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Abstract

The set coloring problem is a new kind of both vertex and edge coloring of a

graph introduced by Suresh Hegde in 2009. Only large bounds have been given on

the chromatic number for general graphs. In this paper, we consider the problem on

paths and complete binary trees, and show that it can be reduced to the computation

of a transversal in a special Latin square, i.e., the XOR table. We then investigate

a variation of the problem called strong set coloring, and we provide an exhaustive

list of all graphs being strongly set colorable with at most 4 colors.

1 Introduction

We choose standard notations and definitions in graph theory. If G = (V, E) is a given
graph, the order of G is the number of vertices |V |, and the size of G is the number of
edges |E|. If u, v are two vertices of V , we denote by u ∼ v the fact that u and v are
adjacent in G. We will consider simple connected graphs in the whole paper. Moreover,
the cardinality of a set S will be denoted by #S.

The notion of set coloring of a graph was introduced in 2009 by Hegde [4]. In its
original version, both vertices and edges of an undirected graph are colored with finite
sets of positive integers. The color of an edge (u, v) is given by the symmetric difference
of the colors of u and v. A graph is said to be set colorable if there exists an assignment
of colors on the vertices such that both conditions are fulfilled:

(i) all the colors on the vertices are distinct,
(ii) all the colors on the edges are distinct.
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⊕ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13

3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12

4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11

5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10

6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9

7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6

10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5

11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4

12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3

13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2

14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 1: The XOR table A4.

In this paper, we choose to consider the problem in another but equivalent way, which
appears to us more natural. Stronger reasons of this choice will be proposed in section 2.
If n is a positive integer, denote by Zn the set {0, 1, . . . , 2n−1} of the 2n first nonnegative
integers. For any two values i, j ∈ Zn, we denote by i⊕ j the XOR value (also known as
Nim-sum or addition in binary without carries.) It is well known that (Zn,⊕) is a finite
group. We denote by A the semi-infinite matrix defined by A(i, j) = i ⊕ j for i, j ∈ Z≥0,
and An the finite matrix consisting of the first 2n rows and first 2n columns of A. Figure 1
gives the computation of i ⊕ j with i, j ∈ Z4, i.e., the matrix A4.

Definition 1. A Latin square over an alphabet αp of size p > 0 is a p×p table filled with
the p different symbols of αp in such a way that each symbol occurs exactly once in each
row and exactly once in each column.

As defined in [3], for every positive integer n, the matrix An is closed n-nim-regular,
implying that it is a Latin square over Zn. Sudoku grids are other examples of Latin
squares.

Given a graph G = (V, E) and a positive integer n, we define a function fn : V → Zn

which assigns to each vertex of v ∈ V a color f(v). We also define a function f⊕
n : E → Zn,

which assigns colors to the edges, and defined as f⊕
n (u, v) = fn(u)⊕fn(v) for all (u, v) ∈ E.

A graph is said to be n set colorable if there exist two functions fn and f⊕
n that are

injective. Figure 2 shows a 4 set colorable graph. In view of its size (|E| = 10 > 23), we
can also assert that the set coloring number of this graph is equal to 4.

In his paper [4], Hegde introduces three problems related to the set coloring:

• The determination of the set coloring number σ(G) of a graph G, which is the
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smallest n such that G is n set colorable.

• The strong set coloring problem. A graph G = (V, E) is said to be strongly n-set
colorable if there exists a n set coloring such that fn(V ) ∪ f⊕

n (E) make a partition
of Zn \ {0}. Note that if such a coloring exists, then we necessarily have |V |+ |E| =
2n − 1. Figure 2 gives an example of a strongly 4-set colorable graph.

• The proper set coloring problem. A graph G = (V, E) is said to be proper set
colorable if it is set colorable with f⊕

n (E) = Zn \ {0}. The existence of a proper
coloring implies the equality |E| = 2n − 1.
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Figure 2: Examples of a 4 set colorable graph (on the left) and a strongly 4-set colorable
graph (on the right)

This paper is organized as follows: in section 2, we consider the basic set coloring
problem and the computation of σ(G) on special families of graphs such as paths and
complete binary trees. For both cases, we show that an optimal set coloring can be
obtained by computing a certain type of transversal in the XOR table (the definition of a
transversal in a Latin square will be given in section 2). In section 3, we give new necessary
conditions for a graph to be strongly set colorable. As an application of these conditions,
we provide an exhaustive list of the graphs that are strongly 3- and 4-set colorable.

