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Abstract

A small minimal k-blocking set B in PG(n,q), ¢ = p’, p prime, is a set of less
than 3(¢¥ + 1)/2 points in PG(n,q), such that every (n — k)-dimensional space
contains at least one point of B and such that no proper subset of B satisfies this
property. The linearity conjecture states that all small minimal k-blocking sets in
PG(n, q) are linear over a subfield Fpe of F,. Apart from a few cases, this conjecture
is still open. In this paper, we show that to prove the linearity conjecture for k-
blocking sets in PG(n, p'), with exponent e and p® > 7, it is sufficient to prove it for
one value of n that is at least 2k. Furthermore, we show that the linearity of small
minimal blocking sets in PG(2, ¢) implies the linearity of small minimal k-blocking
sets in PG(n, p'), with exponent e, with p¢ > t/e + 11.

Keywords: blocking set, linear set, linearity conjecture

1 Introduction and preliminaries

If V is a vectorspace, then we denote the corresponding projective space by PG(V). If V
has dimension n over the finite field F,, with ¢ elements, ¢ = p*, p prime, then we also
write V as V(n,q) and PG(V) as PG(n — 1,¢q). A k-dimensional space will be called a
k-space.

A k-blocking setin PG(n, ¢) is a set B of points such that every (n—k)-space of PG(n, q)
contains at least one point of B. A k-blocking set B is called smallif |B| < 3(¢"+1)/2 and
minimal if no proper subset of B is a k-blocking set. The points of a k-space of PG(n, q)
form a k-blocking set, and every k-blocking set containing a k-space is called trivial. Every
small minimal k-blocking set B in PG(n,p’), p prime, has an ezponent e, defined to be
the largest integer for which every (n — k)-space intersects B in 1 mod p° points. The
fact that every small minimal k-blocking set has an exponent e > 1 follows from a result
of Szényi and Weiner and will be explained in Section 2. A minimal k-blocking set B in
PG(n, q) is of Rédei-type if there exists a hyperplane containing | B| — ¢* points of B; this
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is the maximum number possible if B is small and spans PG(n,¢). For a long time, all
constructed small minimal k-blocking sets were of Rédei-type, and it was conjectured that
all small minimal k-blocking sets must be of Rédei-type. In 1998, Polito and Polverino [9]
used a construction of Lunardon [8] to construct small minimal linear blocking sets that
were not of Rédei-type, disproving this conjecture. Soon people conjectured that all small
minimal k-blocking sets in PG(n, ¢) must be linear. In 2008, the ‘Linearity conjecture’
was for the first time formally stated in the literature, by Sziklai [15].

A point set S in PG(V), where V is an (n + 1)-dimensional vector space over F,
is called linear if there exists a subset U of V that forms an I, -vector space for some
F,, C F,t, such that S = B(U), where

B(U) := {{ue, = uweU\{0}}.

If we want to specify the subfield we call S an F,, -linear set (of PG(n,p")).

We have a one-to-one correspondence between the points of PG(n, p) and the elements
of a Desarguesian (h —1)-spread D of PG(h(n+1) —1,pg). This gives us a different view
on linear sets; namely, an [, -linear set is a set S of points of PG(n, p?) for which there
exists a subspace m in PG(h(n 4+ 1) — 1,pg) such that the points of S correspond to the
elements of D that have a non-empty intersection with 7. We identify the elements of D
with the points of PG(n, pl), so we can view B(7) as a subset of D, i.e.

B(r) ={S eD|SNr #0}.

If we want to denote the element of D corresponding to the point P of PG(n, plt), we
write S(P), analogously, we denote the set of elements of D corresponding to a subspace
H of PG(n,ph), by S(H). For more information on this approach to linear sets, we refer
to [7].

To avoid confusion, subspaces of PG(n,pft) will be denoted by capital letters, while
subspaces of PG(h(n + 1) — 1, pg) will be denoted by lower-case letters.

Remark 1. The following well-known property will be used throughout this paper: if
B(7) is an F,-linear set in PG(n,p}), where 7 is a d-dimensional subspace of PG(h(n +
1) — 1,po), then for every point x in PG(h(n + 1) — 1,po), contained in an element of
B(m), there is a d-dimensional space 7', through x, such that B(w) = B(x’). This is a
direct consequence of the fact that the elementwise stabilisor of D in PI'L(A(n + 1), po)
acts transitively on the points of one element of D.

To our knowledge, the Linearity conjecture for k-blocking sets B in PG(n, p'), p prime,
is still open, except in the following cases:

o t =1 (for n =2, see [1]; for n > 2, this is a corollary of Theorem 1 (i));
o t =2 (for n =2, see [13]; for k = 1, see [12]; for k > 1, see [3] and [16]);

o t =3 (for n = 2, see [10]; for k = 1, see [12]; for & > 1, see [6] and independently
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e B is of Rédei-type (for n = 2, see [2]; for n > 2, see [11]);
e B spans an tk-dimenional space (see [14, Theorem 3.14]).

It should be noted that in PG(2,p'), for ¢ = 1,2,3, all small minimal blocking sets
are of Rédei-type. Storme and Weiner show in [12] that small minimal 1-blocking sets in
PG(n,p'), t = 2,3, are of Rédei-type too. The proofs rely on the fact that for t = 2,3,
small minimal blocking sets in PG(2,p") are listed. The special case k¥ = 1 in Main
Theorem 1 of this paper shows that using the (assumed) linearity of planar small minimal
blocking sets, it is possible to prove the linearity of small minimal 1-blocking sets in
PG(n,p"), which reproofs the mentioned statements of Storme and Weiner in the cases
t=2,3.

