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Abstract

A partition π of the set [n] = {1, 2, . . . , n} is a collection {B1, . . . , Bk} of
nonempty disjoint subsets of [n] (called blocks) whose union equals [n]. In this
paper, we find explicit formulas for the generating functions for the number of par-
titions of [n] containing exactly k blocks where k is fixed according to the number
of occurrences of a subword pattern τ for several classes of patterns, including all
words of length 3. In addition, we find simple explicit formulas for the total number
of occurrences of the patterns in question within all the partitions of [n] containing
k blocks, providing both algebraic and combinatorial proofs.

1 Introduction

A partition of [n] = {1, 2, . . . , n} is a decomposition of [n] into non-overlapping subsets
B1, B2, . . . , Bk, called blocks, which are listed in increasing order of their least elements
(1 6 k 6 n). We will represent a partition π = B1, B2, . . . , Bk in the canonical sequential

form π = π1π2 · · ·πn such that j ∈ Bπj
, 1 6 j 6 n. Therefore, a sequence π = π1π2 · · ·πn

over the alphabet [k] represents a partition of [n] with k blocks if and only if it is a
restricted growth function of [n] onto [k] (see, e.g., [11, 13, 14] for details). For instance,
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123214154 is the canonical sequential form of the partition {1, 5, 7}, {2, 4}, {3}, {6, 9},
{8} of [9]. Throughout this paper, partitions will be identified with their corresponding
canonical sequences. The set of all partitions of [n] with exactly k blocks will be denoted
by P (n, k) and has cardinality given by the Stirling number of the second kind, denoted
by Sn,k.

For positive integers a and b, let [a]b denote the set of words of length b in the alphabet
[a]. Given any word α in [k]n possessing m distinct letters, let red(α) denote the member
of [m]n gotten by replacing all letters corresponding to the smallest element occurring in
α with 1, replacing all letters corresponding to the second smallest element of α with 2,
and so on (often referred to as the reduction of α). For example, if n = 8, m = 4, and
α = 25662856, then red(α) = 12331423.

Let τ denote a member of [m]ℓ possessing at least one letter for each member of [m].
We will call such a word τ a subword pattern. We will say that there is an occurrence of
τ = τ1τ2 · · · τℓ at index i in the word α = α1α2 · · ·αn if red(αiαi+1 · · ·αi+ℓ−1) = τ . The
number of occurrences of the subword τ in α is the number of indices i, 1 6 i 6 n− ℓ+1,
for which red(αiαi+1 · · ·αi+ℓ−1) = τ . For example, if α = 535251472, then there are three
occurrences of the τ = 231 in α (corresponding to 352, 251, and 472) and two occurrences
of τ = 212 (corresponding to 535 and 525). Note that here we are requiring that the letters
within some word corresponding to an occurrence of a subword pattern τ be consecutive.

Several authors have studied various properties of the set of partitions. For instance,
Chen et al. [2], Klazar [7], Sagan [12], Mansour and Severini [9], and Jeĺinek and Mansour
[6] have studied pattern avoiding partitions. In [8], Mansour and Munagi studied the
number of partitions of [n] according to the number of ℓ-levels (the subword pattern
11 · · ·1 ∈ [1]ℓ), ℓ-rises (the subword pattern 12 · · · ℓ ∈ [ℓ]ℓ), and ℓ-descents (the subword
pattern ℓ(ℓ − 1) · · · 1 ∈ [ℓ]ℓ). In this paper, we consider the problem of counting various
subword patterns within the members of P (n, k). This extends earlier work done in
[1] on counting occurrences of various subword patterns within the members of [k]n.
Counting the number of permutations, words or compositions according to the number of
occurrences of a subword pattern is a classical problem in combinatorics; see, e.g., Elizalde
and Noy [3], Heubach and Mansour [4, 5], Mansour and Sirhan [10], and the references
therein.

Given a subword pattern τ and a word α, let τ(α) denote the number of occurrences
of τ within α. We consider the general problem of finding an explicit formula for the
ordinary generating function defined by

Fτ (x, y, k) =
∑

n>0

xn

(

∑

λ∈P (n,k)

yτ(λ)

)

,

for various subword patterns τ where k > 1 is fixed. In the next section, we compute
Fτ (x, y, k) for several general patterns of arbitrary length ℓ, noting the particular case
ℓ = 3. In the third section, we provide a complete solution to the problem when τ has
length 3 and compute recurrences for the remaining cases, which are more difficult. In
each case, we find a simple explicit formula for the total number of occurrences of τ within
all the members of P (n, k), providing both algebraic and combinatorial proofs.
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2 Counting a subword pattern of length ℓ

In this section, we find Fτ (x, y, k) for several cases of τ . This extends the work of Mansour
and Munagi [8] who found Fτ (x, y, k) for the subword pattern τ = 11 · · ·1 ∈ [1]ℓ and
proved the following theorem.

Theorem 2.1. The ordinary generating function for the number of partitions of [n] with

k blocks according to the number occurrences of the subword pattern τ = 11 · · ·1 ∈ [1]ℓ is

given by

Fτ (x, y, k) =
(x + x2 + · · · + xℓ−1 + xℓ/(1 − xy))k

∏k−1
j=0(1 − j(x + x2 + · · ·+ xℓ−1 + xℓ/(1 − xy)))

.

2.1 The subword patterns τ = 12 · · · 22 and τ = 11 · · · 12

In this section, we find the generating functions which correspond to the subword patterns
τ = 12 · · ·22 and τ = 11 · · ·12. By the following theorem, we need only find one of these.

Theorem 2.2. For all positive integers k,

F11···12(x, y, k) = F12···22(x, y, k).

Proof. To show this, first express the canonical representation α = π1π2 · · ·πn for each
member of P (n, k) as α = α1α2 · · ·αr, where each αi, 1 6 i 6 r, is a non-empty, non-
decreasing word (i.e., contains no descents) and where the largest (= last) member of
the word αi is larger than the smallest (= first) member of αi+1 for all i. Suppose that
the set of distinct letters in αi is a1 < a2 < · · · < at and that αi = ai1ai2 · · ·ais for
some positive integers s and t with 1 6 ij 6 t for each j. Let α′

i be the word given by
α′

i = at+1−isat+1−is−1
· · ·at+1−i1 and let α′ be the partition given by α′ = α′

1α
′
2 · · ·α

′
r. It

may be verified that the mapping α 7→ α′ is a bijection of P (n, k) which changes each
occurrence of 11 · · ·12 to an occurrence of 12 · · ·22 (and each occurrence of 12 · · ·22 to
one of 11 · · ·12).

