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Abstract

The distinguishing number of a graph G is the smallest positive integer r such

that G has a labeling of its vertices with r labels for which there is no non-trivial

automorphism of G preserving these labels.

In early work, Michael Albertson and Karen Collins computed the distinguishing

number for various finite graphs, and more recently Wilfried Imrich, Sandi Klavžar

and Vladimir Trofimov computed the distinguishing number of some infinite graphs,

showing in particular that the Random Graph has distinguishing number 2.

We compute the distinguishing number of various other finite and countable

homogeneous structures, including undirected and directed graphs, and posets. We

show that this number is in most cases two or infinite, and besides a few exceptions

conjecture that this is so for all primitive homogeneous countable structures.

∗Supported by NSERC of Canada Grant # 690404
†The author would like to thank the support of the Department of Mathematics & Statistics Postdoc-

toral Program at the University of Calgary
‡Supported by NSERC of Canada Grant # 691325

the electronic journal of combinatorics 17 (2010), #R20 1



1 Introduction

The distinguishing number of a graph G was introduced in [1] by Michael Albertson and
Karen Collins. It is the smallest positive integer r such that G has a labeling of its
vertices into r labels for which there are no non-trivial automorphism of G preserving
these labels. The notion is a generalization of an older problem by Frank Rubin, asking
(under different terminology) for the distinguishing number of the (undirected) n-cycle
Cn. It is interesting to observe that the distinguishing number of Cn is 3 for n = 3, 4, 5,
and 2 for all other integer values of n > 1. From these early days much research has been
done on the distinguishing number of finite graphs. Of more interest to us here is the
recent work of Wilfried Imrich, Sandi Klavžar and Vladimir Trofimov in [9] where they
computed the distinguishing number of some infinite graphs, showing in particular that
the Random Graph has distinguishing number 2.

In this paper we further generalize the notion to relational structures and compute
the distinguishing number of many finite and countable homogeneous structures, includ-
ing undirected and directed graphs, making use of the classifications obtained by various
authors. We find that the distinguishing number is “generally” either 2 or ω, and con-
jecture that this is the case for all countable homogeneous relational structures whose
automorphism groups are primitive.

In the remainder of this section we review the standard but necessary notation and
background results.

Let N = ω \{0} be the set of positive integers and n ∈ N. An n-ary relation on a set A

is a set of n-tuples R ⊆ An. A signature is a function µ : I → N from an index set I into
N, which we often write as an indexed sequence µ = (µi : i ∈ I). A relational structure
with signature µ is a pair A := (A,RA) where RA := (RA

i )i∈I is a set of relations on the
domain A, each relation RA

i having arity µi. An embedding from a structure A := (A,RA)
into another structure B := (B,RB) of the same signature µ is a one-one map f : A → B

such that for each i ∈ I and a ∈ Aµi , a ∈ RA

i iff f(a) ∈ RB

i . An isomorphism is a
surjective embedding, and an automorphism is an isomorphism from a structure to itself.

If A is clear from the context then we will write R instead of RA and Ri instead of
RA

i . We also write A := (A, R) if there is only one relation R.
Let A = (A,R) be a relational structure with automorphism group G := Aut(A). The

partition B = (Bα : α ∈ κ) of A distinguishes the relational structure A if

G↓B := {g ∈ G : ∀α ∈ κ g(Bα) = Bα}

contains as its only element the identity automorphism of A. Here and elsewhere when
B is a subset of the domain of a function g, then g(B) means the setwise mapping of its
elements {g(b) : b ∈ B}. The distinguishing number of A, written D(A), is the smallest
cardinality of the set of blocks of a distinguishing partition of A.
This is more accurately a property of the group G acting on the set A, and for that reason
we will often refer to this number as the distinguishing number of G acting on A.

The skeleton of a structure A is the set of finite induced substructures of A and the
age of A consists of all relational structures isomorphic to an element of the skeleton of
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A. The boundary of A consists of finite relational structures with the same signature as
A which are not in the age of A but for which every strictly smaller induced substructure
is in the age of A.

A local isomorphism of A is an isomorphism between two elements of the skeleton of
A. The relational structure A = (A,R) is homogeneous if every local isomorphism of A

has an extension to an automorphism of A.

Definition 1.1. A class A of structures has amalgamation if for any three elements
B0 and B1 and C of A and all embeddings f0 of C into B0 and f1 of C into B1 there
exists a structure D in A and embeddings g0 of B0 into D and g1 of B1 into D so that
g0 ◦ f0 = g1 ◦ f1.