The techniques developed in [6] to show the linearity of k-blocking sets in PG(n, p?),
using the linearity of 1-blocking sets in PG(n,p?), can be modified to apply for general
t. This will be Main Theorem 2 of this paper. In particular, this theorem reproofs the
results of [16], [6], [4], [5].

In this paper, we prove the following main theorems. Recall that the exponent e of a
small minimal k-blocking set is the largest integer such that every (n — k)-space meets in
1 mod p® points. Theorem 1 (i) will assure that the exponent of a small minimal blocking
set is at least 1.

Main Theorem 1. If for a certain pair (k,n*) withn* > 2k, all small minimal k-blocking
sets in PG(n*,p') are linear, then for all n > k, all small minimal k-blocking sets with
exponent e in PG(n,p'), p prime, p¢ > 7, are linear.

In particular, this shows that if the linearity conjecture holds in the plane, it holds for
all small minimal 1-blocking sets with exponent e in PG(n,p'), p® > 7.

Main Theorem 2. If all small minimal 1-blocking sets in PG(n,p') are linear, then all
small minimal k-blocking sets with exponent e in PG(n,p'), n > k, p® > t/e + 11, are
linear.

Combining the two main theorems yields the following corollary.

Corollary 1. If the linearity conjecture holds in the plane, it holds for all small minimal
k-blocking sets with exponent e in PG(n,p'), n >k, p prime, p® > t/e + 11.

2 Previous results

In this section, we list a few results on the linearity of small minimal k-blocking sets and
on the size of small k-blocking sets that will be used throughout this paper. The first of
the following theorems of Szényi and Weiner has the linearity of small minimal k-blocking
sets in projective spaces over prime fields as a corollary.

Theorem 1. Let B be a k-blocking set in PG(n,q), g = p', p prime.
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(i) [14, Theorem 2.7| If B is small and minimal, then B intersects every subspace of
PG(n,q) in 1 mod p or zero points.

(ii) [14, Lemma 3.1] If | B| < 2¢* and every (n—k)-space intersects B in 1 mod p points,
then B is minimal.

(#i) [14, Corollary 3.2] If B is small and minimal, then the projection of B from a point
Q ¢ B onto a hyperplane H skew to Q is a small minimal k-blocking set in H.

(iv) [14, Corollary 3.7] The size of a non-trivial k-blocking set in PG(n,p'), p prime,
ptk/pe_,’_l_l .

with exponent e, is at least p™* + 1 + p°[ o]

Part (iv) of the previous theorem gives a lower bound on the size of a k-blocking set.
In this paper, we will work with the following, weaker, lower bound.

Corollary 2. The size of a non-trivial k-blocking set in PG(n, p'), p prime, with exponent
e, is at least pt* + pth—e — pth—2e,

If a blocking set B in PG(2, ¢) is IF,,-linear, then every line intersects B in an [F), -linear
set. If B is small, many of these [, -linear sets are F, -sublines (i.e. F,,-linear sets of
rank 2). The following theorem of Sziklai shows that for all small minimal blocking sets,
this property holds.

Theorem 2. (i) [15, Proposition 4.17 (2)] If B is a small minimal blocking set in
PG(2,q), with |B| = q+ K, then the number of (po+ 1)-secants to B through a point
P of B lying on a (po + 1)-secant to B, is at least

q/po—3(k —1)/po + 2.

(7) [15, Theorem 4.16] Let B be a small minimal blocking set with exponent e in
PG(2,q). If for a certain line L, |L N B| = p® + 1, then Fpe is a subfield of F,
and L N B is Fye-linear.

The next theorem, by Lavrauw and Van de Voorde, determines the intersection of an
F,-subline with an IF)-linear set; all possibilities for the size of the intersection that are
obtained in this statement, can occur (see [7]). The bound on the characteristic of the
field appearing in Main Theorem 2 arises from this theorem.

Theorem 3. [7, Theorem 8] An F, -linear set of rank k in PG(n,p") and an F,,-subline
(i.e. an F, -linear set of rank 2), intersect in 0,1,2, ...,k or py + 1 points.

The following lemma is a straightforward extension of [6, Lemma 7], where the authors
proved it for h = 3.

Lemma 1. If B is a subset of PG(n, pl), po > 7, intersecting every (n — k)-space, k > 1,
in 1 mod py points, and 11 is an (n — k + s)-space, s < k, then either

|BNII| < pi® +pg* ' +pf 2 + 3pp°°
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or
|B N H| > pgs—i-l _ pgs—l _ pgs—2 _ 3p85—3‘

Furthermore, |B| < ph* + ppt=" 4 ph*=2 4 3phk=3,

Proof. Let II be an (n — k + s)-space of PG(n,p{), s < k, and put By := BNII. Let
x; denote the number of (n — k)-spaces of II intersecting By in ¢ points. Counting the
number of (n — k)-spaces, the number of incident pairs (P, ) with P € By, P € ¥, ¥ an
(n—k)-space, and the number of triples (P, Py, X)), with P, P» € By, P # P, P, P, € ¥,
¥ an (n — k)-space yields:

| n—k+s+1
2. = l n—k+1 Lh’ (1)
1 0

S = ml [0 ©)

X h
? 0

Sili - 1), =|BmaBm—w>[”;fZi]1]h-

2]

Since we assume that every (n — k)-space intersects B in 1 mod py points, it follows that
every (n — k)-space of II intersect By in 1 mod p, points, and hence > (i — 1)(: — 1 —
po)z; > 0. Using Equations (1), (2), and (3), this yields that

| Bul(|Bul = 1)(pe" ™" = D)(pg" ™" = 1) = (po + D) Bul (pg" " = 1)(pg" ™" — 1)

+<p0 + 1)(p6m—hk+hs+h _ 1)<p6m—hk+hs . 1) > ().