We now provide an explicit formula for Fτ (x, y, k) in the case when τ = 12 · · ·22.

Theorem 2.3. Let τ = 12 · · ·22 ∈ [2]ℓ be a subword pattern. Then the generating function

Fτ (x, y, k) is given by

xk (1 − xℓ−2(1 − y))k−1

∏k

a=1

(

1 − x
∑a−1

j=0(1 − xℓ−1(1 − y))j

) .

Proof. From Theorem 2.2 in [1], we have that the generating function Q(x, y, k) for the
number of words π of length n over the alphabet [k] according to the number occurrences
of τ = 11 · · ·12 in π is given by

Q(x, y, k) =
1

1 − x
∑k−1

i=0 (1 − xℓ−1(1 − y))i
.
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This is also the generating function for the number of occurrences of τ = 12 · · ·22 over
such words (simply replace each letter r with k+1−r and reverse order). Let us consider
the words 1kπ, where π is a word over the alphabet [k], and consider whether or not the
first letter of π is k. This implies that the generating function for the number of words
kπ of length n over the alphabet [k] according to the number occurrences of 12 · · ·22 in
1kπ is given by

Q′(x, y, k) = (xℓ−1y + x(1 − xℓ−2))Q(x, y, k) =
x(1 − xℓ−2(1 − y))

1 − x
∑k−1

i=0 (1 − xℓ−1(1 − y))i
.

From the fact that each partition π of [n] with exactly k blocks may be expressed uniquely
as π = 1π(1)2π(2) · · · kπ(k) such that each π(i) is a word over the alphabet [i], we have that
the generating function Fτ (x, y, k) is given by x

1−x

∏k

j=2 Q′(x, y, j), which completes the
proof.

A similar, though lengthier, argument may be given establishing Fτ (x, y, k) directly
in the case τ = 11 · · ·12. When y = 1, the generating function in Theorem 2.3 reduces to
that for the Stirling number of the second kind. Taking ℓ = 3 in Theorem 2.3 yields

F122(x, y, k) = xk (1 − x(1 − y))k−1

∏k

a=1

(

1 − x
∑a−1

j=0(1 − x2(1 − y))j

) .

Differentiating the generating function in Theorem 2.3 yields

d

dy
Fτ (x, y, k) |y=1

= Fτ (x, 1, k)



xℓ−2(k − 1) −

k
∑

a=1

d
dy

(

1 − x
∑a−1

j=0(1 − xℓ−1(1 − y))j
)

|y=1

1 − ax





= Fτ (x, 1, k)

(

xℓ−2(k − 1) +
k
∑

a=1

xℓ
(

a

2

)

1 − ax

)

,

which implies the following corollary to Theorem 2.3.

Corollary 2.4. The total number of occurrences of the subword 12 · · ·22 ∈ [2]ℓ in all of

the partitions of [n] with exactly k blocks is given by

(k − 1)Sn−ℓ+2,k +
k
∑

j=2

(

j

2

)

fn,j,

where fn,j =
∑n−k

i=ℓ ji−ℓSn−i,k and Si,j is the Stirling number of the second kind.

We now provide a combinatorial proof of Corollary 2.4. Occurrences of τ = 12 · · ·22
in members of P (n, k) in which the element corresponding to the first 2 starts a block are
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synonymous with occurrences of 12 in members of P (n − ℓ + 2, k) in which the element
corresponding to the 2 starts a block. To see this, note that if the element i starts block
b, b > 2, within a member λ ∈ P (n − ℓ + 2, k), then one can increase all members of
[i + 1, n − ℓ + 2] = {i + 1, i + 2, · · · , n − ℓ + 2} by ℓ − 2 within λ, leaving them within
their current blocks, and add the elements i+1, i+2, · · · , i+ ℓ−2 to block b to obtain an
occurrence of τ = 12 · · ·22 within a member of P (n, k) in which the first 2 starts a block.
There are clearly (k − 1)Sn−ℓ+2,k occurrences of 12 in which the 2 starts a block within
the members of P (n−ℓ+2, k) since they occur each time a new block is started (after the
first). So to complete the proof, we must show that the total number of occurrences of τ
in which the number corresponding to the 2 does not start a block is given by the sum in
Corollary 2.4. We’ll prove a more general result which we’ll use in subsequent sections.

If λ is a partition of [n] and i ∈ [n], then we will say that i is minimal if i is the smallest
element of a block of λ, i.e., if the ith slot of the canonical representation of λ corresponds
to the first occurrence of a letter. Given λ ∈ P (n, k) and τ a subword pattern, we’ll call
an occurrence of τ within λ primary if no letter of τ corresponds to a minimal element
of λ. The following lemma provides an explicit formula for the total number of primary
occurrences of a subword τ . Taking τ = 12 · · ·22 completes the proof of Corollary 2.4.

Lemma 2.5. Let τ be any subword pattern of length ℓ in the alphabet [m]. Then the total

number of primary occurrences of the subword τ in all of the partitions of [n] with exactly

k blocks is given by
k
∑

j=m

(

j

m

)

fn,j,

where fn,j =
∑n−k

i=ℓ ji−ℓSn−i,k.

Proof. Given i and j, where ℓ 6 i 6 n − k and m 6 j 6 k, consider all the members of
P (n, k) which may be decomposed uniquely as

π = π′jαβ, (1)

where π′ is a partition with j − 1 blocks, α is a word of length i in the alphabet [j] whose
last ℓ letters constitute an occurrence of τ , and β is possibly empty. For example, if
i = 6, j = 5, m = 4, τ = 1243, and π = 122324513135421 ∈ P (15, 5), then π′ = 122324,
α = 131354, and β = 21. Note that there are

(

j

m

)

choices for the final ℓ letters of α
since these letters are to form an occurrence of τ (the smallest member of [j] chosen will
correspond to the 1 in τ , the second smallest to 2, etc.). The total number of primary
occurrences of τ can then be obtained by finding the number of partitions which may be
expressed as in (1) for each i and j and then summing over all possible values of i and j.
And there are

(

j

m

)

ji−ℓSn−i,k members of P (n, k) which may be expressed as in (1) since
one can pick the letters π′jβ in Sn−i,k ways (as they constitute a partition of an n − i
element set into k blocks) and then insert α in ji−ℓ

(

j

m

)

ways (as there are ji−ℓ choices for

the first i − ℓ letters of α and
(

j

m

)

choices for the final ℓ letters).
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2.2 The subword patterns τ = 22 · · · 21 and τ = 21 · · · 11

In this section, we find Fτ (x, y, k) in the cases when τ = 22 · · ·21 and τ = 21 · · ·11. Again,
we need only consider one case since the bijection used to establish Theorem 2.2 above
also shows that the subword patterns τ = 22 · · ·21 and τ = 21 · · ·11 of the same length are
identically distributed on P (n, k), upon decomposing the canonical representations into
non-increasing words (i.e., words which contain no rises) instead of decomposing them
into non-decreasing words as before.