The relational structure A = (A,R) has amalgamation if its age has amalgamation.

A powerful characterization of countable homogeneous structures was established by
Fräıssé.

Theorem 1.2. [4, 5] A countable structure is homogeneous if and only if its age has
amalgamation.

Moreover a countable relational structure A = (A,R) is homogeneous if and only if
it satisfies the following mapping extension property: If B = (B,R) is an element of the
age of A for which the substructure of A induced on A∩B is equal to the substructure of
B induced on A∩B, then there exists an embedding of B into A which is the identity on
A ∩ B.

Finally, given a class A of finite structures closed under isomorphism, substructures,
joint embeddings (any two members of A embed in a third), and which has amalgamation,
then there is a countable homogeneous structure whose age is A.

A stronger notion is that of free amalgamation. Before we define this notion, we need
the concept of adjacent elements in a relational structure.
Given a relational structure A = (A,R), the elements a, b ∈ A are called adjacent if there
exists a sequence (s0, s1, s2, . . . , sn−1) of elements of A with si = a and sj = b for some
i 6= j ∈ n and a relation R ∈ R so that R(s0, s1, s2, . . . , sn−1). A relational structure is
complete if a and b are adjacent for all distinct elements a and b of the structure.

Definition 1.3. Let A = (A,R) be a relational structure and B0 = (B0,R), B1 = (B1,R)
two elements in the age of A. The relational structure D = (D,R) is a free amalgam of
B0 and B1 if:

1. D = B0 ∪ B1.

2. The substructure on B0 induced by D is B0.

3. The substructure on B1 induced by D is B1.

4. If a ∈ B0 \ B1 and b ∈ B1 \ B0 then a and b are not adjacent in D.
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The relational structure A has free amalgamation if every two elements of its age have a
free amalgam.

Note that if a relational structure has free amalgamation then it has amalgamation.
The following, due to N. Sauer, characterizes countable homogeneous structures with

free amalgamation as those whose boundary consists of finite complete structures.

Theorem 1.4. [11] If C is a countable set of finite complete relational structures having
the same signature then there exists a unique countable homogeneous structure A whose
boundary is C, and has free amalgamation.

Conversely, if A is a countable homogeneous structure with free amalgamation, then
the boundary of A consists of finite complete structures.

The article is organized as follows. We will see that surprisingly many homogeneous
structures have distinguishing number 2, and the main tool in demonstrating these results
is developed in section 2. We use it immediately in section 3 on countable homogeneous
structures with free amalgamation and minimal arity two. In section 4, we compute the
distinguishing number of all countable homogeneous undirected graphs, and we do the
same in section 5 for all countable homogeneous directed graphs.

2 Permutation groups and fixing types

In this section we develop a powerful sufficient condition for a permutation group acting
on a set to have distinguishing number 2, which we will use on a variety of homogeneous
relational structures in subsequent sections.

Let G be a permutation group acting on the set A. For F ⊆ A, we write G{F} :=
{g ∈ G : g(F ) = F} and G(F ) := {g ∈ G : ∀x ∈ F g(x) = x}. We define equivalence

relations a
{F}
∼ b if there exists g ∈ G{F} with g(a) = b, and a

(F )
∼ b if there is g ∈ G(F )

with g(a) = b. We write ¬(a
(F )
∼ b) if it is not the case that a

(F )
∼ b. Note that if F1 ⊆ F2

and ¬(a
(F1)
∼ b) then ¬(a

(F2)
∼ b).

We call the pair (F, T ) a type (on G), if F ⊆ A is finite and T is a non empty equivalence

class of
(F )
∼ disjoint from F . The pair (F, T ) is a set type if F ⊆ A is finite and T is a non

empty equivalence class of
{F}
∼ disjoint from F . The pair (F, T ) is an extended set type if

there exists a set T of subsets of A so that for every S ∈ T the pair (F, S) is a set type
and T =

⋃
S∈T S.

Note that if (F, T ) is a type then (g(F ), g(T )) is a type for all g ∈ G, and if (F, T ) is a
set type then (g(F ), g(T )) is a set type for all g ∈ G. Hence if (F, T ) is an extended set
type then (g(F ), g(T )) is an extended set type for all g ∈ G.