hs—1 hs=2 4 3phs=3 in this inequality, with py > 7, gives a

Putting |Bu| = pg® + pg* " + pg

contradiction; putting |Br| = phe™! — phs=! — pls=2 —3phs=3 in this inequality, with py > 7,
gives a contradiction if s < k. For s = k, it is sufficient to note that when |B] is the size
of a k-space, the inequality holds, to deduce that |B| < ph* + ph*=1 4 ph*=2 1 3ph*=3 The

statement follows. O

Let B be a subset of PG(n,ph), po > 7, intersecting every (n — k)-space, k > 1,
in 1 mod py points. From now on, we call an (n — k + s)-space small if it meets B
in less than ph* + phs=" + phs=2 4 3ph=3 points, and large if it meets B in more than
pgSH — pgs_l — pgs—2 — 3pgs_3 points, and it follows from the previous lemma that each
(n — k + s)-space is either small or large.

The following Lemma and its corollaries show that if all (n — k)-spaces meet a k-
blocking set B in 1 mod pg points, then every subspace that intersects B, intersects it in
1 mod pq points.

Lemma 2. Let B be a small minimal k-blocking set in PG(n,pl) and let L be a line such
that 1 < |[BNL| < pl+1. For alli € {1,...,n —k} there exists an i-space m; through L
such that BNm;, = BNL.
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Proof. It follows from Theorem 1 that every subspace through L intersects B\ L in zero
or at least p points, where py = p¢, p prime. We proceed by induction on the dimension
1. The statement obviously holds for ¢ = 1. Suppose there exists an i-space II; through L
such that II; " B=L N B, with ¢ <n — k — 1. If there is no (¢ + 1)-space intersecting B
only in points of L, then the number of points of B is at least

(n—i—1) h(n—i—2)

h
BN L| + p(p, + o + P41,

but by Lemma 1 |B| < ppk + ph*=* + pi*=2 + pp#=3. 1f i < n — k this is a contradiction.
We may conclude that there exists an i-space II; through L such that BN L = B N1,
Vie{l,...,n—k}. O

Using Lemma 2, the following corollaries follow easily.

Corollary 3. (see also [14, Corollary 3.11]) Every line meets a small minimal k-blocking
set in PG(n,p'), p prime, with exponent e in 1 mod p® or zero points.

Proof. Suppose the line L meets the small minimal k-blocking set in x points, where
1 < x < p'. By Lemma 2, the line L is contained in an (n — k)-space 7 such that
BNm= BN L. Since every (n — k)-space meets the k-blocking set B with exponent e in
1 mod p° points, the corollary follows. O

By considering all lines through a certain point of B in some subspace, we get the
following corollary.

Corollary 4. (see also [14, Corollary 3.11]) Fvery subspace meets a small minimal k-
blocking set in PG(n,p'), p prime, with exponent e in 1 mod p°® or zero points.

3 On the (py+1)-secants to a small minimal k-blocking
set

In this section, we show that Theorem 2 on planar blocking sets can be extended to a
similar result on k-blocking sets in PG(n, q).

Lemma 3. Let B be a small minimal k-blocking set with exponent e in PG(n, pl), po :=
p¢ > 17, p prime, n > 2k + 1. The number of points, not in B, that do not lie on a secant
line to B is at least

(o™ = 1)/(ph + 1) — PF* 2 + 20" (ph + 1) — pb* — bt — P = 3ph?
and this number is larger than the number of points in PG(n — 1, ph).

Proof. By Corollary 3, the number of secant lines to B is at most %. By Lemma
hk—1

1, the number of points in B is at most pi* + py +pgk_2 + 3p6‘k_3, hence the number of

secant lines is at most pghk_2 + nghk_?’. This means that the number of points on at least
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one secant line is at most (pg"* =2 + 2pg"* ) (ph 4 1). It follows that the number of points
in PG(n, p!), not in B, not on a secant to B is at least (pp" " —1)/(ph + 1) — (p&"*2 +
2R3 (pp + 1) — ppk — phh=t — phk=2 _ 3phk=3 - Since we assume that n > 2k + 1 and
po > 7, the last part of the statement follows. O

We first extend Theorem 2 (i) to 1-blocking sets in PG(n, q).

Lemma 4. A point of a small minimal 1-blocking set B with exponent e in PG(n,pl),
po == p° > T, p prime, lying on a (po + 1)-secant, lies on at least pg_l — 4p8_2 +1
(po + 1)-secants.

Proof. We proceed by induction on the dimension n. If n = 2, by Theorem 2, the number
of (po + 1)-secants through P is at least q/po — 3(k — 1)/po + 2, where |B| = ¢+ k. By
Lemma 1, k is at most p3‘1+p3‘2+3p3—3, which means that the number of (pyg+1)-secants
is at least pg_l — 4pg_2 + 1. This proves the statement for n = 2.

Now assume n > 3. From Lemma 3 (observe that, since n > 3 and k =1, n > 2k+1),
we know that there is a point (), not lying on a secant line to B. Project B from the
point () onto a hyperplane through P and not through @). It is clear that the number of
(po+1)-secants through P to the projection of B is the number of (py+1)-secants through
P to B. By the induction hypothesis, this number is at least pg_l — 4pg_2 + 1. O

Lemma 5. Let I1 be an (n — k)-space of PG(n,ph), k > 1, py > 7. If 11 intersects a small
minimal k-blocking set B with exponent e in PG(n,ph), po := p° > 7, p prime in po + 1
points, then there are at most 3py "= large (n — k + 1)-spaces through 1.

Proof. Suppose there are y large (n — k4 1)-spaces through II. A small (n — k + 1)-space
through II meets B clearly in a small 1-blocking set, which is in this case, non-trivial and
hence, by Theorem 2, has at least pf 4+ ph~" — ph~2 points.