Theorem 2.6. For all positive integers k,

F21···11(x, y, k) = F22···21(x, y, k).

We now provide an explicit formula for Fτ (x, y, k) in the case when τ = 22 · · ·21.

Theorem 2.7. Let τ = 22 · · ·21 ∈ [2]ℓ be a subword pattern. Then the generating function

Fτ (x, y, k) is given by

xk(y − 1)k

k
∏

a=1

xℓ−2(1 − xℓ−1(1 − y))a−1

1 − xℓ−2(1 − y) − (1 − xℓ−1(1 − y))a
.

Proof. Let G = G(x, y, a) and G′ = G′(x, y, a) denote the generating functions for the
number of words π of length n over the alphabet [a] according to the number of occurrences
of τ = 22 · · ·21 in π and according to the number of occurrences of τ in aπ, respectively,
where a > 2. Let G′′ = G′′(x, y, a) denote the generating function for the number of
words π of length n over the alphabet [a] which do not start with the letter a (including
the empty word) according to the number of occurrences of τ in π. We then have

G′ = G − xℓ−2(G′′ − 1) + xℓ−2y(G′′ − 1)

and
G = G′′ + xG′,

from the definitions since words enumerated by G′ and starting with ℓ− 2 a’s followed by
any letter j, where j < a, have an additional occurrence of τ at the beginning. Combining
the two prior relations yields

G′ =
(1 − xℓ−2(1 − y))G + xℓ−2(1 − y)

1 − xℓ−1(1 − y)
.

Since the patterns τ = 22 · · ·21 and τ = 11 · · ·12 are equivalent on words in [k] (simply
replace each letter r with k + 1 − r), Theorem 2.2 in [1] implies

G =
xℓ−2(y − 1)

1 − xℓ−2(1 − y) − (1 − xℓ−1(1 − y))a
,

which then yields

G′ =
xℓ−2(y − 1)(1 − xℓ−1(1 − y))a−1

1 − xℓ−2(1 − y) − (1 − xℓ−1(1 − y))a
.
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(This formula also holds when a = 1.) From the fact that each partition π of [n] with
exactly k blocks may be expressed uniquely as π = 1π(1)2π(2) · · · kπ(k) such that each π(i)

is a word over the alphabet [i], we have that the generating function Fτ (x, y, k) is given
by xk

∏k

a=1 G′(x, y, a), which completes the proof.

Letting ℓ = 3 in Theorem 2.7 yields

F221(x, y, k) = x2k(y − 1)k

k
∏

a=1

(1 − x2(1 − y))a−1

1 − x(1 − y) − (1 − x2(1 − y))a

and letting y = 0 in this implies that the generating function for the number of partitions
of [n] with k parts which avoid the pattern 221 is given by

F221(x, 0, k) = x2k

k
∏

a=1

(1 − x2)a−1

(1 − x2)a + x − 1
.

From Theorem 2.7, we have

Fτ (x, 1, k) = lim
y→1

Fτ (x, y, k) = xk

k
∏

j=1

lim
y→1

(

fj(y)

gj(y)

)

,

where fj(y) = xℓ−2(y−1)(1−xℓ−1(1−y))j−1 and gj(y) = 1−xℓ−2(1−y)−(1−xℓ−1(1−y))j.
Since fj(1) = gj(1) = 0, f ′

j(1) = xℓ−2, and g′
j(1) = xℓ−2 − jxℓ−1, where primes denote

differentiation with respect to y, we see that

lim
y→1

(

fj(y)

gj(y)

)

=
1

1 − jx

and hence Fτ (x, y, k) reduces to the ordinary generating function for Sn,k whenever y = 1.
Theorem 2.7 also implies

d

dy
Fτ (x, y, k) |y=1= Fτ (x, 1, k)

k
∑

j=1

lim
y→1

(

f ′
j(y)gj(y) − fj(y)g′

j(y)

fj(y)gj(y)

)

.

Since f ′′
j (1) = 2(j − 1)x2ℓ−3 and g′′

j (1) = −j(j − 1)x2ℓ−2, two applications of L’Hôpital’s
rule implies

lim
y→1

(

f ′
j(y)gj(y) − fj(y)g′

j(y)

fj(y)gj(y)

)

= lim
y→1

(

f ′′
j (y)g′

j(y) − f ′
j(y)g′′

j (y)

2f ′
j(y)g′

j(y)

)

=
f ′′

j (1)

2f ′
j(1)

−
g′′

j (1)

2g′
j(1)

= (j − 1)xℓ−1 +

(

j

2

)

xℓ

1 − jx

so that
d

dy
Fτ (x, y, k) |y=1= Fτ (x, 1, k)

(

xℓ−1

(

k

2

)

+
k
∑

j=1

xℓ
(

j

2

)

1 − jx

)

.

This yields the following corollary to Theorem 2.7.

the electronic journal of combinatorics 17 (2010), #R19 7



Corollary 2.8. The total number of occurrences of the subword 22 · · ·21 ∈ [2]ℓ in all of

the partitions of [n] with exactly k blocks is given by

(

k

2

)

Sn−ℓ+1,k +
k
∑

j=2

(

j

2

)

fn,j,

where fn,j =
∑n−k

i=ℓ ji−ℓSn−i,k and Si,j is the Stirling number of the second kind.

We now provide a combinatorial proof of Corollary 2.8. For this, it is enough to
show, by Lemma 2.5, that the total number of occurrences of τ = 22 · · ·21 within the
members of P (n, k) in which the element of [n] corresponding to the first 2 is minimal
equals

(

k

2

)

Sn−ℓ+1,k. By prior reasoning, note that occurrences of τ = 22 · · ·21 within
members of P (n, k) in which the first 2 is minimal are synonymous with occurrences of
21 within members of P (n − ℓ + 2, k) in which the 2 is minimal. To complete the proof,
we must then show that there are

(

k

2

)

Sr−1,k occurrences of 21 in which the 2 is minimal
within the members of P (r, k). To see this, first choose two numbers a < b in [k]. Given
λ ∈ P (r − 1, k), let m denote the smallest member of block b. Increase all members of
[m + 1, r − 1] by one (leaving them within their blocks) and then add the element m + 1
to block a. This produces an occurrence of 21 (in the form ba) at positions m and m + 1
within some member of P (r, k).