Lemma 2.1. Let (F, T ) be a set type. Then g(T ) = T for every g ∈ G{F}. If h and k

are elements of G with h(F ) = k(F ) then h(T ) = k(T ).
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Proof. Let g ∈ G{F}. Then clearly g(T ) ⊆ T and since g−1 ∈ G{F}, then (g−1)(T ) ⊆ T

as well implying that g(T ) = T . For h, k ∈ G with h(F ) = k(F ), then k−1 ◦ h ∈ G{F}

implying that (k−1)
(
h(T )

)
= T and therefore h(T ) = k(T ).

Corollary 2.2. Let (F, T ) be an extended set type. Then g(T ) = T for every g ∈ G{F}.
If h and k are elements of G with h(F ) = k(F ) then h(T ) = k(T ).

Definition 2.3. An extended set type (F, T ) has the cover property if for every finite
subset H of G \ G{F} the set

T \
⋃

h∈H

h(T )

is infinite.

Note that if a set type (F, T ) has the cover property then (g(F ), g(T )) has the cover
property for every g ∈ G.

Lemma 2.4. Let (F, T ) be an extended set type with the cover property. Let B be a finite
subset of A with F 6⊆ B. Then the set

T \
⋃

g∈G
g(F )⊆B

g(T )

is infinite.

Proof. For g ∈ G let g ↾ F be the restriction of g to F . The set K of functions g ↾ F with
g(F ) ⊆ B is finite. For every function k ∈ K let k be an extension of k to an element of
G. Then H = {k : k ∈ K} is finite, and it follows from Corollary 2.2 that:

⋃

g∈G
g(F )⊆B

g(T ) =
⋃

k∈H

k(T ).

But the cover property implies that the set

T \
⋃

k∈H

k(T )

is infinite, completing the proof.

Corollary 2.5. Let (F, T ) be an extended set type which has the cover property. Let B

be a finite subset of A and h ∈ G such that h(F ) 6⊆ B. Then the set

h(T ) \
⋃

g∈G
g(F )⊆B

g(T )

is infinite.
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Proof. The pair (h(F ), h(T )) is again an extended set type with the cover property. Now
observe that g(F ) ⊆ B if and only if (g ◦ h−1)

(
h(F )

)
⊆ B.

The existence of the following special kind of extended set type will suffice to guarantee
a small distinguishing number.

Definition 2.6. The pair (F, T ) is a fixing type for the permutation group G acting on
A if there is a partition A = (Ai : i < 2) such that:

1. For every element g ∈ G and finite S ⊆ A0 such that g(S) ⊆ A0, there is a
g0 ∈ G0 = G{A0} such that g ↾ S = g0 ↾ S.

2. (F, T ) is an extended set type of G0 acting on A0, and (F, T ) has the cover property.

3. For all b ∈ T there exists a ∈ F and g ∈ G (equivalently g ∈ G0) with g(F ) =
(F \ {a}) ∪ {b}.

4. ¬(a
(T )
∼ b) for all a, b ∈ A \ (T ∪ F ) with a 6= b.

5. ¬(a
(A\F )
∼ b) for all a, b ∈ F with a 6= b.

Note that if (F, T ) is a fixing type and g ∈ G0, then (g(F ), g(T )) is again a fixing type
for the same partition. Note also that if F is a singleton as will often be the case in the
present paper, then item 5 is vacuous. We simply write (a, T ) when F is the singleton
{a}. Item 3 is guaranteed by a transitive group action such as the automorphism group
of a homogeneous relational structure as will also be the case here. Moreover almost all
applications will only require a trivial partition A = (Ai : i < 2) where A = A0 (A1 = ∅),
in which case item 1 is trivially true. All this to say that often only items 2 and 4 need
to be verified. Nevertheless the full generality will be used in a few crucial cases.

Example 2.7. The Rado graph is the amalgamation of all finite undirected graphs. The
Rado graph is therefore homogeneous by Theorem 1.2 and is often called the random graph
(it can be described by randomly selecting edges between pairs of vertices). If V denotes
the set of vertices and v ∈ V , let T be the set of vertices which are adjacent to v. Then
(v, T ) is a fixing type of the automorphism group of the Rado graph acting on V using the
trivial partition V = (V0).

Example 2.8. Consider the amalgamation of all finite three uniform hypergraphs, called
the universal three uniform hypergraph. Let V be its set of vertices, {u, v, w} be a hyperedge
of the hypergraph, and T be the set of elements x ∈ V \ {u, v, w} for which {x, u, v},
{x, v, w} and {x, u, w} are all hyperedges. Then ({u, v, w}, T ) is a fixing type of the
automorphism group of the universal three uniform hypergraph acting on V , again using
the trivial partition V = (V0).