Then the number of points in B is at least

ypt —p =0 = 3p0 7 —po — D+

(" =1/ = 1) =)+ 06 —ph > —po—1) +po+1 (%)

which is at most ph* + ppF~! + pi*=2 + 3pp* 3. This yields y < 3pph—"2.

)

— O

Theorem 4. A point of a small minimal k-blocking set B with exponent e in PG(n, pf
po:=p° > T, p prime, k > 1, lying on a (p + 1)-secant, lies on at least ((pi* —1)/(pf

1) — 3ppE=h=3) (ph=t — 4pl2) + 1 (po + 1)-secants.

Proof. Let P be a point on a (pg+ 1)-secant L. By Lemma 2, there is an (n — k)-space II
through L such that BNII = BN L. Let ¥ be a small (n—k+1)-space. It is clear that the
space X meets B in a small 1-blocking set B’. Every (n — k)-space contained in 3 meets
B’ in 1 mod pg points. By Theorem 1 (ii), B’ is a small minimal 1-blocking set in 3. For
every small (n — k + 1)-space ¥; through 7, P is a point in ¥;, lying on a (pg + 1)-secant
in J;, and hence, by Lemma 4, P lies on at least pg_l — 4p8_2 +1 (po + 1)-secants to B in
¥;. From Lemma 5, we get that the number of small (n — k + 1)-spaces ¥; through IT is
at least (ph* —1)/(pf — 1) — 3pi*="=3  hence, the number of (py + 1)-secants to B through
Pis at least ((pf* —1)/(pf — 1) = 3p5" ") (0" — dp5™2) + 1. O
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We will now show that Theorem 2 (ii) can be extended to k-blocking sets in PG(n, q).
We start with the case k = 1.

Lemma 6. Let B be a small minimal 1-blocking set with exponent e in PG(n,q), ¢ = p'.
If for a certain line L, |LNB| = p°+1, then Fpe is a subfield of F, and LN B is Fpe-linear.

Proof. We proceed by induction on n. For n = 2, the statement follows from Theorem 2
(ii), hence, let n > 2. Let L be a line, meeting B in p®+1 points and let H be a hyperplane
through L. A plane through L containing a point of B, not on L, contains at least p
points of B, not on L by Theorem 1 (i). If all ¢"~2 planes through L, not in H, contain
an extra point of B, then |B| > p*q"~2, which is larger than p” + p"~1 + ph=2 + 3ph=3 a
contradiction by Lemma 1. Let @) be a point on a plane 7 through L, not in H such that
7 meets B only in points of L. The projection of B onto H is a small minimal 1-blocking
set B in H (see Theorem 1 (iii)), for which L is a (p®+ 1)-secant. The intersection B’ N L
is by the induction hypothesis an Fje-linear set. Since BN L = B’ N L, the statement
follows. O

Finally, we extend Theorem 2 (ii) to a theorem on k-blocking sets in PG(n, q).

Theorem 5. Let B be a small minimal k-blocking set with exponent e in PG(n, q), ¢ = p'.
If for a certain line L, |[LN B| =p®+1, p° > 7, then Fye is a subfield of F, and LN B is
Fpe-linear.

Proof. Let L be a p®+ 1-secant to B. By Lemma 5, there is at least one small (n —k+1)-
space II through L. Since IT N B is a small 1-blocking set to B, and every (n — k)-space,
contained in I meets B in 1 mod p® points, by Theorem 1 (ii), B is minimal. By Lemma
6, L N B is an Fpe-linear set. O

4 The proof of Main Theorem 1

In this section, we will prove Main Theorem 1, that, roughly speaking, states that if we
can prove the linearity for k-blocking sets in PG(n, ¢) for a certain value of n, then it is
true for all n. It is clear from the definition of a k-blocking set that we can only consider
k-blocking sets in PG(n,q) where 1 < k < n — 1, and whenever we use the notation
k-blocking set in PG(n, q), we assume that the above condition is satisfied.

From now on, if we want to state that for the pair (k,n*), all small minimal k-
blocking sets in PG(n*, ¢) are linear, we say that the condition (Hj ,+) holds.

To prove Main Theorem 1, we need to show that if (Hj ,+) holds, then (Hj,) holds for
all n > k + 1. The following observation shows that we only have to deal with the case
n > n*.

Lemma 7. If (Hy,~) holds, then (Hy,) holds for all n with k+1 <n < n*.
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Proof. A small minimal k-blocking set B in PG(n,q), with £k +1 < n < n*, can be
embedded in PG(n*, ¢), in which it clearly is a small minimal k-blocking set. Since
(Hg ) holds, B is linear, hence, (Hy,,) holds. O

The main idea for the proof of Main Theorem 1 is to prove that all the (py+ 1)-secants
through a particular point P of a k-blocking set B span a hk-dimensional space p over
F,,, and to prove that the linear blocking set defined by p is exactly the k-blocking set
B.

Lemma 8. Assume (Hy,,—1) andn—1 > 2k, and let B denote a small minimal k-blocking
set with exponent e in PG(n,p'), p prime, p¢ > 7, t > 2. Let II be a plane in PG(n, p').

(i) There is a 3-space 3 through 11 meeting B only in points of 11 and containing a
point QQ not lying on a secant line to B if k > 2.