2 Set coloring number

In his paper [4], Hegde especially focused on the strong and the proper variants of the set
coloring problem. Investigations on the set coloring number were not considered, except
lower and upper bounds in the general case. Indeed, it was straightforwardly said that
for any graph G = (V, E), we have

⌈log2(|E| + 1)⌉ ≤ σ(G) ≤ |V | − 1

and the bounds are the best possible. In the current paper, we consider two families
of graphs for which the lower bound may be tight: paths and complete binary trees.
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Before proceeding to the resolution, we investigate a connected problem derived from
combinatorial number theory.

2.1 A connected problem: finding a transversal in a Latin square

over Zn

We here recall the definition of a transversal in a Latin square, which is due to Euler in
1779.

Definition 2. A transversal T in a p × p Latin square L over {0, . . . , p − 1} is a set
of p cells {L(i1, j1), . . . , L(ip, jp)} with ik, jk ∈ {0, . . . , p − 1} for k = 1 . . . p, such that
{i1, . . . , ip} = {j1, . . . , jp} = {L(i1, j1), . . . , L(ip, jp)} = {0, . . . , p − 1}. In other words, T
has exactly one cell in each row, one in each column, and the cells contain all the symbols
of {0, . . . , p − 1}.

For convenience for the reader, a transversal will be denoted as a set of triplets
{(i1, j1, L(i1, j1), . . . , (ip, jp, L(ip, jp)}.

There are few results guaranteeing the existence of a transversal in Latin squares. One
can mention two important conjectures that are still open. In [1, 5], Ryser conjectured
that any Latin square of odd size admits a transversal. Later, Brualdi [2] made the
conjecture that any Latin square of size n has a partial transversal of size at least n − 1,
where a partial transversal is a subset of a transversal.

In the context of set coloring, we are interested in the Latin square An of the XOR
operator. We will prove that we can guarantee the existence of a transversal for each
value of n ≥ 2. Moreover, we provide a recursive algorithm that builds such a transversal.

Proposition 1. For every positive integer n ≥ 2, the Latin square An admits a transver-
sal.

Proof. We consider the following recursion hypothesis:
(Hn) : The table An admits a transversal Tn such that for all 0 ≤ j < 2n, the cells
(i, j, i⊕ j) and (i′, j ⊕ 1, i′ ⊕ j ⊕ 1) satisfy i⊕ i′ ≥ 2n−1. In other words, if we consider the
cells of the jth and the (j ⊕ 1)th columns, one of both has a value less than 2n−1, while
the other has a value greater or equal to 2n−1.

One can check that A2 with the following transversal satisfies (H2):

(0, 0, 0), (2, 3, 1), (3, 1, 2), (1, 2, 3)

Now assume that (Hn−1) is true for some transversal Tn−1 with n > 2, and consider
the table An. The set Tn is built as follows, divided into 4 types of cells:

1. The cells (i, j, i ⊕ j) of Tn−1 satisfying 0 ≤ i ⊕ j < 2n−2 also belong to Tn.

2. For each cell (i, j, i ⊕ j) of Tn−1 satisfying 2n−2 ≤ i ⊕ j < 2n−1, add the cell (i +
2n−1, j + 2n−1, (i + 2n−1) ⊕ (j + 2n−1)) to Tn. Since 0 ≤ i, j < 2n−1, those cells can
also be written as (i + 2n−1, j + 2n−1, i ⊕ j).
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3. For each cell (i, j, i⊕j) of Tn−1 satisfying 0 ≤ i⊕j < 2n−2, add the cell (i+2n−1, j +
1, (i+2n−1)⊕(j+1)) to Tn if j ≡ 0(2), and the cell (i+2n−1, j−1, (i+2n−1)⊕(j−1))
otherwise. Since 0 ≤ i, j < 2n−1, j + 1 = j ⊕ 1 if j ≡ 0(2) and j − 1 = j ⊕ 1 if
j ≡ 1(2), then those cells can be written as (i + 2n−1, j ⊕ 1, (i ⊕ j ⊕ 1 + 2n−1)).

4. For each cell (i, j, i ⊕ j) of Tn of type 2 (i.e., satisfying 2n−1 ≤ i, j < 2n), add the
cell (i− 2n−1, j + 1, (i− 2n−1)⊕ (j + 1)) to Tn if j ≡ 0(2), and the cell (i− 2n−1, j −
1, (i + 2n−1)⊕ (j − 1)) otherwise. Those cells can be written as (i− 2n−1, j ⊕ 1, (i⊕
j ⊕ 1 + 2n−1)).

Figure 3 shows the localisation of the cells of Tn according to their type, with the
range of values they contain.

0 . . . 2
n−1

− 1 2
n−1 . . . 2

n
− 1

0

cells of type 1 cells of type 4
... values in values in

0 . . . 2n−2 − 1 2n−1 + 2n−2
. . . 2n − 1

2
n−1

− 1

2
n−1

cells of type 3 cells of type 2
... values in values in

2n−1
. . . 2n−1 + 2n−2 − 1 2n−2

. . . 2n−1 − 1

2
n
− 1

Figure 3: Types and values of the cells when building Tn in the table An.