We now come to the main result of this section, which will allow us to show that many
structures have distinguishing number two.
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Theorem 2.9. Let G be a permutation group acting on the countable set A. If there
exists a fixing type for the action of G on A then the distinguishing number of G acting
on A is two.

Proof. Let (F, T ) be a fixing type for the action of G on A with corresponding partition
A = (Ai : i < 2). Let (bi : i ∈ ω) be an ω-enumeration of T and for every i ∈ ω, use item
3 of Definition 2.6 to produce ai ∈ F and gi ∈ G such that gi(F ) = (F \{ai})∪{bi} := Fi.
By item 1, we may assume that gi ∈ G0, so let Ti := gi(T ) ⊆ A0. It follows that (Fi, Ti)
is a fixing type for every i ∈ ω and the same partition of A.
We construct a sequence (Si : i ∈ ω) of finite subsets of A0 so that for every i ∈ ω:

a. Si ∩ T = ∅.

b. Si ⊆ Ti.

c. |Si| = 1 +
∑

j∈i |Sj|.

d. Si ∩ g(T ) = ∅ for every g ∈ G such that
g(F ) ⊆ Ci := F ∪ {bj : j ∈ i} ∪

⋃
j<i Sj .

Notice that item d. implies that Sj ∩ Si = ∅ for all j < i since Sj ⊆ Tj = gj(T ) and
gj(F ) ⊆ Ci.
The construction proceeds by induction. Assume Si−1 has been constructed. Now gi(F ) 6⊆
Ci since bi belongs to the former and not the latter. Since (F, T ) is an extended set type
of G0 acting on A0, and (F, T ) has the cover property, Corollary 2.5 therefore shows that

Ti \
⋃

h0∈G0

h0(F )⊆Ci

h0(T )

is infinite. However if g ∈ G is such that g(F ) ⊆ Ci, then consider any b = g(a) ∈
g(T )∩A0. By item 1 of Definition 2.6, there is h0 ∈ G0 such that h0(F ) = g(F ) ⊆ Ci and
h0(a) = g(a) = b. Therefore b ∈ h0(T ), i.e. g(T ) ∩ A0 ⊆ h0(T ). Hence we conclude that

Ti \
⋃

g∈G
g(F )⊆Ci

g(T )

is infinite, allowing us to obtain Si as desired. This completes the construction.
Let S =

⋃
i∈ω Si and B = (B0, B1) be the partition of A with B0 := F ∪ T ∪ S ⊆ A0,

and fix g ∈ G↓ B. It suffices to show that g is the identity, and this will result from the
following four claims.

Claim 1. g(F ) = F .

Proof. We begin by the following.

Subclaim 1. T \ g(T ) is finite.
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Proof. For any h ∈ G↓B, h(F ) is a subset of B0 ⊆ A0 and hence a subset of Ci for some
i ∈ ω. But this means by item d. that Sj ∩ h(T ) = ∅ for all j > i. Since h(B0) = B0, this
means h(T ) ⊆ F ∪ T ∪

⋃
k<i Sk, and therefore h(T ) \ T is finite.

Since g−1 ∈ G↓B, we conclude that g−1(T )\T is finite, and therefore T \g(T ) is finite.

Assume now for a contradiction that g(F ) 6= F . Then by item 1 of Definition 2.6 there
is g0 ∈ G0 such that g0(F ) = g(F ) 6= F .

Subclaim 2. g(T ) ⊆ g0(T ).

Proof. Let b ∈ T . Then c = g(b) ∈ B0 ⊆ A0, and by item 1 of Definition 2.6, there is
g1 ∈ G0 such that g1(F ) = g0(F ) and g1(b) = g(b) = c. But then g1(T ) = g0(T ) by
Corollary 2.2, so c = g(b) = g1(b) ∈ g0(T ).

But T \ g0(T ) is infinite since (F, T ) is an extended set type of G0 acting on A0 and
has the cover property, and therefore T \ g(T ) is infinite by Subclaim 2. This contradicts
Subclaim 1 and completes the proof of Claim 1.

Claim 2. g(x) = x for every element x ∈ T .