(ii) The intersection I N B, is a linear set if k > 2.
Proof. Let II be a plane of PG(n, p'), pp := p® > 7. By Lemma 3, there are at least

si= (g™ 1)/ (P + 1) — 22 4 2pTR R (ph 4 1) — b — R plk? - gphks,

points @ ¢ {B} not lying on a secant line to B. This means that there are at least
r=(s— (pa" +pt +1))/pd" 3-spaces through II that contain a point that does not lie on
a secant line to B and is not contained in B nor in II. If all » 3-spaces contain a point ()
of B that is not contained in II, then the number of points in B is at least r. It is easy
to check that this is a contradiction if n — 1 > 2k, p¢ > 7, and k > 2.

Hence, there is a 3-space ¥ through II meeting B only in points of II and containing a
point @) not lying only on a secant line to B. The projection of B from () onto a hyperplane
containing II is a small minimal k-blocking set B in PG(n — 1,q) (see Theorem 1(iii)),
which is, by (Hg,_1), a linear set. Now II N B = I N B, since the space (Q, 7) meets B
only in points of II, and hence, the set II N B is linear. 0

Corollary 5. Assume (Hy,—1), k > 2, (n — 1) > 2k and let B denote a small minimal
k-blocking set with exponent e in PG(n,p'), p prime, p° > 7, t > 2. The intersection of a
line with B is an Fpe-linear set.

Remark 2. The linear set B(u) does not determine the subspace u in a unique way; by
Remark 1, we can choose p through a fixed point S(P), with P € B(u). Note that there
may exist different spaces p and p’, through the same point of PG(h(n 4+ 1) — 1, p), such
that B(p) = B(y'). If p is a line, however, if we fix a point x of an element of B(u), then
there is a unique line y’ through x such that B(u) = B(p') since, in this case, u' is the
unique transversal line through = to the regulus B(u). This observation is crucial for the
proof of the following lemma.

Lemma 9. Assume (Hy,—1), n —1 > 2k, and let B be a small minimal k-blocking set
with exponent e in PG(n,p'), p prime, po := p® > 7. Denote the (py + 1)-secants through
a point P of B that lies on at least one (po + 1)-secant, by Ly, ..., Ls. Let x be a point of
S(P) and let ¢; be the line through x such that B(¢;) = L; N B. The following statements
hold:
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(i) The space ({1, ...,Ls) has dimension hk.
(i) B({l;,€;)) C B for1 <i#j<s.

Proof. (i) Let P be a point of B lying on a (py + 1)-secant, and let H be a hyperplane
through P. By Lemma 6, there is a point (), not in B and not in H, not lying on a secant
line to B. The projection of B from @ onto H is a small minimal k-blocking set B in
H = PG(n—1,q) (Theorem 1 (iii)). By (Hg,_1), B is a linear set. Every line meets B in
1 mod py or 0 points, which implies that every line in H meets B in 1 mod pg or 0 points,
hence, B is F,-linear. Take a fixed point x in S(P). Since B is an [, -linear set, there is
an hk-dimensional space p in PG(h(n + 1) — 1,pp), through z, such that B(u) = B.

From Lemma 4, we get that the number of (py + 1)-secants through P to B is at least
2= ((ph* — 1)/ (ph — 1) — 3ph*="=3)(ph=" — 4p}~2) + 1, denote them by Ly, ..., L and let
(1, ..., ls be the lines through x such that B(¢;) = B N L;. These lines exist by Theorem
5. Note that, by Remark 2, B(¢;) determines the line ¢; through x in a unique way, and
that ¢; # ¢; for all i # j.

We will prove that the projection of ¢; from S(Q) onto (S(H)) in PG(h(n+1) —1,po)
is contained in p. Since L, is projected onto a (py + 1)-secant M to B through P, there
is a line m through x in PG(h(n + 1) — 1, po) such that B(m) = M N B. Now B = B(u),
and |BN M| = py + 1, hence, there is a line m/ through x in x such that B(m') = BN M.
Since m is the unique transversal line through x to M N B (see Remark 2), m = m/, and
m is contained in pu.

This implies that the space W := (f,..., ) is contained in (S(Q), u), hence, W
has dimension at most hk 4+ h. Suppose that W has dimension at least hk + 1, then it
intersects the (h — 1)-dimensional space S(Q)) in at least a point. But this holds for all
S(Q) corresponding to points, not in B, such that ) does not lie on a secant line to B.
This number is at least

h(n _ _ _ _ _
(o™ — 1)/ (ph + 1) — (pE"*2 4+ 2pP*3) (plt 4 1) — plF — Pk — phE? — gpfh?

by Lemma 3, which is larger than the number of points in W, since W is at most (hk+ h)-
dimensional, a contradiction.
From Theorem 4, we get that W contains at least

(" = 1) /(5 — 1) = 3pt" ") (b ™" —4p6™) + 1)po + 1

points, which is larger than (pi¥—1)/(po—1) if po > 7, hence, W is at least hk-dimensional.
Since we have already shown that W is at most hk-dimensional, the statement follows.

(ii) W.Lo.g. we choose i = 1,7 = 2. Let m be a line in (¢, f5), not through ¢; N 5.
Let M be the line of PG(n, ¢") containing B(m) and let H be a hyperplane of PG(n, ¢*)
containing the plane (L, Ly). We claim that there exists a point @, not in H, such that
the planes (@, L1), (@, Ls) and (@, M) only contain points of B that are in H.

If £ > 2, this follows from Lemma 8(i). Now assume that 1 < k < 2. There are
q"~? planes through M, not in in H. Since M is at least a (py + 1)-secant (Theorem 1
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(1)), it holds that if a plane II through M contains a point of B, that is not contained in
M, then, II contains at least p? points of B, not in M (again by Theorem 1(i)). Since
|B] < ¢* +¢* ' +¢* 2 + 3¢" 3 (Lemma 1), and n — 1 > 2k, there is at least one plane
IT through M, not contained in H that contains only points of B that are contained
in M. Now, there is one of the ¢ points in II, say @, that is not contained in M for
which the planes (@, L;), i = 1,2 only contain points of B on the line L;, i = 1,2, since
otherwise, the number of points in B would be at least p2q?, a contradiction since k < 2
and |B| < ¢* + ¢* 1 + ¢*"2 + 3¢*3 by Lemma 1. This proves our claim.