We now show that Tn is a transversal of An. Since Tn−1 is also a transversal, the cells
of type 1 and 2 contain all the values between 0 and 2n−1 − 1. For the same reason, for
0 ≤ i⊕ j < 2n−2, the values of the cells of type 3 take all the values i⊕ j ⊕ 1 + 2n−1, i.e.,
the set {2n−1, . . . , 2n−1 + 2n−2 − 1}. The cells of type 4 take all the values i⊕ j ⊕ 1+ 2n−1

for 2n−2 ≤ i ⊕ j < 2n−1, i.e., they take all the values 2n−1 + 2n−2, . . . , 2n − 1. Collecting
the values of the four types of cells, we obtain that Tn contains all the values between 0
and 2n − 1.

In order to show that there is no repetition of cell in a same column, first note that
there cannot be two cells of the same type in the same column. Otherwise this would
mean that it is also the case in Tn−1. There are only two possibilities for having two cells
in the same column:

• A cell of type 1 is in the same column as a cell of type 3. According to the definition
of Tn, there is a cell of type 1 in column j iff there is a cell of type 3 in column j⊕1.

the electronic journal of combinatorics 17 (2010), #R173 5



⊕
0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

⊕
0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 0 3 2 5 4 7 6

2 2 3 0 1 6 7 4 5

3 3 2 1 0 7 6 5 4

4 4 5 6 7 0 1 2 3

5 5 4 7 6 1 0 3 2

6 6 7 4 5 2 3 0 1

7 7 6 5 4 3 2 1 0

Figure 4: The transversals T2 (left) and T3 (right).

Moreover, since the cells of type 1 satisfy (Hn−1), there is no pair of cells of type 1
in two consecutive columns (j, j ⊕ 1).

• A cell of type 2 is in the same column as a cell of type 4. The argument is the same,
since there is no pair of cells of type 2 in two consecutive columns (j, j ⊕ 1).

Note that the above argument also shows that given two consective columns (j, j ⊕ 1) of
An (for 0 ≤ j < 2n), each of them contains exactly either one cell of type 1 and one of
type 3, or one of type 2 and one of type 4, which fulfills the condition of (Hn).

We now prove that there is no repetition of cells in a same row. As for the columns,
if it is the case, the cells must have different types:

• A cell of type 2 is in the same row as a cell of type 3. Denote by i the row index of
these two cells of type 2 and 3. Then i − 2n−1 is the index of a unique cell whose
value v both satisfies 0 ≤ v < 2n−2 (definition of type 3), and 2n−2 ≤ v < 2n−1

(definition of type 2). We get a contradiction.

• A cell of type 1 is in the same row as a cell of type 4. Denote by i the row index of
these two cells of type 1 and 4. Then i + 2n−1 is the index of a cell of type 2, whose
value v satisfies 2n−2 ≤ v < 2n−1 (definition of type 4). Hence i + 2n−1 − 2n−1 = i
is also the index of a cell with the value v, which is greater than a cell value of type
1. This concludes the proof.

Hence Tn build in this way satisifies (Hn).

Figures 4 and 5 illustrate the construction of the transversal Tn satisfying (Hn) for n =
2, 3, 4. The initialization is done with the transversal T2 given in the proof of Proposition
1.

In addition to the basic definition of a transversal, our investigations of the set coloring
problem on paths made us define the following constraint variant:
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⊕
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13

3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12

4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11

5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10

6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9

7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6

10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5

11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4

12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3

13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2

14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 5: The transversal T4.

Definition 3. Let T be a transversal on a Latin square L according to Definition 2. Let
Γ : {0, . . . , p − 1} → {0, . . . , p − 1} be the function that associates to each row index i
the column index Γ(i) such that L(i, Γ(i)) is a cell of T . The transversal T is said to be
a CP-transversal if Γ is a circular permutation of size p or p − 1.

Conjecture 1. For every positive integer n ≥ 2, the Latin square An admits a CP-
transversal.

We have checked the validity of Conjecture 1 until n = 5. Unfortunately, the algo-
rithm described in the proof of Proposition 1 does not always provide a CP-transversal.
The transversal T2, T3 and T4 of Figures 4 and 5 are CP-transversals. Some local “cells
exchanges” are required to convert T5 into a CP-transversal. However, we did not find
deterministic rules to describe such transformations in the general case.

2.2 Set coloring number of paths

We first start by showing that in the case of a path of order 2n, the lower bound ⌈log2(|E|+
1)⌉ = n cannot be reached for σ(G). However, we then prove that σ(G) = n + 1.