2.3 The subword pattern τ = mρm

Theorem 2.9. Let τ = mρm ∈ [m]ℓ be a subword pattern, where ρ does not contain m.

Then the generating function Fτ (x, y, k) is given by

xk

(1 − x)(1 − 2x) · · · (1 − (m − 1)x)

k
∏

a=m

1

1+xℓ−1(a−1

m−1
)(1−y)

1 − (m − 1)x − x
a−1
∑

j=m−1

1

1+( j
m−1

)xℓ−1(1−y)

.

Proof. Let Ga(x, y) be the generating function for the number of words π of length n
over the alphabet [a] according to the number of occurrences of the subword pattern τ
in aπ(a + 1). Since π either contains the letter a (here we write π = π′aπ′′ where π′ is a
word which does not contain a) or does not, we see that

Ga(x, y) = G′
a−1(x, y) + x(G′

a−1(x, y) − xℓ−2

(

a − 1

m − 1

)

(1 − y))Ga(x, y),

which is equivalent to

Ga(x, y) =
G′

a−1(x, y)

1 − x(G′
a−1(x, y) − xℓ−2

(

a−1
m−1

)

(1 − y))
, (2)
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where G′
a(x, y) is the generating function for the number of words of length n over the

alphabet [a] according to the number occurrences of the subword pattern τ . From [1,
Theorem 2.7], we have that

G′
a(x, y) =

1

1 − min{m − 1, a}x − x
∑a−1

j=m−1
1

1+( j
m−1

)xℓ−1(1−y)

, a > 1. (3)

From the fact that each partition π of [n] with exactly k blocks may be expressed uniquely
as π = 1π(1)2π(2) · · ·kπ(k) such that π(i) is a word over the alphabet [i], we have that the
generating function Fτ (x, y, k) is given by xk

∏k

a=1 Ga(x, y). Hence, by (2) and (3), we
get the following expression for Ga(x, y):

1

(1 + xℓ−1
(

a−1
m−1

)

(1 − y))

(

1 − min{m − 1, a − 1}x − x
a−2
∑

j=m−1

1

1+( j
m−1

)xℓ−1(1−y)

)

− x

,

which implies our theorem.

When y = 1 in Theorem 2.9, the generating function reduces to that of the Stirling
number of the second kind. Taking τ = 211 · · ·12 ∈ [2]ℓ in Theorem 2.9 gives

Fτ (x, y, k) = xk

k
∏

a=1

1
1+xℓ−1(a−1)(1−y)

1 − x − x
a−1
∑

j=1

1
1+jxℓ−1(1−y)

.

In particular, when ℓ = 3 and y = 0, we see that the generating function for the number
of partitions of [n] with exactly k blocks that avoid the subword pattern τ = 212 is given
by

F212(x, 0, k) =
xk

1 − x

k−1
∏

a=1

1
1+ax2

1 − x
a
∑

j=0

1
1+jx2

.

Differentiating the generating function in Theorem 2.9 gives

d

dy
Fτ (x, y, k) |y=1 = Fτ (x, 1, k)

(

k
∑

a=m

[

xℓ−1

(

a − 1

m − 1

)

+
1

1 − ax

a−1
∑

j=1

xℓ

(

j

m − 1

)

])

= Fτ (x, 1, k)

(

xℓ−1

(

k

m

)

+

k
∑

a=1

xℓ
(

a

m

)

1 − ax

)

,

which yields the following corollary.

Corollary 2.10. The total number of occurrences of the subword τ = mρm ∈ [m]ℓ, where

ρ does not contain m, in all of the partitions of [n] with exactly k blocks is given by

(

k

m

)

Sn−ℓ+1,k +

k
∑

j=m

(

j

m

)

fn,j,

where fn,j =
∑n−k

i=ℓ ji−ℓSn−i,k and Si,j is the Stirling number of the second kind.
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We now provide a combinatorial explanation of Corollary 2.10. By Lemma 2.5, the
second term of the explicit formula counts all primary occurrences of the subword pattern
τ within all members of P (n, k). To complete the proof, we must then show that there are
(

k

m

)

Sn−ℓ+1,k total occurrences of τ which aren’t primary (which we’ll term non-primary).
Note that the first letter of a non-primary occurrence of τ in a partition λ must correspond
to a minimal element of π, with all the other letters comprising the occurrence non-
minimal. Then given m numbers a1 < a2 < · · · < am in [k] and λ ∈ P (n − ℓ + 1, k), let t
denote the smallest member of block am. Increase all members of [t+1, n− ℓ+1] by ℓ−1
in λ (leaving them within their current blocks). Then add the element t + i to block ar,
where r denotes the (i+1)st letter of the subword τ for all i, 1 6 i 6 ℓ− 1. The resulting
member of P (n, k) will have a non-primary occurrence of τ starting at the tth letter.

2.4 The subword pattern τ = mρ(m + 1)

Theorem 2.11. Let τ = mρ(m + 1) ∈ [m + 1]ℓ be a subword pattern, where ρ does not

contain m and m + 1. Then the generating function Fτ (x, y, k) with k > m + 1 is given

by

xkBk(x, y)

(1 − x) · · · (1 − (m − 1)x)

k−1
∏

a=m

Aa(x, y) −
(

a−1
m−1

)

xℓ−2(1 − y)

1 − xAa(x, y)
,

where

Ba(x, y) =
1

1 − (m − 1)x − x
∑a−2

i=m−2

∏i

j=m−2

(

1 −
(

j

m−1

)

xℓ−1(1 − y)
) , a > m,

Aa(x, y) =

∏a−2
j=m−1(1 −

(

j

m−1

)

xℓ−1(1 − y))

1 − mx − x
∑a−3

i=m−1

∏i

j=m−1

(

1 −
(

j

m−1

)

xℓ−1(1 − y)
) , a > m + 1,

and Am(x, y) = 1
1−(m−1)x

.