The projection of B from @ onto H is a small minimal k-blocking set B in PG(n, q)
(Theorem 1 (iii)). By (Hy,_1), B is a linear set, hence, it meets (L, Ly) in a linear set.
This means that there is a space 7 through z such that (L1, Ly) N B = B(w). Note that,
since (@, L1) and (@, L) only contain points of B that are contained in H, the lines L
and Lo are (py + 1)-secants to 5.

Hence, the space 7 contains ¢; since B(m) N L; = B(¢;) and ¢; is the unique transversal
line to the regulus B N L;, i = 1,2. Hence, B({¢1,4s)) C B, so B(m) C B. The plane
(Q, M) only contains points of B that are on M, so M N B = M N B, hence, B(m) C B.
Since every point of ({1, ), not on £y, {5, lies on a line m meeting ¢; and ¢, in different
points, B({¢1,¢3)) C B. O

Proof of Main Theorem 1.

Let B be a small minimal k-blocking set with exponent e in PG(n,p'), p prime,
po = p° > 7 and assume that (Hj,,—1) holds with n —1 > 2k. Let P be a point of B, lying
on a (pg+1)-secant. By Theorem 4, there are at least ((ph* —1)/(pf—1) —3pa*="=3)(pp—" —
4p8_2) +1 (po+1)-secants L ..., Lg through P, and by Lemma 9, the corresponding lines
l,...,ls in PG(h(n + 1) — 1,po), with B(¢;) = BN L;, ¢; through a fixed point x of
S(P), span an hk-dimensional space W. Suppose that B(W) € B, and let w be a point
of W for which B(w) ¢ B. Since the number of points lying on one of the lines of the set
{01,...,05}, is at least (((pp¥ —1)/(pk — 1) — 3pt*="=3)(ph=" — 4pp=2) + 1)po + 1, at least
one of the (pi* — 1)/(po — 1) lines through w, say m, contains two points lying on one of
the lines of the set {{y,...,¢;}. By Lemma 9 (b), B(m) is contained in B, a contradiction
since B(w) € B(m), and B(w) ¢ B.

Hence, B(W) C B, and since B(W) is a small minimal linear k-blocking set PG(n, p'),
contained in the minimal k-blocking set B, B equals the linear set B(WW). Hence, we
have shown that if (H,—1) holds, with n — 1 > 2k, then (Hy,) holds, and repeating
this argument shows that if (Hj ,+) holds for some n*, then (Hy,) holds for all n > n*.
Since Lemma 7 shows the desired property for all n with k + 1 < n < n*, the statement
follows. O

5 The proof of Main Theorem 2

In this section, we will prove Main Theorem 2, stating that, if all small minimal 1-blocking
sets in PG(n, p) are linear, then all small minimal k-blocking sets in PG(n, plt), are linear,
provided a condition on py and h holds.
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We proved in Lemma 1 that a subspace meets the small minimal k-blocking set B in
either in a ‘small’ number, or in a ‘large’ number of points. To simplify the terminology,
we call a (n — k + s)-space II, s < k, for which |[B N II| < ph* 4+ phs=" + pps=2 + 3phe—3
points, a small (n — k + s)-space. An (n — k + s)-space which is not small is called large.

Lemma 10. Let II be an (n — k)-space of PG(n,ph) and let B be a small minimal k-
blocking set with exponent e in PG(n,p'), p prime, pg :=p° > 7, k > 1.

(i) If BO1II is a point, then there are at most py* "% + 4ph*="=% — 1 large (n — k +1)-
spaces through 11.

(ii) If 11 intersects B in py+ 1 points, then there are at most 3ph*~"=3 large (n —k+1)-
spaces through 11.

Proof. (i) A small (n— k+ 1)-space through Il meets B in at least p2 + 1 points. Suppose
there are y large (n — k + 1)-spaces through II. Then the number of points in B is at least

yit = e =3 T = D)+ (- D/ (o — 1) —y)pl + 1

which is at most pft* —l—pgk_l +p3’f—2 + 3pgk_3. This yields y < pgk_h_z + 4p8k_h_3 —1.

(i) Suppose there are y large (n — k + 1)-spaces through II. A small (n — k + 1)-space
through Il meets B in a linear 1-blocking set, which is in this case, non-trivial and hence,
by Theorem 2, has at least pl' + pi™' — ph~2 points.

Then the number of points in B is at least

A R A DR
(6" = 1)/(p6 = 1) = y)(ps + 96~ =Py > —po—1) +po+1 (*)
which is at most pli* + pgk_l + pgk_Q + 3p6‘k—3. This yields y < 3p8k_h_3. O
Lemma 11. If B is a non-trivial small minimal k-blocking set with exponent e in
PG(n,p'), p prime, po := p° > 7, k > 1, then there exist a point P € B, a tangent
(n—k)-space 11 at the point P and small (n—k+1)-spaces H;, through I1, such that there
is a (po + 1)-secant through P in H;, 1 =1,... ,pgk_h — 5pgk_h_1.