Proof. We first verify that g(T ) = T . Indeed let b = g(a) for some a ∈ T . Since b ∈ A0,
then by item 1 of Definition 2.6 choose g0 ∈ G0 such that g0(F ) = g(F ) = F and
g0(a) = b = g(a). But g0(T ) = T by Corollary 2.2, so b ∈ T , and therefore g(T ) ⊆ T .
Similarly g−1(T ) ⊆ T since g−1(F ) = F as well, and therefore T ⊆ g(T ).

Now if g(bi) = bk with i > k then g ◦ gi(F ) = g(Fi) ⊆ F ∪ {bk} ⊆ Ci. It follows from
item d. that g(Ti) ∩ Sj = ∅ for all j > i, and hence g(Si) ∩ Sj = ∅ for all j > i. On
the other hand g(S) = S because g(T ∪ F ) = T ∪ F as proved above. We conclude that
g(Si) ⊆

⋃
j∈i Sj , violating item c.

Hence g induces an 6-order preserving map of ω onto ω which implies g ↾ T = idT .

Claim 3. g(x) = x for every element x ∈ A \ (T ∪ F ).

Proof. Follows from item 4 of Definition 2.6.

Claim 4. g(x) = x for every element x ∈ F .

Proof. Follows from item 5 of Definition 2.6.

This completes the proof of Theorem 2.9.
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3 Homogeneous relational structure with free amal-

gamation

Several countable homogeneous structure do have free amalgamation. These include the
Rado Graph and universal three uniform hypergraphs which we have seen already, but
also several other homogeneous structures including the universal Kn-free homogeneous
graphs. For these structures, the distinguishing number is as low as it can be.

Theorem 3.1. Let A = (A,R) be a countable homogeneous structure with signature µ,
minimal arity at least two, and having free amalgamation. Then the distinguishing number
of A is two.

Proof. Let G = Aut(A). We have to prove that the distinguishing number of the permu-
tation group G acting on the countable set A is two.

Let n ∈ ω be the smallest arity of a relation in R and let P ⊆ R be the set of relations
in R having arity n. Let F ⊆ A have cardinality n − 1 and let T be the set of all b ∈ A

for which there exists a sequence ~s with entries in F ∪ {b} and R ∈ P with R(~s).
The pair (F, T ) is an extended set type, and it follows from Theorem 2.9 that if (F, T ) is
a fixing type for the permutation group G acting on A then the distinguishing number of
A is two.

We verify the items of Definition 2.6 using the trivial partition A = (A0).
Item 2: Let H be a finite subset of G so that F 6= h(F ) for all h ∈ H . Let

B :=

(⋃

h∈H

h(F )

)
\ F and B the substructure of A induced by F ∪ B.

Let x be an element not in A and R ∈ P and X = (F ∪ {x},R) be a relational structure
with signature µ in which R(~s) for some tuple ~s with entries in F ∪ {x} so that X is an
element in the age of A. Let C be the free amalgam of X with B. It follows from the
mapping extension property of A that there exists a type (F ∪B, U) so that u ∈ T \h(T )
for every element u ∈ U and h ∈ H . Item 2 follows because U is infinite.

Item 3: Because n > 2 there exists an element a ∈ F . The sets F and (F \ {a}) ∪ {b}
have cardinality n − 1 and the minimal cardinality of A is n. Hence every bijection of
F to (F \ {a}) ∪ {b} is a local isomorphism, and by homogeneity extends top a full
automorphism of A.

Item 4: Let a, b ∈ A \ (T ∪F ) with a 6= b. Let R ∈ P. Let E with |E| = n− 1 be a set of
elements not in A and X = (F ∪E,R) a relational structure in the age of A so that there
is an embedding of X into A which fixes F and maps E into T . Let Y = (E∪{a},R) be a
relational structure in the age of A so that R(~s) for some tuple ~s with entries in E ∪ {a}.
Let B be the free amalgam of X and Y. Note that the restriction of B to F ∪{a} is equal
to the restriction of A to F ∪ {a}, for otherwise a ∈ T .
Now let Z = (F ∪ {a, b},R) be the substructure of A induced by F ∪ {a, b} and let C be
the free amalgam of Z and B. The substructure of C induced by F ∪{a, b} is again equal
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to the substructure of A induced by F ∪ {a, b}. Hence there exists an embedding f of C

into A which fixes F ∪ {a, b}. It follows from the construction of C that f(E) ⊆ T . Then

¬(a
(T )
∼ b) because ¬(a

(f(E))
∼ b).

