theorem A, we have (H(m, 1, k)2l−1)
2k−1
2l−1 −→

H(m, 1, k)2k−1 −→ Km, therefore, θ(H(m, 1, k)2l−1) > 2k−1
2l−1

. Suppose, on the con-

trary, that θ(H(m, 1, k)2l−1) = t > 2k−1
2l−1

. Choose a rational number 1 < 2r+1
2s+1

such

that 1 <
(2r+1)(2k−1)
(2s+1)(2l−1)

< t. Set G
def
= (H(m, 1, k)2l−1)

2r+1
2s+1 . In view of Lemma 5(b) and

definition of power thickness, one has χ(G
2k−1
2l−1 ) 6 m. By Theorem 1, one has G −→

K
− 2l−1

2k−1
m

∼= H(m, 1, k)2l−1. Thus, (H(m, 1, k)2l−1)
2r+1
2s+1 −→ H(m, 1, k)2l−1 which contra-

dicts Theorem 2, as claimed. �

The next definition provides a sufficient condition for the graphs with θ(G) = 1.

Definition 3. Let G be a graph with chromatic number k. G is called a colorful graph
if for any proper k-coloring c of G, there exists an induced subgraph H of G such that
for any vertex v of H , all colors appear in the closed neighborhood of v, i.e., c(N [v]) =
{1, 2, . . . , k}. ♠

Theorem 5. For any non-bipartite colorful graph G, we have θ(G) = 1.

Proof. On the contrary, suppose that θ(G) > 1. Choose a rational number 1 < 2r+1
2s+1

<

min{3, θ(G)}. By definition, χ(G
2r+1
2s+1 ) = χ(G) = k. Consider a proper k-coloring of

the graph G
2r+1
2s+1 . Since, G is a colorful graph and an induced subgraph of G

2r+1
2s+1 , there

exists an induced subgraph of G
2r+1
2s+1 , denoted by H , such that for any vertex v ∈ V (H),

all colors appear in the closed neighborhood of v. For any edge e = uv ∈ E(H), the
vertex (uv)1 (resp. (vu)1) is adjacent to all the neighborhoods of the vertex u (resp. v)
in H . Therefore, the color of (uv)1 (resp. (vu)1) should be the same as u (resp. v).
By induction, one can show that the color of (uv)k (resp. (vu)k) should be the same
as u (resp. v) provided that uv ∈ E(H). In view of coloring property of H , it should
contain a triangle or an induced path of length three whose end vertices have the same
color. Assume that H contains an induced path with vertex set {u, v, w, x} and edge
set {uv, vw, wx} such that u and x have the same color. Consider two vertices (uv)s

and (xw)s. It was shown that colors of (uv)s and (xw)s should be the same as u and
x, i.e, they have the same color. On the other hand, 1 < 2r+1

2s+1
, consequently, (uv)s and

(xw)s are adjacent which is a contradiction. Similarly, if H contains a triangle, we get a
contradiction. �
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We know that any uniquely colorable graph is a colorful graph. Hence, the power
thickness of any non-bipartite uniquely colorable graphs is one.

Corollary 3. Let Kn be complete graph with n > 3 vertices. Then θ(Kn) = 1.

A less ambitious objective is to find all graphs with power thickness one. Also, we
do not know whether any graph with power thickness one is colorful.

Question 1. Is it true that any graph with power thickness one is a colorful graph?

4 Circular Coloring

The remainder of this paper is devoted to connection between chromatic number of graph
powers and circular coloring. In the next theorem we introduce an equivalent definition
for the circular chromatic number of graphs.

Theorem 6. Let G be a non-bipartite graph with chromatic number χ(G).

a) If 0 < 2r+1
2s+1

6
χ(G)

3(χ(G)−2)
, then χ(G

2r+1
2s+1 ) = 3. Furthermore, χ(G) 6= χc(G) if and only

if there exists a rational number 2r+1
2s+1

>
χ(G)

3(χ(G)−2)
for which χ(G

2r+1
2s+1 ) = 3.

b) χc(G) = inf{2n+1
n−t
|χ(G

2n+1
3(2t+1) ) = 3, n > t > 0}.