Proof. Let L be a (py + 1)-secant to B and let P be a point of BN L. Lemma 2 shows
that there is an (n — k)-space Il such that BN 1Il, = BN L. By Theorem 4, P lies
on ((ph* —1)/(ph — 1) — 3ppF="=3)(ph=' — 4ph~2) + 1 other (py + 1)-secants. By Lemma
10 (ii), there are at least (ph* — 1)/(ph — 1) — 3p}*~"=® small hyperplanes through IIj,
which each contain at least ph + pg_l — p3—2 — po — 1 points of B not on L. Since
|B| < ph* 4 i+ 4 ph*=2 4 3ph+=3 (see Lemma 2), there are less than 2pi*~" points of B
left in large (n — k + 1)-spaces through II;. Hence, P lies on less than 2pi*~"~! lines that
are completely contained in B.

Since B is minimal, P lies on a tangent (n — k)-space II to B. There are at most

pik=h=2 4 4phh=h=3 _ 1 Jarge (n — k + 1)-spaces through II (Lemma 10 (i)). Moreover,
hk _
since at least I;fg_ll — (phk=h=2 4 gphk=h=3 _ 1) — (2ph*~"=1) (n — k 4 1)-spaces through II
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contain at least p{t +p8_1 —p3—2 points of B, and at most 2pgk_h_1 of the small (n—k+1)-

spaces through II contain exactly pf + 1 points of B, there are at most ng points of B

contained in large (n — k + 1)-spaces through II. Hence, P lies on at most pgk_g (po+1)-
secants of the large (n — k + 1)-spaces through II. This implies that there are at least
(((phk = 1)/ (ph — 1) — 3phE="=3) (ph=" — 4ph=2) + 1) — pi*=3 (py + 1)-secants through P
left in small (n — k + 1)-spaces through II. Since in a small (n — k + 1)-space through

IT, there can lie at most (pf — 1)/(po — 1) (po + 1)-secants through P, this implies that

there are at least pj*~" — 5pj* "~ (n — k + 1)-spaces H; through II such that P lies on a
(po + 1)-secant in H;. O

We continue with the following hypothesis:
(H) A small minimal j-blocking set in PG(n,q), 1 < j < k is linear.

Lemma 12. Let B be a non-trivial small minimal k-blocking set with exponent e in
PG(n,p'), p prime, po :=p° > 7, k > 1. If we assume (H), then the following statements
hold.

(1) A small (n—k+s)-dimensional space I of PG(n,p'), s < k, intersects B in a linear
set and |TIN B < (phs™ —1)/(po — 1).

(ii) Let L be a (po + 1)-secant to B and let S be a point of B, not on L. There exists a
small (n — 2)-space through L, skew to S.

(iii) A line intersects B in a linear set.

(iv) Let I1 be a small (n — 2)-space containing a (po + 1)-secant to B. Then the number
of large (n — 1)-spaces through 11 is at most 4ph .

Proof. (i) It is clear that an (n — k + s)-space Il meets B in a small s-blocking set B’.
Every (n — k)-space contained in II meets B’ in 1 mod py points, hence, by Theorem 1
(ii), B’ is a small minimal s-blocking set in PG(n — k + s, pft), which is, by the hypothesis
(H), F,,-linear. Tt follows that |B’| < (pj*™ —1)/(po — 1).

(ii) Lemma 2 shows that there is an (n — k)-space II,,_; through L, such that B N
L = BnIl, . By Lemma 1, an (n — k + 1)-space through II,,_, contains at most
(phtt —1)/(po — 1) or at least ph™ — ph~ — ph=2 — 3ph=3 points of B. If all (n — k + 1)-
spaces through I1,,_j (except possibly (I1,_x, S)) would be large, the number of points in
B would be at least ((pf¥ —1)/(ph—1)—1)(pht! —ph~ —ph=2 —3pl= —ph), which is larger
than pt* —|—pgk_1 +p3’f—2 —|—3p8k_3, a contradiction. Hence, there is a small (n—k+1)-space
through II,,_.

Suppose, by induction, that there exists a small (n — k + s)-space II,,_j. through L,
skew to S and suppose all (pg(k_s) —1)/(ph—1) =1 (n — k + s)-spaces through IT,, . 1,
different from (II,,_j.,, S) are large. Then the number of points in B is larger than
phk +pgk_1 + pgk_Q + Bpf}k—g if s <k — 2, a contradiction. We conclude that there exists
a small (n — 2)-space through L, skew to S.
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(iii) Let L be a line, with 0 < |LN B| < p'+ 1, otherwise the statement trivially holds.
The previous part of this lemma shows that L is contained in a small (n — k + 1)-space,
which has, by the first part of this lemma, a linear intersection with B. Hence, B N L is
a linear set.

(iv) A small (n — 1)-space through II meets B in at least ph*~" 4 pik=h=1 _ phk—h=2
points (see Corollary 2) and a small (n — 2)-space contains at most (pj*2"** —1)/(po—1)
points by the first part of this lemma. By Lemma 1, a large (n — 1)-space through II
contains at least piF—h+l — phk=h=1 _ phk=h=2"_ 3phk=h=3 15ints of B. Suppose there are
y large (n — 1)-spaces through II. Then the number of points in B is at least

y(pet =t = ppE T = R = 3R — (g — 1)/ (po — 1))+
(p6 + 1 =) (g™ "+ ™" = M2 — (g = 1) [ (po = 1)) + (6 = 1)/ (po — 1)
which is at most pft* —l—pgk_l +p3’f—2 + 3pgk_3. This yields y < 4p8_3. O

Lemma 13. Assume (H). Let B be a non-trivial small minimal k-blocking set with ex-
ponent e in PG(n,p'), p prime, py := p® > 7 and let P be a point of B, and let 11 be a
tangent (n — k)-space to B through P. Let Hy and Hy be two (n — k + 1)-spaces through
IT for which BN H; = B(m;), for some h-space m; through a point © € S(P), such that P
lies on a (po + 1)-secant in H;, i = 1,2. Then B({m,m)) C B.