Item 5: Let a 6= b ∈ F and E be a set of elements not in A with |E| = n − 1. Let
X = (E ∪ {a},R) be an element in the age of A so that R(~s) for some R ∈ P and some
tuple ~s of elements in E ∪ {a}. Let Y = ({a, b},R) be the substructure of A induced by
F . Let B be the free amalgam of X and Y. There exists an embedding f of B into A

which fixes F . Then ¬(a
(A\F )
∼ b) because ¬(a

(f(E))
∼ b).

4 Homogeneous undirected graphs

4.1 Finite homogeneous undirected graphs

The finite homogeneous graphs were classified by Tony Gardiner [G]. Moreover the distin-
guishing number of finite graphs in general has been extensively studied, see for example
the work of Imrich and Klavžar in [8] for references. In particular the five cycle is homo-
geneous and D(C5) = 3 as we have already mentioned. If Kn denotes the complete graph
on n vertices, then clearly D(Kn) = D(Kc

n) = n.
More interestingly we have the following regarding the family of finite homogeneous

graphs m · Kn consisting of m copies of Kn for any m, n ∈ N.

Theorem 4.1. For m, n ∈ N, then D(m · Kn) = D((m · Kn)c) is the least k ∈ N such

that

(
k

n

)
> m.

Proof. The distinguishing number of a graph equals that of its complement, so we con-
centrate on m · Kn.
Each copy of Kn requires n distinct labels, and any two copies of Kn must receive different
sets of n distinct labels to avoid a nontrivial automorphism. It is clearly a sufficient
condition, so we must therefore find m different sets of n distinct labels.

The last finite homogeneous undirected graph is the line graph of K3,3, which is iso-
morphic to its complement. Its distinguishing number is proved in [8] to be 3, but for
completeness we supply a direct proof.

Theorem 4.2. [8] D(L(K3,3)) = 3.

Proof. One must first show that D(L(K3,3)) > 2. However one can observe that a fi-
nite homogeneous structure has distinguishing number 2 exactly if it can be partitioned
into two rigid (no nontrivial automorphisms) induced substructures. But L(K3,3) has 9
vertices, and one verifies that there are no rigid graphs with at most 4 (even 5) vertices.

A distinguishing 3-labeling of L(K3,3) can be obtained as follows. Let K3,3 be the
complete bipartite graph for the two sets of vertices {a, b, c} and {x, y, z}. Then label the
edge (a, x) with the first label, the two edges (a, y) and (b, z) with the second label, and

the electronic journal of combinatorics 17 (2010), #R20 10



all other edges with a third label. Then one verifies that only the identity automorphism
of L(K3,3) preserves these labels.

4.2 Countable homogeneous undirected graphs

The countably infinite homogeneous undirected graphs have been classified by Alistair
Lachlan and Robert Woodrow in [10].

The first class consists of graphs of the form m·Kn for m+n = ω and their complement,
all easily seen to have distinguishing number ω. We have already seen that, proved in
[9], the distinguishing number of the Rado graph is 2. Then for each n > 3 we find
the generic graph which is the amalgamation of all finite graphs omitting the n-clique
Kn. These graphs have free amalgamation by the characterization of Theorem 1.4, and
therefore all of them and their complements have distinguishing number two by Theorem
3.1. For n = 2, the generic graph omitting K2 is simply an infinite antichain I∞ and has,
like its complement Kω, distinguishing number ω.

5 Homogeneous directed graphs

We follow Gregory Cherlin’s catalog of homogeneous directed graph, see [2] and [3], and
in each case compute their distinguishing number.

5.1 Deficient graphs

The deficient structures are those omitting a 2-type, meaning a structure on 2 elements.
In the case of graphs they are the n-antichain In omitting an edge, clearly having distin-
guishing number n respectively, and the tournaments omitting I2.

The four remaining homogeneous tournaments (beside I1) are as follows (see [3]). The

first is the oriented 3-cycle
→

C3, which was already seen to have distinguishing number
2. Next is the rational numbers Q viewed as a directed graph with edges following the
standard ordering, which can easily seen to have distinguishing number ω. Indeed consider
a labeling of Q into finitely many labels. Then we can find an interval I either contained
in one of the labels, or else on which each label is either dense or empty. Then a back and
forth argument, leaving Q \ I intact but moving I, produces a non-trivial automorphism.