Proof. Let Aa = Aa(x, y) be the generating function for the number of words π of length
n over the alphabet [a−1] according to the number occurrences of the subword pattern τ
in πa. Let A′

a = A′
a(x, y) be the generating function for the number of words π of length

n over the alphabet [a−1] according to the number of occurrences of the subword pattern
τ in aπ(a + 1). Clearly, A′

a = Aa −
(

a−1
m−1

)

xℓ−2(1 − y).
Note that each word π over the alphabet [a− 1] either does not contain a − 1 or may

be expressed as π(1)(a− 1)π(2)(a− 1) · · ·π(s)(a− 1)π(s+1) such that π(j) is a word over the
alphabet [a − 2], for all j. Therefore

Aa = Aa−1 +
xAa−1A

′
a−1

1 − xAa−1
,

which implies that

Aa = Aa−1 +
xAa−1

(

Aa−1 −
(

a−2
m−1

)

xℓ−2(1 − y)
)

1 − xAa−1
=

Aa−1

(

1 −
(

a−2
m−1

)

xℓ−1(1 − y)
)

1 − xAa−1
.

the electronic journal of combinatorics 17 (2010), #R19 10



Hence, by induction on a, we have Aa = 1
1−(a−1)x

for all a = 1, 2, . . . , m, and

Aa(x, y) =

∏a−2
j=m−1(1 −

(

j

m−1

)

xℓ−1(1 − y))

1 − mx − x
∑a−3

i=m−1

∏i

j=m−1

(

1 −
(

j

m−1

)

xℓ−1(1 − y)
) ,

for all a > m + 1.
Let Ba = Ba(x, y) be the generating function for the number of words π of length n

over the alphabet [a] according to the number of occurrences of the subword pattern τ in
π. From [1, Theorem 2.11], we can state that

Ba =
1

1 − (m − 1)x − x
∑a−2

i=m−2

∏i

j=m−2

(

1 −
(

j

m−1

)

xℓ−1(1 − y)
) , a > m.

Hence, the generating function for the number words π of length n over the alphabet [a]
according to the number of occurrences of the subword pattern τ in aπ(a+1) (decompose
the word π as π(1)aπ(2)a · · ·π(s)aπ(s+1), where π(j) is a word over the alphabet [a − 1]) is
given by

A′
a

1 − xAa

=
Aa −

(

a−1
m−1

)

xℓ−2(1 − y)

1 − xAa

, a > m,

and 1
1−ax

for a = 1, 2, . . . , m−1. From the fact that each partition π of [n] with exactly k

blocks can be written as π = 1π(1)2π(2) · · · kπ(k) such that π(i) is a word over the alphabet
[i], we have that the generating function Fτ (x, y, k) is given by

xkBk

(1 − x) · · · (1 − (m − 1)x)

k−1
∏

a=m

Aa −
(

a−1
m−1

)

xℓ−2(1 − y)

1 − xAa

,

which completes the proof.

For instance, Theorem 2.11 for τ = 213 implies that the generating function for the
number of partitions of [n] with exactly k blocks according to the number occurrences of
the subword pattern 213 is given by

F213(x, y, k) =
xk
∏k−1

a=2
Aa−(a−1)x(1−y)

1−xAa

(1 − x)

[

1 − x − x
k−2
∑

i=0

i
∏

j=0

(1 − jx2(1 − y))

] , k > 2,

where

Aa =

∏a−2
j=1(1 − jx2(1 − y))

1 − 2x − x
∑a−3

i=1

∏i

j=1 (1 − jx2(1 − y))
.

This implies that F213(x, 1, k) = xk

(1−x)(1−2x)···(1−kx)
, as it is well known. One may readily

verify that

Aa(1) := Aa(x, y) |y=1=
1

1 − (a − 1)x
(4)
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and

dAa(1) :=
d

dy
Aa(x, y) |y=1=

xℓ−1
(

a−1
m

)

1 − (a − 1)x
+

xℓ
(

a−1
m+1

)

[1 − (a − 1)x]2
. (5)

Combining these facts with Theorem 2.11 and the fact that

d

dy
Bk(x, y) |y=1=

xℓ

1 − kx

k−2
∑

i=m−2

(

i + 1

m

)

=
xℓ
(

k

m+1

)

1 − kx

yields

d

dy
Fτ (x, y, k) |y=1

= Fτ (x, 1, k)

(

k−1
∑

a=m

[dAa(1) +

(

a − 1

m − 1

)

xℓ−2][1 − (a − 1)x] +

k−1
∑

a=m

xdAa(1)

1 − xAa(1)
+

xℓ
(

k

m+1

)

1 − kx

)

= Fτ (x, 1, k)

(

k−1
∑

a=m

(

xℓ−2

(

a − 1

m − 1

)

− (m − 1)xℓ−1

(

a

m

))

+
k
∑

a=m

xℓ
(

a

m+1

)

1 − ax

)

= Fτ (x, 1, k)

(

xℓ−2

(

k − 1

m

)

− xℓ−1(m − 1)

(

k

m + 1

)

+
k
∑

a=m

xℓ
(

a

m+1

)

1 − ax

)

,

which implies the following corollary.

Corollary 2.12. The total number of occurrences of the subword τ = mρ(m+1) ∈ [m+1]ℓ,
where ρ does not contain m or m + 1, in all of the partitions of [n] with exactly k blocks

is given by

(

k − 1

m

)

Sn−ℓ+2,k − (m − 1)

(

k

m + 1

)

Sn−ℓ+1,k +
k
∑

j=m+1

(

j

m + 1

)

fn,j,

where fn,j =
∑n−k

i=ℓ ji−ℓSn−i,k and Si,j is the Stirling number of the second kind.

We now provide a combinatorial proof of Corollary 2.12. By Lemma 2.5, to complete
the proof, we must show that the total number of non-primary occurrences of τ = mρ(m+
1) is given by

(

k−1
m

)

Sn−ℓ+2,k − (m−1)
(

k

m+1

)

Sn−ℓ+1,k, which we rewrite as 2
(

k

m+1

)

Sn−ℓ+1,k +
(

k−1
m

)

Sn−ℓ+1,k−1, using the facts that Sn−ℓ+2,k = kSn−ℓ+1,k + Sn−ℓ+1,k−1 and k
(

k−1
m

)

=

(m+1)
(

k

m+1

)

. First observe that if an occurrence of τ = mρ(m+1) is non-primary within
a partition π, then the number corresponding to the slot containing m + 1 must be a
minimal element of π (for if not, then the number corresponding to the slot containing
m would not be minimal as well, which would imply that the occurrence of τ within π
is primary, a contradiction). There are then

(

k

m+1

)

Sn−ℓ+1,k non-primary occurrences of
τ in which the number corresponding to the slot containing m is not minimal. To see
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this, first pick m + 1 numbers a1 < a2 < · · · < am+1 in [k] and let t denote the smallest
element of block am+1 in λ ∈ P (n − ℓ + 1, k). Increase all members of [t, n − ℓ + 1] by
ℓ − 1 within λ, leaving all members within their current blocks. Then add the element
t + i to block ar, where r denotes the (i + 1)st letter of the subword pattern τ for all i,
0 6 i 6 ℓ− 2. Since the minimal elements of the blocks ai for 1 6 i 6 m are all less than
t, the resulting member of P (n, k) will have a non-primary occurrence of τ starting at t
in which the number corresponding to m (namely, t) is not minimal.