Proof. Let L be a (po+1)-secant through P in H; and let £ be the line in 7 through x such
that (B(¢)) = L. Let s be a point of . By Lemma 12 (ii), there is a small (n — 2)-space
I1,,_5 through L, skew to B(s). There are at least pi~" — 4ph~2 (po + 1)-secants through
P, of which at least pj~* — 4pl= — (ph=* — 1)/(py — 1) span an (n — 1)-space together
with I1,,_o. By Lemma 12 (iv), there are at most 4p8_3 large spaces through II,, 5, so at
least pj ' — 4ph=2 — (P — 1)/(po — 1) — 4ph=2 of the (py + 1)-secants through P have
a transversal line ¢y, for which B({¢,¢;)) C B. This gives in total at least pj™ — 6p}
points @ in (¢, mo) for which B(Q)) C B, denote this pointset by G. This means that every
point t of (¢, ms) lies on a line m with at least py — 5 points of G. Since (B(m)) either is
contained in B, or it meets B in a linear set of rank at most h (see Lemma 12 (iii)), and
po — b > h, again by Theorem 3, B(m) C B by Theorem 3, and hence, B(t) C B.

Hence, for all (py + 1)-secants B(¢), with ¢ through z, in Hy, B({¢,m)) C B. This
shows that there are at least (pf~' — 4ph~2)pi™ + (pi™ — 1)/(po — 1) points Q in the
2h-space (w1, mo) such that B(Q)) C B. Every point ¢ of (7, ms) lies on a line m with at
least py — 5 points of G. Again, since py — 5 > h, by Theorem 3, B(m) C B and hence,
B(t) C B. It follows that B({m, m)) C B.

]

Proof of Main Theorem 2. Let B be a non-trivial small minimal k-blocking set
with exponent e in PG(n,p'), p prime, py := p°® > 7. We will show that, assuming that
all small minimal 1-blocking sets with exponent e in PG(n, p'), p prime, py := p® > 7, are
F,,-linear, B is F, -linear. By induction, we may assume (H) holds. If B is a k-space,
then B is F) -linear. If B is a non-trivial small minimal k-blocking set, Lemma 11 shows
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that there exists a point P of B, a tangent (n — k)-space Il at the point P and at least
pik=h — 5pht=h=1 (n — k 4 1)-spaces H; through II for which B N H; is small and linear,
where P lies on at least one (pg + 1)-secant of BN H;, i =1,...,s, s > ph*=" — 5phk=h=1,
Let BN H; = B(m;),i =1,...,s, with m; an h-dimensional space in PG(h(n + 1) — 1,p0),
where z € m;, with z € S(P).

Lemma 13 shows that B((m;,7;)) € B, 0<i# j <s.

If k = 2, the set B({m,m)) corresponds to a linear 2-blocking set B’ in PG(n,pf).
Since B is minimal, B = B’, and the Theorem is proven.

Let k > 2. Denote the (n — k + 1)-spaces through II, different from H;, by K ,j =
1,...,z It follows from Lemma 11 that z < 5pi*"=1 + (pgk " 1)/(po— 1) < 6ppFt.
There are at least (pp*~" — 5ph*="=1 — 1)/ph different (n — k + 2)-spaces (Hy, H,), 1 <
j<s. Ifal (n—k+ 2)-spaces (Hy, H;), contain at least 10pi~" of the spaces K;, then
z > 10pp~Y (ph*=" — 5ph*=r=1 _ 1) /ph > 6ph*="~1 a contradiction if py > h + 10. Let
(Hy, Hy) be an (n — k + 2)—Spaces containing less than 10p)~" spaces K;.

Suppose by induction that for any 1 < ¢ < k, there is an (n — k + @)-space
(Hy, Hy, ..., H;) containing at most 10p5*~"~* of the spaces K; such that B({(r, ..., m)) C
B.

There are at least

hk—h

i 6phk h—1

- 0 = /(e - V)

P
different (n — k + ¢ + 1)-spaces (Hy, Hs,...,H;, H,), H, € <H1,H2, ..., H;). If all of
these contain at least lOp}” L of the spaces K;, then z > 6phk h=1"a contradiction. Let
(Hy,...,H;;1) be an (n — k + i + 1)-space containing less than 10p}i~! spaces K;. We
still need to prove that B({m,...,m1)) € B. Since B((m41,7)) € B, with 7 an h-
space in (my, ..., m;) for which B(7) is not contained in one of the spaces K;, there are at
most 10pii~"~! 2h-dimensional spaces (71, 1) for which B({(m;41, 1)) is not necessarily
contained in B, giving rise to at most v := 10ph" ="~ (pa"™ —1)/(py — 1) points ¢ for which
B(t) is not necessarily contained in B. Let u be a point of such a space (m;,1,u), and
suppose that B(u) ¢ B. If each of the (pp™™ —1)/(po— 1) lines through w in (71, ..., T1)
contains at least 10 of the points ¢ for which B(¢) is not in B, then there are more than
v such points t, a contradiction. Hence, there is a line n through u for which for at least
po — 10 points v € n, B(v) € B. Every line L meets B in a linear set (see Lemma 12
(iii)), and if this linear set has rank at least h + 1, then L is completely contained in B.
This implies that (B(n)) N B has rank at most h, and that the subline B(n) contains at
least pyp — 10 points of the linear set (B(n)) N B. Since py — 10 > h, by Theorem 3, B(n)
is contained in (B(n)) N B, so B(u) C B, a contradiction.

This implies that B((my,...,m41)) C B.

Since B({rmy,...,m)) C B, and B({ry, ..., 7)) corresponds to a linear k-blocking set
B’ in PG(n,ph) contained in the minimal k-blocking set B, B = B’ and hence, B is
F,,-linear. O
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