Proof. Assume that χc(G) = p

q
. Then

G
2r+1
2s+1 → K3 ⇐⇒ G −→ K

− 2s+1
2r+1

3 (by Theorem 1)
⇐⇒ G −→ C2s+1

6r+3

⇐⇒ G −→ K 6r+3
3r+1−s

(by Lemma 6)

⇐⇒ p

q
6 6r+3

3r+1−s

⇐⇒ 2r+1
2s+1

6
p

3p−6q

⇐⇒ 2r+1
2s+1

6
χc(G)

3(χc(G)−2)
.

One can see that χ(G)
3(χ(G)−2)

6
χc(G)

3(χc(G)−2)
and the equality holds if and only if χ(G) =

χc(G). Hence, Part (a) follows. To prove Part (b), we have

G −→ K 2n+1
n−t

⇐⇒ G −→ C2t+1
2n+1 (by Lemma 6)

⇐⇒ G
1

2t+1 −→ C2n+1 (by Lemma 2)

⇐⇒ χ(G
2n+1

3(2t+1) ) = 3. (by Theorem B)

�
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By the proof of Theorem 6(a), one can specify θ
3−χ(G)

(G) in terms of the circular
chromatic number of G as follows.

Corollary 4. Let G be a non-bipartite graph. Then

θ
3−χ(G)

(G) =
χc(G)

3(χc(G)− 2)
.

In view of the above corollary, one can see that for any rational number 2 < p

q
6 3

we have θ(K p

q
) = p

3p−6q
. Specially, if r > 1 is a rational number where r = n

d
, then

θ(K 6n
3n−d

) = r.

Corollary 5. For any rational number r > 1, there exists a graph G with θ(G) = r.

In the next theorem we show that the power thickness of the circular complete graph
K p

q
is greater than one provided that q ∤ p.

Theorem 7. For any rational number p

q
> 2 where q ∤ p we have

θ(K p

q
) > 1.

Proof. Set m
def
= ⌈p

q
⌉. Choose a positive integer d such that p

q
< 2dm−1

2d
< m. We know

that K p

q
−→ K 2dm−1

2d
, hence, it is sufficient to show that there exists a positive integer s

such that (K 2dm−1
2d

)
2s+1
2s−1 −→ Km.

Set n
def
= dm− 1, t

def
= d(m− 2)− 1. In view of Lemma 6 and Lemma 5(b), we have

(K 2dm−1
2d

)
2s+1
2s−1 ∼= (C2t+1

2n+1)
2s+1
2s−1 −→ (C2n+1)

(2t+1)(2s+1)
2s−1 ∼= (C(2n+1)(2s−1))

(2t+1)(2s+1).

On the other hand, Lemma 6 confirms that

χ((C(2n+1)(2s−1))
(2t+1)(2s+1)) = ⌈

(2n + 1)(2s− 1)

(n− t)(2s + 1)− 2n− 1
⌉.

Therefore,

χ((K 2dm−1
2d

)
2s+1
2s−1 ) 6 ⌈

(2dm− 1)(2s− 1)

2d(2s + 1)− 2dm + 1
⌉.

It is easily to see that if s is sufficiently large, then χ((K 2dm−1
2d

)
2s+1
2s−1 ) = m. In other words,

θ(K p

q
) > 2s+1

2s−1
> 1. �

The aforementioned theorem provides a sufficient condition for the equality of the
chromatic number and the circular chromatic number of graphs. In fact, if we show that
power thickness of a graph G is equal to one, then χ(G) = χc(G).

It is well known that χc(G) = χ(G) if and only if for any proper coloring f :
V (G)→ {1, 2, . . . , χ(G)} there exists a cycle Cn, as a subgraph of G, with the vertex set
{v1, v2, . . . , vn} and the edge set {vivi+1| 1 6 i 6 n (mod n)} such that f(vi+1)− f(vi) =
1 (mod χ(G)) for any 1 6 i 6 n. Consequently, in view of Corollary 4, the following
corollary holds.
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Corollary 6. Let G be a graph with chromatic number 3. Then the following conditions

are equivalent.

a) θ(G) = 1.

b) χc(G) = 3.

c) G is a colorful graph.