By similar reasoning, there are
(

k

m+1

)

Sn−ℓ+1 non-primary occurrences of τ in which
the number corresponding to the slot containing m is minimal but does not occur as a
singleton block. To see this, pick m + 1 numbers a1 < a2 < · · · < am+1 in [k] and let t
denote the smallest element of block am of λ ∈ P (n − ℓ + 1, k). Increase all members of
[t, n−ℓ+1] by ℓ−1 within λ and add t to block am+1. Then add t+ i to block ar, where r
denotes the (i+1)st letter of τ , 1 6 i 6 ℓ−2. The resulting member of P (n, k) will have a
non-primary occurrence of τ starting at t in which the letter corresponding to m (namely,
t) is minimal but does not occur as a singleton block. Finally, there are

(

k−1
m

)

Sn−ℓ+1,k−1

non-primary occurrences of τ in which the letter corresponding to m occurs as a singleton
block. To see this, pick a1 < a2 < · · · < am in [k−1] and let t denote the smallest element
of block am of λ ∈ P (n − ℓ + 1, k − 1). Increase all members of [t, n − ℓ + 1] by ℓ − 1
within λ and add the singleton block {t}. Then add t + i to block ar, where r denotes
the (i + 1)st letter of the subword τ , 1 6 i 6 ℓ − 2. The resulting member of P (n, k) will
have a non-primary occurrence of τ starting at t in which the singleton block {t} occurs.

2.5 The subword pattern τ = (m + 1)ρm

Theorem 2.13. Let τ = (m + 1)ρm ∈ [m + 1]ℓ be a subword pattern, where ρ does not

contain m and m + 1. Then the generating function Fτ (x, y, k) with k > 1 is given by

xk

k
∏

a=1

Aa(x, y)

1 − xAa(x, y)
,

where

Aa(x, y) =

∏a−2
j=m−1(1 −

(

j

m−1

)

xℓ−1(1 − y))

1 − mx − x
∑a−3

i=m−1

∏i

j=m−1

(

1 −
(

j

m−1

)

xℓ−1(1 − y)
) , a > m + 1,

and Aa(x, y) = 1
1−(a−1)x

for a 6 m.

Proof. Let Ca = Ca(x, y) be the generating function for the number of words π of length
n over the alphabet [a] according to the number of occurrences of the subword pattern τ
in aπ. Since each word π over the alphabet [a] either does not contain the letter a or may
be written as π′aπ′′, where π′ is a word over the alphabet [a − 1] and π′′ is a word over
the alphabet [a], we have

Ca = C ′
a + xC ′

aCa,
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where C ′
a is the generating function for the number of words π of length n over the

alphabet [a − 1] according to the number of occurrences of the subword pattern τ in aπ.
From the proof of Theorem 2.11 and the reversal operation (map each word π1 · · ·πn to
πn · · ·π1), we have C ′

a = Aa. Hence

Ca =
Aa

1 − xAa

.

From the fact that each partition π of [n] with exactly k blocks may be expressed uniquely
as π = 1π(1)2π(2) · · · kπ(k) such that each π(i) is a word over the alphabet [i], we have
that the generating function Fτ (x, y, k) is given by xk

∏k

a=1
Aa

1−xAa
, which completes the

proof.

By way of example, Theorem 2.13 for τ = 312 implies that the generating function
F312(x, y, k) for the number of partitions of [n] with exactly k blocks according to the
number of occurrences of the subword pattern 312 is given by

xk
∏k−2

j=1(1 − jx2(1 − y))k−1−j

(1 − x)(1 − 2x)
k−2
∏

a=1

(

1 − 2x − x
a
∑

i=1

i
∏

j=1

(1 − jx2(1 − y))

) .

From (4) and (5), we have from Theorem 2.13 that

d

dy
Fτ (x, y, k) |y=1= Fτ (x, 1, k)

k
∑

a=m+1

(

dAa(1)

Aa(1)
+

xdAa(1)

1 − xAa(1)

)

= Fτ (x, 1, k)

k
∑

a=m+1

(

xℓ−1

(

a − 1

m

)

+
xℓ
(

a−1
m+1

)

1 − (a − 1)x
+

xℓ
(

a−1
m

)

1 − ax
+

xℓ+1
(

a−1
m+1

)

(1 − ax)(1 − (a − 1)x)

)

= Fτ (x, 1, k)

[

xℓ−1

(

k

m + 1

)

+
k
∑

a=m+1

xℓ
(

a

m+1

)

1 − ax

]

,

which implies the following corollary.

Corollary 2.14. The total number of occurrences of the subword τ = (m+1)ρm ∈ [m+1]ℓ,
where ρ does not contain m or m + 1, in all of the partitions of [n] with exactly k blocks

is given by
(

k

m + 1

)

Sn−ℓ+1,k +
k
∑

j=m+1

(

j

m + 1

)

fn,j,

where fn,j =
∑n−k

i=ℓ ji−ℓSn−i,k and Si,j is the Stirling number of the second kind.

We remark that a combinatorial proof may be given for Corollary 2.14 similar to that
given above for Corollary 2.10.
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3 Three letter subwords

In this section, we turn our attention to counting occurrences of three letter subword
patterns within members of P (n.k). Theorem 2.1 of [8] implies

F111(x, y, k) =
(x + x2 + x3/(1 − xy))k

∏k−1
j=0(1 − j(x + x2 + x3/(1 − xy)))

.

The expressions for F123(x, y, k) and F321(x, y, k) are more complicated and occur as The-
orem 3.6 and Corollary 4.4 of [8]. From our results in previous sections, we have the
following:

F112(x, y, k) = F122(x, y, k) = xk (1 − x(1 − y))k−1

∏k

a=1

(

1 − x
∑a−1

j=0(1 − x2(1 − y))j

) ,

F211(x, y, k) = F221(x, y, k) = x2k(y − 1)k

k
∏

a=1

(1 − x2(1 − y))a−1

1 − x(1 − y) − (1 − x2(1 − y))a
,

F212(x, y, k) = xk

k
∏

a=1

1
1+(a−1)x2(1−y)

1 − x − x
∑a−1

j=1
1

1+jx2(1−y)

,

F213(x, y, k) =
xk
∏k−1

a=2
Aa−(a−1)x(1−y)

1−xAa

(1 − x)
[

1 − x − x
∑k−2

i=0

∏i

j=0 (1 − jx2(1 − y))
] , k > 2,

F312(x, y, k) =
xk
∏k−2

j=1(1 − jx2(1 − y))k−1−j

(1 − x)(1 − 2x)
∏k−2

a=1

(

1 − 2x − x
∑a

i=1

∏i

j=1 (1 − jx2(1 − y))
) ,

where

Aa =

∏a−2
j=1(1 − jx2(1 − y))

1 − 2x − x
∑a−3

i=1

∏i

j=1 (1 − jx2(1 − y))
.