Lemma 1. Given any positive integer n ≥ 2, a path P of order 2n satisfies σ(P ) > n.

Proof. Denote by P1, . . . , P2n the vertices of P such that (Pi, Pi+1) ∈ E for all 1 ≤ i ≤
2n − 1. We clearly have that σ(P ) ≥ n. Now assume that there exists a set coloring
(fn, f⊕

n ) of P with n colors. Hence we have {f⊕
n (Pi, Pi+1) : 1 ≤ i ≤ 2n − 1} = Zn \ {0}

since the colors of the edges are all distinct. Therefore we get the following equality:

f⊕
n (P1, P2) ⊕ . . . ⊕ f⊕

n (P2n−1 , P2n) = 1 ⊕ . . . ⊕ 2n = 0
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By definition of f⊕
n , we get

fn(P1) ⊕ fn(P2n) = 0

This contradicts the injectivity of fn.

Proposition 2. Given any positive integer n ≥ 2, a path P of order 2n satisfies σ(P ) =
n + 1.

Proof. From Lemma 1, it now suffices to show that there exists a set coloring of P with
n + 1 colors. To achieve this, a simple greedy algorithm suffices:

For each vertex Pi, i = 1 . . . 2n, choose for fn(Pi) the smallest value of Zn+1 not belong-
ing to the set {fn(Pj) : 1 ≤ j < i} and such that (fn(Pi−1)⊕fn(Pi)) /∈ {fn(Pj)⊕fn(Pj+1) :
1 ≤ j < i − 1}.

We can guarantee the existence of such a value at each step i of this algorithm since:

• there are at least 2n +1 values available in Zn+1 that do not belong to {fn(Pj) : 1 ≤
j < i}.

• there are at most 2n − 2 forbidden values in {fn(Pj) ⊕ fn(Pj + 1) : 1 ≤ j < i − 1},
and there cannot be two distinct values v1, v2 ∈ Zn+1 such that fn(Pi−1) ⊕ v1 =
fn(Pi−1) ⊕ v2.

Now see how the CP-transversal problem is connected to the determination of a mini-
mum set coloring in a path of order 2n − 1. Let T be a CP-transversal of An according to
Definition 3 (the function Γ is supposed to be defined). Let P be a path of order 2n − 1
with n ≥ 2. We build a set coloring (fn, f⊕

n ) of P in the following way: if (0, 0, 0) /∈ T , then
fn(P1) = 0, otherwise fn(P1) = 1. Then for all 2 ≤ i ≤ 2n−1, we set fn(Pi) = Γ(fn(Pi−1)).

Figures 6 and 7 illustrate this construction on paths of orders 7 and 15, using the
CP-transversals T3 and T4 (depicted on Figures 4 and 5).

71 7 5 6 2 3 46 2 3 4 1

Figure 6: 3-set coloring of a path of order 7 from T3

121 14 10 2 3 13 7 5 6 11 12 9 15 4 815 4 8 1 14 10 2 3 13 7 5 6 11

Figure 7: 4-set coloring of a path of order 15 from T4

The validity of this construction can be explained as follows: since Γ is a circular
permutation of size at least 2n − 1 over Zn, we have the guarantee that the values fn(Pi)
for 1 ≤ i ≤ 2n − 1 are all distinct and belong to Zn. Moreover, the values f⊕

n (Pi, Pi+1) for
i = 1, . . . , 2n − 2 correspond to the values of the cells of T . Hence they also belong to Zn

and are all distinct.
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Remark 1. This proves that there exists no CP-transversal of An with Γ of size 2n.
Indeed, if such a transversal exists, we could build a set coloring of size n of a path of
order 2n, contradicting Lemma 1.

From the previous considerations, the following conjecture can be considered as a
corollary of Conjecture 1.

Conjecture 2. Given any positive integer n ≥ 2, a path P of order 2n − 1 satisfies
σ(P ) = n.

Therefore, it turns out that a proof of Conjecture 1 would solve the set coloring problem
on paths of any order, as detailed in Corollary 1.

Corollary 1. Given a path P = (V, E) with |V | ≥ 3, we have σ(P ) = ⌈log2(|V | + 1)⌉.

Proof. The proof directly derives from Proposition 2 and Conjecture 2. Note that one
also need to consider the monotonicity of the function Σ : k 7→ σ(P k), where P k is the
path of order k.

2.3 Set coloring number of complete binary trees

The complete binary tree of height n > 0 will be denoted by BTn. Note that BTn has
exactly 2n − 1 vertices. By using Proposition 1 about transversals of An, we will show
that a complete binary tree has the smallest possible coloring number, i.e., σ(BTn) = n.