In preparation to handle the last two homogeneous tournaments, we say (following
Cherlin [3]) that a vertex a dominates a vertex b if the edge between them is oriented
toward b, and write ′a and a′ for the sets of vertices dominating and dominated by a,
respectively. We shall also later use a⊥ to denote the set of vertices not connected to a.
A tournament is called a local order if for every vertex a, the induced tournaments on a′

and ′a are linear orders. The class of finite local orders is an amalgamation class and the
corresponding homogeneous tournament is called the dense local order, written Q∗.

We can now prove the following.

Theorem 5.1. D(Q∗) = ω.
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Proof. Q∗ can be realized by partitioning Q into two disjoint dense sets Q0 and Q1, and
reversing the direction of edges from one of these sets to the other.

Consider now a labeling of Q∗ into finitely many labels. Then one can find an interval I

of the rationals Q such that restricted to each Qi it is either contained in one of the labels,
or else on which each label is either dense or empty. Then a back and forth argument,
leaving Q \ I intact but moving I, produces a non-trivial automorphism.

The last countable homogeneous tournament is the universal tournament T∞, corre-
sponding to the amalgamation of all finite tournaments.

Theorem 5.2. D(T∞) = 2.

Proof. Let G be the automorphism group of T∞ = (T∞, E). Fix a ∈ T∞ and let T = a′

be the set of all elements of T∞ dominated by a. We will show that (a, T ) is a fixing type
of G acting on T∞ with trivial partition. As noted after after Definition 2.6, only items
2 and 4 need attention in this case.

Item 2: (a, T ) is easily seen to be an extended set type. For the cover property, we have
to prove that if S is a finite subset of T∞ \ {a} then there are infinitely many elements
b ∈ T dominating each s ∈ S.

Let x be an element not in T∞ and X = (S ∪ {a, x}, E) the tournament so that X

restricted to S∪{a} is equal to T∞ restricted to S∪{a}, and x dominates every s ∈ S, and
a dominates x. By the mapping extension property, there are infinitely many embeddings
of X into T∞ which fix S.

Item 4: Let b, c ∈ T∞ \ (T ∪ {a}) with b 6= c. Both b and c must dominate a. Let x be an
element not in T∞ and X = ({a, b, c, x}, E) the tournament so that the restriction of X to
{a, b, c} is equal to the restriction of T∞ to {a, b, c}, a and b dominate x and x dominates
c. By the mapping extension property, there is an embedding of X which fixes {a, b, c}

and maps x into T . Then ¬(b
(T )
∼ c).

Item 5: This condition is vacuous since F has only one element.

5.2 Imprimitive graphs

A graph (and more generally a relational structure) is imprimitive if it carries a non-
trivial 0-definable equivalence relation, that is an equivalence relation definable from a
formula in the given relation language without extra distinguished parameters. In the
homogeneous case, such an equivalence relation must be the union of equality with either
incomparability relation or its complement. A graph is called primitive otherwise.

The first occurrence of these kinds of imprimitive graphs happens when the graph
is the wreath product H1[H2] of two graphs H1 and H2 having no 2-types in common,
obtained by replacing each vertex of H1 by a copy of H2. In this case they are of the form
H [In] or In[H ] for 1 < n < ∞ and H one of the four non-degenerate tournaments listed
above.
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It is not hard to compute that D(H [In]) is the least integer k such that

(
k

n

)
> D(H).

In particular D(
→

C3 [In]) = D(T∞[In]) = n + 1 for n > 1, and D(Q[In]) = D(Q∗[In]) = ω.

Similarly D(In[
→

C3])=D(In[T∞]) is the least integer k such that 2

(
k

2

)
> n. Clearly

D(In[Q]) = D(In[Q∗]) = ω.
Another family of homogeneous graphs is obtained from a tournament H as follows.

First consider the new directed graph H+ = H ∪ {v} where H ⊆ v′. Then form Ĥ as the
union of two copies H+

1 and H+
2 of H+, and for u1 ∈ H+

1 and v2 ∈ H+
2 corresponding to

u, v ∈ H+, put an edge from u1 to v2 exactly if there is one from v to u in H+ (reversed).

Clearly Î1 =
→

C4, the directed 4-cycle, and therefore D(Î1) = 2 (recall the undirected 4-

cycle C4 has distinguishing number 3). One can also show that D(
→̂

C3) = 2. Indeed, label

the vertices of each of the two copies of
→

C3 in the same fashion with the same two labels,
then label the two new vertices differently but again using the same two labels. Then
these new vertices are fixed since they are the only ones not related (perpendicular) to
vertices of a different label. From this one verifies that all other vertices are also fixed.