The remaining cases, namely 121, 132, and 231, seem to be more difficult. We will use
more advanced algebraic techniques to derive both recurrences of the generating function
for these patterns as well as find an explicit formula of the generating function for the
total number of occurrences of these patterns.

Theorem 3.1. Let Gk = Gk(x, y) = F121(x, y, k). Then the generating function Gk

satisfies the recurrence relation

Gk = x
k−1
∑

a=1

k−1−a
∑

j=0

x2j(y − 1)j

∏j

i=0(1 − (k − a − i)x2(y − 1))
Gk−j

+
k
∑

a=1

x2(k−a)+1(y − 1)k−a

∏k−1−a

i=0 (1 − (k − a − i)x2(y − 1))
(Ga + Ga−1)

with the initial condition G1 = x
1−x

.
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Proof. Let Gk(as · · ·a1) = Gk(x, y|as · · ·a1) be the generating function for the number of
partitions π = π1 · · ·πn, πn+1−j = aj for all j = 1, 2, . . . , s with exactly k blocks according
to the number of occurrences of the subword pattern 121. Define Gk = Gk(x, y) =
F121(x, y, k). From the definitions, we have

Gk(k) = xGk + xGk−1,

Gk(a) =

k
∑

j=1

Gk(ja) = x

a
∑

j=1

Gk(j) +

k
∑

j=a+1

Gk(ja), 1 6 a 6 k − 1,

Gk(ja) =

j
∑

i=1,i6=a

Gk(ija) + Gk(aja) +

k
∑

i=j+1

Gk(ija)

= x2

j
∑

i=1

Gk(i) + x2(y − 1)Gk(a) + x

k
∑

i=j+1

Gk(ij), a + 1 6 j 6 k − 1,

Gk(ka) = x2(Gk − Gk(a)) + x2yGk(a) + x2(Gk−1 − Gk−1(a)) + x2yGk−1(a)

= x2Gk + x2(y − 1)Gk(a) + x2Gk−1 + x2(y − 1)Gk−1(a),

which is equivalent to

Gk(k) = xGk + xGk−1,

Gk(a) =

k
∑

j=1

Gk(ja) = x

a
∑

j=1

Gk(j) +

k
∑

j=a+1

Gk(ja), 1 6 a 6 k − 1,

Gk(ja) = x2

j
∑

i=1

Gk(i) + x2(y − 1)Gk(a) + x(Gk(j) − x

j
∑

i=1

Gk(i))

= xGk(j) + x2(y − 1)Gk(a), a + 1 6 j 6 k − 1,

Gk(ka) = x2Gk + x2(y − 1)Gk(a) + x2Gk−1 + x2(y − 1)Gk−1(a).

Thus, for all a = 1, 2, . . . , k − 1,

Gk(a) = x
a
∑

j=1

Gk(j) +
k
∑

j=a+1

Gk(ja)

= x
a
∑

j=1

Gk(j) +
k−1
∑

j=a+1

(xGk(j) + x2(y − 1)Gk(a))

+ x2Gk + x2(y − 1)Gk(a) + x2Gk−1 + x2(y − 1)Gk−1(a)

= x

k
∑

j=1

Gk(j) + (k − a)x2(y − 1)Gk(a) + x2(y − 1)Gk−1(a)

= xGk + (k − a)x2(y − 1)Gk(a) + x2(y − 1)Gk−1(a),

the electronic journal of combinatorics 17 (2010), #R19 16



with the initial condition Gk(k) = xGk + xGk−1. Then the generating function Gk(a)
satisfies the recurrence relation

Gk(a) =
x

1 − (k − a)x2(y − 1)
Gk +

x2(y − 1)

1 − (k − a)x2(y − 1)
Gk−1(a).

Iterating the above recurrence relation, we have

Gk(a) = x
k−1−a
∑

j=0

x2j(y − 1)j

∏j

i=0(1 − (k − a − i)x2(y − 1))
Gk−j

+
x2(k−a)+1(y − 1)k−a

∏k−1−a

i=0 (1 − (k − a − i)x2(y − 1))
(Ga + Ga−1),

for all a = 1, 2, . . . , k. Summing over all possible values of a, we get the requested
result.

Corollary 3.2. The generating function for the total number of occurrences of the subword

pattern 121 in all the partitions of [n] with exactly k blocks is given by

xk+1

(1 − x)(1 − 2x) · · · (1 − kx)

k
∑

j=2

(

j

2

)

x2 + 1 − jx

1 − jx
.

Proof. Theorem 3.1 for y = 1 gives G1(x, 1) = x
1−x

and

Gk(x, 1) = (k − 1)xGk(x, 1) + x(Gk(x, 1) + Gk−1(x, 1)),

which is equivalent to

Gk(x, 1) =
xk

∏k

j=1(1 − jx)
,

as it is well known.
Define G′

k(x) = d
dy

Gk(x, y) |y=1. Theorem 3.1 gives

G′
k(x) = x

k−1
∑

a=1

((k − a)x2Gk(x, 1) + G′
k(x)) + x

k−2
∑

a=1

x2Gk−1(x, 1)

+ x(G′
k(x) + G′

k−1(x)) + x3(Gk−1(x, 1) + Gk−2(x, 1)),

which is equivalent to

G′
k(x) =

x

1 − kx
G′

k−1(x) +
x3
(

k

2

)

Gk(x, 1) + x3(k − 1)Gk−1(x, 1) + x3Gk−2(x, 1)

1 − kx
.

Using

Gk(x, 1) =
xk

∏k

j=1(1 − jx)
,

noting the initial condition G′
1(x) = 0, and iterating the above recurrence relation, we

obtain the requested result.
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This yields the following explicit formula for the total number of occurrences of 121.

Corollary 3.3. The total number of occurrences of the subword pattern 121 in all of the

partitions of [n] with exactly k blocks is given by

(k − 1)Sn−1,k +
k
∑

j=2

(

j

2

)

fn,j,

where fn,j =
∑n−k

i=3 ji−3Sn−i,k.