Theorem 1. The complete binary tree BTn satifies σ(BTn) = n for all n ≥ 1.

Figure 8 shows a strong 3-set coloring of BT3.

4

5

2 3

6

7

47

6 5

3 2
1

Figure 8: 3-set coloring of BT3

Figures 9 and 10 illustrate the strong set coloring scheme detailed in the proof of
Theorem 1. As it is easier to understand, we added the binary versions of the strong
set colorings. Roughly speaking, one can explain this inductive technique as follows: the
non-leaves vertices of BTn have the same color as the vertices of BTn−1. If (x, y) and
(x, z) are two edges of BTn such that y and z are two leaves, then y and z take the color
10Γ(u) and 11Γ(u) (in binary), where u is the color of x without its two most significant
bits, and Γ is the function corresponding to a transversal of An−2 (see Definition 3).
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Figure 9: 4-set coloring of BT4 (decimal version on the left, and the equivalent binary
version on the right), where Γ is the one of the transversal T2 of Figure 4

Proof. The theorem is clearly true for n = 1, 2. We thus consider n ≥ 3.
We denote by Wn the leaves of BTn = (Vn, En). Given any set coloring function

fn : Vn −→ Zn \ {0}, we define f ′
n : Wn −→ Zn−1 as f ′

n : u 7→ fn(u) mod 2n−1. We now
introduce the following induction hypothesis:

(Hn) There exists a set coloring (fn, f⊕
n ) of BTn with n colors such that fn is a bijec-

tion from Vn to Zn \ {0}, and f ′
n is a bijection from Wn to Zn−1.

According to Figure 8, Proposition (H3) is true. Now assume that (Hn) is true for
some n ≥ 3. For more convenience, we will denote by X = (Vn+1, En+1) the graph BTn+1

and by Y = (Vn, En) the graph X \ Wn+1. Notice that Y = BTn. Since Y satisfies (Hn),
there exists a set coloring (fn, f⊕

n ) of Y such that f ′
n is a bijection from Wn to Zn−1.

Let T be a transversal of An−1, equipped with the Γ function given by Definition
3. According to Proposition 1, such a T exists. For all u ∈ Wn, we denote by Lu =
{v ∈ Wn+1 : (u, v) ∈ En+1}. Remark that we always have #Lu = 2. We then build the
following set coloring (fn+1, f

⊕
n+1) of X:

• For all x in Vn, we set fn+1(x) = fn(x).

• For all x in Wn, we set fn+1(Lx) = {Γ(f ′
n(x)) + 2n, Γ(f ′

n(x)) + 2n + 2n−1}.

To prove that this coloring satisfies (Hn+1), we proceed in three steps:

• The function f ′
n+1 is a bijection from Wn+1 to Zn.

By way of contradiction, assume that there exist x, y in Wn+1 such that
#f ′

n+1({x, y}) = 1. We consider two cases:

(i) There exists z in Wn such that x ∈ Lz and y ∈ Lz. Hence we get

fn+1({x, y}) = {Γ(f ′
n(z)) + 2n, Γ(f ′

n(z)) + 2n + 2n−1}.
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Figure 10: 5-set coloring of BT5 (decimal version on the left, and the equivalent binary
version on the right), where Γ is the one of the transversal T3 of Figure 4

Since 0 ≤ Γ(f ′
n(z)) ≤ 2n−1 − 1, we obtain

f ′
n+1({x, y}) = fn+1({x, y}) mod 2n = {Γ(f ′

n(z)), Γ(f ′
n(z)) + 2n−1},

which implies #f ′
n+1({x, y}) = 2.

(ii) There exist z, t in Wn such that x ∈ Lz and y ∈ Lt. With the same reasoning
as in (i), we get

f ′
n+1(x) ∈ {Γ(f ′

n(z)), Γ(f ′
n(z)) + 2n−1}

f ′
n+1(y) ∈ {Γ(f ′

n(t)), Γ(f ′
n(t)) + 2n−1}

Since f ′
n is bijective and Γ(f ′

n(z)) 6= Γ(f ′
n(t)) by the definition of a transversal, we

also get

{Γ(f ′
n(z)), Γ(f ′

n(z)) + 2n−1} ∩ {Γ(f ′
n(t)), Γ(f ′

n(t)) + 2n−1} = ∅

Hence #f ′
n+1({x, y}) = 2.

• The function fn+1 is a bijection from Vn+1 to Zn+1 \ {0}.

By the definition of fn+1, we have

fn+1(Wn+1) = Γ(f ′
n(Wn)) + 2n ∪ Γ(f ′

n(Wn)) + 2n + 2n−1.

Hence we get
f ′

n+1(Wn+1) = Γ(f ′
n(Wn)) ∪ Γ(f ′

n(Wn)) + 2n−1
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and
fn+1(Wn+1) = f ′

n+1(Wn+1) + 2n.