The question of whether the circular chromatic number and the chromatic number of the
Kneser graphs and the Schrijver graphs are equal has received attention and has been
studied in several papers [6, 12, 15, 17, 19, 22]. Johnson, Holroyd, and Stahl [15] proved
that χc(KG(m, n)) = χ(KG(m, n)) if m 6 2n+2 or n = 2. This shows that KG(2n+1, n)
is a colorful graph.

Corollary 7. Let n be a positive integer. Then θ(KG(2n + 1, n)) = 1.

They also conjectured that the equality holds for all Kneser graphs.

Conjecture 1. [15] For all m > 2n + 1, χc(KG(m, n)) = χ(KG(m, n)).

Some coloring properties of Kneser graphs have been investigated in [22, 23, 24, 25]. It
is shown in [24, 25] that if c is a proper coloring of the Kneser graph KG(m, n) with t colors,

then there exists a multicolored complete bipartite graph K⌈ r
2
⌉,⌊ r

2
⌋ with r

def
= χ(KG(m, n))

such that r different colors occur alternating on the two sides of the bipartite graph with
respect to their natural order. This result has been generalized for general Kneser graphs
in [23]. It seems that Kneser graphs are colorful graphs.

Question 2. Let m and n be positive integers where m > 2n. Is the Kneser graph

KG(m, n) a colorful graph? Is it true that θ(KG(m, n)) = 1?

Theorem A shows that θ(H(m, n, k)) > 2k−1 whenever m > 2n+1. Another problem
which may be of interest is the following.

Question 3. Let m and n be positive integers where m > 2n + 1. Is it true that

θ(H(m, n, k)) = 2k − 1?

Odd cycles are symmetric and they have sparse structure. Hence, it can be useful if
the circular chromatic number can be expressed as homomorphism to odd cycles. Now,
let G be a non-bipartite graph and t be a positive integer. Define,

f(G, 2t + 1)
def
= max{2n + 1|G

1
2t+1 −→ C2n+1}.

One can see that 3 6 f(G, 2t + 1) 6 (2t + 1) × og(G). In view of the proof of
Theorem 6(b), one can compute f(G, 2t + 1) in terms of the circular chromatic number
of graph G and vice versa. In fact, we have

χc(G) = inf{
2n + 1

n− t
|G

1
2t+1 −→ C2n+1, n > t > 0},

which leads us to the following theorem.
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Theorem 8. Let G be a non-bipartite graph and t be a positive integer. Then the maxi-

mum value of 2n + 1, for which Hom(G
1

2t+1 , C2n+1) 6= ∅, is equal to

2t + 1 + 2⌊
2t + 1

χc(G)− 2
⌋.

Also, note that there exists a necessary condition for the existence of homomorphism
to symmetric graphs in terms of the eigenvalue of the Laplacian matrix. The next theorem
can be useful in studying the circular chromatic number of graphs.

Theorem D. [4, 5] Let G be a graph with |V (G)| = m. If σ ∈ Hom(G, C2n+1), then

λ
G

m
>

2|E(G)|

2m
λ

C2n+1

2n+1
,

where λ
G

m
and λ

C2n+1

2n+1
stand for the largest eigenvalues of Laplacian matrices of G and

C2n+1, respectively.

5 Concluding Remarks

It is instructive to add some notes on the whole setup we have introduced so far. It
is evident from our approach that any kind of information about power thickness of a
graph has important consequences on graph homomorphism problem. There are several
questions about power thickness which remain open. In fact, we do not know whether
the power thickness is always a rational number.

Question 4. Let G be a non-bipartite graph and i > −χ(G) + 3 be an integer. Is θi(G)
a rational number? Also, for which real numbers r > 1 there exists a graph G with

θi(G) = r?

We know that if χ(G) = 3 then θ−1(G) = 0. Also, in view of Corollary 4, one can see
that if χ(G) = 4 then θ−1(G) < 1.

Question 5. Let G be a non-bipartite graph. Is it true that θ−1(G) < 1?

Finally, the following parameter can be studied as a natural generalization of power
thickness and as a measure for graph homomorphism problem.

Definition 4. Let G and H be two graphs. Set

θ
H
(G)

def
= sup{

2r + 1

2s + 1
|G

2r+1
2s+1 −→ H,

2r + 1

2s + 1
< og(G)}.

♠
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