An argument similar to the one used in the above proof of Theorem 3.1 yields the
following result.

Theorem 3.4. Let Gk(a) = F132(x, y|a) be the generating function for the number of

partitions π = π1 · · ·πn−1a with exactly k blocks according to the number occurrences of

the subword pattern 132, and let Gk =
∑k

a=1 Gk(a) = F132(x, y, k). Then the generating

function Gk(a) satisfies the recurrence relation

Gk(a) = xGk + x2(y − 1)(k − a)
a−1
∑

j=1

Gk(j) + x2(y − 1)
a−1
∑

j=1

Gk−1(j)

with the initial conditions Gk(k) = xGk + xGk−1, Gk(1) = xGk, G1 = G1(1) = x
1−x

,

G2(1) = x3

(1−x)(1−2x)
, G2(2) = x2

1−2x
and G2 = x2

(1−x)(1−2x)
.

Corollary 3.5. The generating function for the total number of occurrences of the subword

pattern 132 in all the partitions of [n] with exactly k blocks is given by

xk+2

(1 − x) · · · (1 − kx)

k−1
∑

j=1

(

j

2

)3−2(j+1)x
3

1 − (j + 1)x
.

Proof. Using the notation of Theorem 3.4, we define G′
k(x, a) = d

dy
Gk(x, y|a) |y=1 and

G′
k(x) = d

dy
Gk(x, y) |y=1 and get

G′
k(a) = xG′

k + x2(k − a)
a−1
∑

j=1

Gk(x, 1, j) + x2
a−1
∑

j=1

Gk−1(x, 1, j),

for all a = 1, 2, . . . , k − 1. Using the facts that Gk(x, 1|a) = xGk(x, 1) and Gk(x, 1) =
xk

(1−x)···(1−kx)
, we have

G′
k(a) = xG′

k+x3(k−a)(a−1)Gk(x, 1)+x3(a−1)Gk−1(x, 1) = xG′
k+

xk+2(a − 1)(1 − ax)

(1 − x) · · · (1 − kx)
.

Summing over all a = 1, 2, . . . , k − 1, we get

G′
k = kxG′

k + xG′
k−1 +

xk+2

(1 − x) · · · (1 − kx)

(

k − 1

2

)

3 − 2kx

3
,
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which is equivalent to

G′
k =

x

1 − kx
G′

k−1 +
xk+2

(1 − x) · · · (1 − kx)2

(

k − 1

2

)

3 − 2kx

3
.

Iterating the above recurrence relation using the initial condition G′
1(x) = 0, we obtain

the requested result.

Collecting the coefficients of the generating function in Corollary 3.5 yields the follow-
ing explicit formula for the total number of occurrences of 132.

Corollary 3.6. The total number of occurrences of the subword pattern 132 in all of the

partitions of [n] with exactly k blocks is given by

(

k

3

)

Sn−2,k +

k
∑

j=3

(

j

3

)

fn,j,

where fn,j =
∑n−k

i=3 ji−3Sn−i,k.

Similar arguments also apply to the pattern 231.

Theorem 3.7. Let Gk(a) = F231(x, y|a) be the generating function for the number of

partitions π = π1 · · ·πn−1a with exactly k blocks according to the number occurrences of

the subword pattern 231, and let Gk =
∑k

a=1 Gk(a) = F231(x, y, k). Then the generating

function Gk(a) satisfies the recurrence relation

Gk(a) = xGk + x2(y − 1)
k
∑

j=a+1

(k − j)Gk(j) + x2(y − 1)
k−1
∑

j=a+1

Gk−1(j)

with the initial conditions Gk(k) = xGk + xGk−1, Gk(k − 1) = xGk, G1 = G1(1) = x
1−x

,

G2(1) = x3

(1−x)(1−2x)
, G2(2) = x2

1−2x
and G2 = x2

(1−x)(1−2x)
.

Corollary 3.8. The generating function for the total number of occurrences of the subword

pattern 231 in all the partitions of [n] with exactly k blocks is given by

xk+1

(1 − x) · · · (1 − kx)

k
∑

j=3

(j − 2)(4j(j − 1)x2 + 3(1 − 3j)x + 6)

6(1 − jx)
.

Proof. Using the notation of Theorem 3.7, we define G′
k(x, a) = d

dy
Gk(x, y|a) |y=1 and

G′
k(x) = d

dy
Gk(x, y) |y=1 and get

G′
k(a) = xG′

k + x2

k
∑

j=a+1

(k − j)Gk(x, 1, j) + x2

k−1
∑

j=a+1

Gk−1(x, 1, j),
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for all a = 1, 2, . . . , k − 1. Using the facts that Gk(x, 1|a) = xGk(x, 1) and Gk(x, 1) =
xk

(1−x)···(1−kx)
, we have

G′
k(a) = xG′

k +

(

k−a

2

)

xk+3

(1 − x) · · · (1 − kx)
+

(k − 1 − a)xk+2

(1 − x) · · · (1 − (k−1)x)
+

xk+1

(1 − x) · · · (1 − (k−2)x)
.

Summing over all a = 1, 2, . . . , k − 2 using the initial conditions G′
k(k) = xG′

k + xG′
k−1

and G′
k(k − 1) = xG′

k, we have

G′
k =

x

1 − kx
G′

k−1 +
xk+1

(1 − x) · · · (1 − kx)

(k − 2)(4k(k − 1)x2 + 3(1 − 3k)x + 6)

6(1 − kx)
.

Iterating the above recurrence relation using the initial condition G′
2(x) = 0, we obtain

the requested result.

Equivalently, we also have the following explicit formula.

Corollary 3.9. The total number of occurrences of the subword pattern 231 in all of the

partitions of [n] with exactly k blocks is given by

2

(

k

3

)

Sn−2,k +

(

k − 1

2

)

Sn−2,k−1 +
k
∑

j=3

(

j

3

)

fn,j,

where fn,j =
∑n−k

i=3 ji−3Sn−i,k.

Combinatorial proofs may be given for Corollaries 3.3, 3.6, and 3.9 similar to those
given in the second section, the details of which we leave to the interested reader. We
were unable to find an explicit formula for the generating function in the cases 121, 132,
and 231, which we leave as open questions. The table below summarizes our results.

τ Theorem τ Theorem τ Theorem

111 2.1 132 3.4 221 2.7
112 2.3 211 2.7 231 3.7
121 3.1 212 2.9 312 2.13
122 2.3 213 2.11 321 [8]
123 [8]

Table 1: Three letter subword patterns.
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