Since f ′
n+1 is a bijection from Wn+1 to Zn, we get fn+1(Wn+1) = Zn+2n = Zn+1\Zn.

Moreover, since fn+1(x) = fn(x) for all x ∈ Vn, and as fn satisfies (Hn), we have that
fn+1(Vn) = Zn\{0}. Hence we get fn+1(Vn+1) = fn+1(Vn)∪fn+1(Wn+1) = Zn+1\{0}.

• The function f⊕
n+1 is a bijection from En+1 to Zn+1 \ {0}.

We first show that f⊕
n+1 is a bijection from En+1 \ En to Zn+1 \ Zn.

Let e = (x, y) ∈ En+1 \ En with x ∈ Wn and y ∈ Wn+1. By definition of fn+1, we
have that

f⊕
n+1(e) ∈ fn+1(x) ⊕ {Γ(f ′

n(x)) + 2n, Γ(f ′
n(x)) + 2n + 2n−1}.

Hence f⊕
n+1(En+1 \En) ⊆ Zn+1 \Zn. Now suppose that there exist e1, e2 ∈ En+1 \En

such that #f⊕
n+1({e1, e2}) = 1. We consider two cases:

(i) ∃(x, y, z) ∈ Wn × Wn+1 × Wn+1 such that e1 = (x, y) and e2 = (x, z). Then

f⊕
n+1({e1, e2}) = fn+1(x) ⊕ {Γ(f ′

n(x)) + 2n, Γ(f ′
n(x)) + 2n + 2n−1}

Hence #f⊕
n+1({e1, e2}) = 2, which contradicts the hypothesis.

(ii) ∃(w, x, y, z) ∈ Wn × Wn+1 × Wn × Wn+1 with w 6= y and such that e1 = (w, x)
and e2 = (y, z). Then

f⊕
n+1(e1) ∈ fn+1(w) ⊕ {Γ(f ′

n(w)) + 2n, Γ(f ′
n(w)) + 2n + 2n−1}

f⊕
n+1(e2) ∈ fn+1(y) ⊕ {Γ(f ′

n(y)) + 2n, Γ(f ′
n(y)) + 2n + 2n−1}

We therefore get

f⊕
n+1(e1) mod 2n−1 = fn+1(w) mod 2n−1 ⊕ Γ(f ′

n(w))

= f ′
n(w) ⊕ Γ(f ′

n(w))

and

f⊕
n+1(e2) mod 2n−1 = fn+1(y) mod 2n−1 ⊕ Γ(f ′

n(y))

= f ′
n(y) ⊕ Γ(f ′

n(y))

Moreover, since all the squares of a transversal have a distinct value, we have:

f ′
n(w) ⊕ Γ(f ′

n(w)) 6= f ′
n(y) ⊕ Γ(f ′

n(y))

and thus #f⊕
n+1({e1, e2}) = 2, contradicting the hypothesis.

Consequently we get f⊕
n+1(En+1\En) = Zn+1\Zn. Moreover, since f⊕

n satisfies (Hn),
we have that f⊕

n+1(En) = f⊕
n (En) = Zn \ {0}. Hence f⊕

n+1(En+1) = Zn+1 \ {0}.
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3 Strong set coloring

Despite the proximity of their definitions, the approach of the strong set coloring problem
is far different from the computation of the set coloring number of a graph. Thus, although
the optimization of such a coloring is important, its existence is linked to the additional
constraints it considers. Indeed, the set of graphs that are concerned by a strong set
coloring is restricted, since they must satisfy |V |+|E| = 2n−1 for some n as a preliminary
condition. In that context, Hegde first proposed several results helping to cope with the
strong set coloring of paths, complete graphs, complete bipartite graphs and complete
binary trees.

3.1 Previous results

In his paper [4], Hegde gave a set of necessary conditions for a graph G to be strongly set
colorable. We here mention one his most relevant result that will be used further.

Proposition 3 (Hegde). If a graph G of order > 2 has:
(i) exactly one or two vertices of even degree or
(ii) exactly three vertices of even degree, say v1, v2, v3, and any two of these vertices are
adjacent or
(iii) exactly four vertices of even degree, say v1, v2, v3, v4 such that (v1, v2) and (v3, v4) are
edges in G,
then G is not strongly set colorable.

With the help of Proposition 3, Hegde proved the following results on existence and
non-existence of strong set colorings:

Proposition 4 (S.M.Hegde). We have:

• the complete graph Kn is strongly set colorable iff n = 2, 5.

• the complete k-ary tree is strongly set colorable iff it is a star K1,2α−1 for some
positive integer α.

• the complete bipartite graph Ka,b is strongly set colorable iff (a + 1)(b + 1) = 2α for
some positive integer α.

Moreover, Hegde conjectured that no path of order greater than 2 is strongly set
colorable. The result is proved for paths of lengths 4, 8, 16.

3.2 Other properties

In addition to the results of Hegde, we here propose three other necessary conditions for
a graph G to be strongly set colorable, which are based on the existence of a special
dominating set in G. As we will see further, these conditions turn out to be very efficient
on small graphs, when trying to prove the non-existence of strong set colorings.
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Lemma 2. Let G = (V, E) be a graph. If there exists a stable dominating set D = {u, v}
of size 2 such that for each edge (w, z) ∈ E with w, z /∈ D, we have w ∼ u and z ∼ v (or
the opposite w ∼ v and z ∼ u), then G is not strongly set colorable.

Proof. Assume that there exists a strong set coloring (f, f⊕) of G = (V, E) and such a
stable dominating set D. Hence the value f(u) ⊕ f(v) ∈ f(V ) ∪ f⊕(E). We consider the
following cases for f(u) ⊕ f(v):

• f(u) ⊕ f(v) is equal to f(u) or f(v). This would imply f(u) or f(v) equal to 0,
contradicting the definition of a strong set coloring.

• f(u) ⊕ f(v) = f(w) for some vertex w /∈ D. Since D is a dominating set, we have
w ∼ u or w ∼ v. Without loss of generality, assume that w ∼ u. Hence we have
f⊕(u, w) = f(u)⊕f(w) = f(v), which contradicts the strong set coloring condition.

• f(u) ⊕ f(v) = f⊕(u, w) for some vertex w /∈ D. Hence we get the contradiction
f(v) = f(w).

• f(u) ⊕ f(v) = f⊕(v, w) for some vertex w /∈ D. Similar to the previous case.

• f(u) ⊕ f(v) = f⊕(w, z) for some vertices w, z /∈ D. Then by hypothesis, assume
WLOG that we have w ∼ u and z ∼ v. We therefore get the following contradiction:

f⊕(w, u) = f(w) ⊕ f(u) = f(u) ⊕ f(v) ⊕ f(z) ⊕ f(u) = f(v) ⊕ f(z) = f⊕(v, z).

Remark 2. Note that the conditions of Lemma 2 remain true to prove that a graph G
is not properly colorable.

Lemma 3. Let G = (V, E) be a graph. If G admits a dominating set D such that D is a
clique of size 3 and G \ D is a stable set, then G is not strongly set colorable.

Proof. Assume that there exists a strong set coloring (f, f⊕) of G = (V, E) and such a
stable dominating set D = {u, v, w}. We consider the following cases for f(u) ⊕ f(v) ⊕
f(w) 6= 0:

• f(u) ⊕ f(v) ⊕ f(w) belongs to f(D). This would imply f⊕(e) = 0 for some edge
e ∈ {(u, v), (v, w), (u, w)}.

• f(u) ⊕ f(v) ⊕ f(w) = f(z) for some vertex z /∈ D. Since D is a dominating set,
assume WLOG that z ∼ u. Hence f⊕(z, u) = f⊕(v, w) since v ∼ w. This contradicts
the definition of a strong set coloring.

• f(u) ⊕ f(v) ⊕ f(w) = f⊕(e) for some edge e ∈ {(u, v), (v, w), (u, w)}. We quickly
get a contradiction.
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• f(u)⊕ f(v)⊕ f(w) = f⊕(y, z) for some vertices y ∈ D and z /∈ D. Assume WLOG
that y = u. Hence we get f(z) = f(v)⊕f(w) = f⊕(v, w), leading to a contradiction.

Lemma 4. Let G = (V, E) be a graph with a strong set coloring (f, f⊕). If G admits
a stable set D = {u, v} of size 2 and an edge e = (w, z) ∈ E with w, z /∈ D such that
f(u) ⊕ f(v) = f⊕(e) then G \ e ∪ {u, v} is strongly set colorable.

Proof. Assume that such a D exists, and that G has strong set coloring (f, f⊕). Therefore
we straightforwardly get a strong set coloring of G\{(w, z)}∪{(u, v)}, by copying (f, f⊕),
where the color of (u, v) ∈ G\{(w, z)}∪{(u, v)} is the same as the color of (w, z) ∈ G.

Corollary 2. Let G = (V, E) be a graph. If G admits a stable dominating set D = {u, v}
of size 2 that does not satisfy the condition of Lemma 2, and if for all e = (w, z) ∈ E
with w, z /∈ D and (w, z 6∼ u or w, z 6∼ v) we have G \ e ∪ {u, v} which is not strongly set
colorable, then G is not strongly set colorable.

Proof. According to the proof of Lemma 2, we necessarily have f(u) ⊕ f(v) = f⊕(w, z)
for some vertices w, z /∈ D and either w, z 6∼ u or w, z 6∼ v. We conclude with Lemma
4.

We will now show how Proposition 3 and Lemmas 2,3,4 are a collection of tools that
are sufficient to decide which graphs are strongly set colorable with 3 and 4 colors.

3.3 Characterization of strongly 4-set colorable graphs

Proposition 3 is enough to show that there exists a unique strongly 2-set colorable graph
(which is K2), and a unique strongly 3-set colorable graph (which is K1,4). The above
results are useful to characterize the set of strongly 4-set colorable graphs.

Theorem 2. Graphs that are strongly 4-set colorable are those given by Figure 12.

Proof. When dealing with strongly 4-set colorable graphs, there are four possibilities con-
cerning the pair (|V |, |E|) (we recall that the graphs are supposed simple and connected).

|V | = 5 and |E| = 10. A unique simple directed graph belongs to this category: K5,
which is strongly set colorable according to Proposition 4.

|V | = 6 and |E| = 9. The application of Proposition 3 leaves 9 graphs suitable for a
strong set coloring. Among them, 6 are proved to be not colorable thanks to Lemmas 2 and
3. The 3 remaining graphs are strong set colorable, as shown on Figure 12 (b), (c) and (d).

|V | = 7 and |E| = 8. The application of Proposition 3, Lemmas 2, 3, 4 and Corollary
2 leaves 18 graphs suitable for a strong set coloring. Nine out of them are strongly set
colorable (see the colorations (e) to (m) on Figure 12). For the nine other cases, we
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need more particular proofs based on the following technique: given (f, f⊕) a strong set
coloring of a graph G, we take a non null sum of f(vi) for some vertices vi ∈ V and see
where it can be located in the strong set coloring. The objective is to get contradictions
by using Lemma 4 and the fact that Σf(vi) = 0 for all vi ∈ V of even degree. We illustrate
this technique to prove that the graph (a) of Figure 11 is not strongly set colorable.

We consider a strong set coloring (f, f⊕) of the graph (a) in Figure 11 and the sum

7

2

3
4 5

6

11

2

3
4 5

6

7
v

v

v
v

v

v

v

v

v

v

b)

v

v

v

a)

v

Figure 11: Example of a non strongly set colorable graph

f(v2)⊕ f(v3)⊕ f(v4)⊕ f(v5) which is non zero since (v2, v3), (v4, v5) ∈ E. We distinguish
two cases.

• f(v2) ⊕ f(v3) ⊕ f(v4) ⊕ f(v5) = f(v5) + f(v6). Hence we have f(v3) ⊕ f(v4) =
f(v2) + f(v6). In view of Lemma 4, this implies that the graph (b) of Figure 11 is
also strongly set colorable. This is not the case from Lemma 3.

• f(v2) ⊕ f(v3) ⊕ f(v4) ⊕ f(v5) 6= f(v5) + f(v6). We straightforwardly find a contra-
diction with the definition of the strong set coloring, possibly by using the equality∑

7

i=1
f(vi) = 0.

|V | = 8 and |E| = 7. Such graphs are trees. There are only five trees that do not
satisfy the conditions of Proposition 3. Four out of five are strongly 4-set colorable (see
the colorations (n),(o),(p) and (q) on Figure 12). The last one is the path P8, which is
not strongly 4-set colorable. Indeed, assume there exists a strong set coloring (f, f⊕) of
P8. Hence we get

∑
8

i=1
f(Pi) +

∑
7

i=1
f⊕(Pi, Pi+1) =

∑
6

i=2
f(Pi) = 0, which can also be

written as
f(P2) + f(P3) + f(P4) = f(P5) + f(P6) + f(P7) (∗)

We consider the following cases for f(P2) + f(P3) + f(P4):

• f(P2) + f(P3) + f(P4) = f(Pi) for some i in 1 . . . 8. Whatever the value of i and
according to (∗), we quickly get a contradiction with the definition of a strong set
coloring.

• f(P2) + f(P3) + f(P4) = f(Pi) + f(Pi+1) for some i in 1 . . . 7. For the same reasons,
the partition constraint of a strong set coloring cannot be fulfilled whatever the
value of i.
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Figure 12: Graphs with a strong 4-set coloring

Remark 3. In order not to make the paper heavier, we did not give all the sub-proofs
of Theorem 2 in their entirety. Note that this theorem was also proved by a computer
program.

References

[1] R.A. Brualdi and H.J. Ryser, Combinatorial matrix theory, Encyclopedia of Mathe-
matics and its Applications, Cambridge (1991).
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