For the infinite graphs Q̂ and T̂∞, the extra vertices are not really needed. An argu-
ment similar to that of Theorem 5.1 shows that D(Q̂) = ω. It is interesting that Q̂∗ itself
is not homogeneous (see [3]).

Finally, the proof of Theorem 5.2 can be adapted to show that D(T̂∞) = 2.

Theorem 5.3. D(T̂∞) = 2.

Proof. Let T̂∞ be the domain of T̂∞. The fixing type used in the proof of Theorem 5.2
shows that it is a fixing type (a, T ) for G acting on T̂∞ using the partition T̂∞ = (A0, A1),
where A0 is a copy of T∞.

Indeed the homogeneity of T∞ shows that it satisfies item 1. Item 2 follows from the
proof of Theorem 5.2, and items 3 and 5 are immediate.

Item 4 follows by considering the necessary cases. Of course the cases where b, c ∈ A0

follow from the proof of Theorem 5.2. As an example consider b1, c1 ∈ A1, both dominating
a. Then by construction they correspond to b0, c0 ∈ A0, both dominated by a (and
therefore in T ). Let x be an element not in T∞ and X = ({a, b0, c0, x}, R) the tournament
so that the restriction of X to {a, b0, c0} is equal to the restriction of T∞ to {a, b0, c0},
a and b0 dominate x and x dominates c′. By the mapping extension property, there is

an embedding of X which fixes {a, b0, c0} and maps x into T . Then ¬(b0
(T )
∼ c0), and it

follows that ¬(b
(T )
∼ c). The other cases are similar.

Call two vertices a and b perpendicular, written ⊥, if they have no edges between
them. The graph n ∗ I∞ for n 6 ω is defined as the generic directed graph on which ⊥ is
an equivalence relation with n classes.

Theorem 5.4. D(n ∗ I∞) = ω if n = 1, and 2 for n > 2.
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Proof. Clearly D(I∞) = ω. Now for n > 2, pick any vertex a and let T = a′. Then one
can verify that (a, T ) is a fixing type. It is interesting to verify item 4 of Definition 2.6
that one must in some cases use n > 3 to find a suitable vertex of T . For n = 2, pick any
vertex a and b ∈′ a, and let T = a′ ∪ b′. Then one can verify that ({a, b}, T ) is a fixing
type.

Finally there is a variant, called the semigeneric graph which we write as D(n
s
∗ I∞),

for which the following additional constraint is imposed: for any pairs of two vertices A1

and two vertices A2 taken from distinct ⊥-classes, the number of edges from A1 to A2 is
even. Interestingly we get the following:

Theorem 5.5. D(n
s
∗ I∞) = ω if n = 1, 2, and 2 for n > 3.

Proof. Again easily D(I∞) = ω, but the case n = 2 is already interesting. For this
consider any labeling and vertex a. Given any two vertices x and y in ′a, then the parity
condition ensures that for any other vertex b, b ∈′ x iff b ∈′ y. So if x and y were to receive
the same label, then they could be interchanged to produce a non-trivial automorphism.

Now for n > 2, the proof carries almost identically as the above.

5.3 Exceptional graphs

The first exceptional homogeneous directed graph is the universal partial order P (viewed
as a directed graph). It is the amalgamation of the class of all finite partial orders. The
partial order P does not have free amalgamation since the amalgamation of two structures
may require some additional relations to obey the transitive nature of the order relation.
But we will show that it has a fixing type, and therefore has distinguishing number 2.

Theorem 5.6. D(P) = 2.

Proof. Let G be the automorphism group of P = (P, 6). For two elements a and b in P

we say that a and b are not related and again write a ⊥ b if a and b are incomparable,
that is a 6= b and ¬(a < b) and ¬(b < a). Fix p ∈ P and let T be the set of all elements
t ∈ P with p ⊥ t. We will show that (p, T ) is a fixing type of G acting on P using the
trivial partition P = (P0). Only items 2 and 4 need to be verified.

Item 2: (p, T ) is easily seen to be an extended set type. For the cover property, we have
to show that if S is a finite subset of P \{p} then there are infinitely many elements t ∈ T

with ¬(t ⊥ s) for all s ∈ S. Let L = (S ∪ {p}, 6) be a linear extension of the partial
order induced by P on S ∪{p}. Now let u be an element not in P and X = (S ∪{p, u}, 6)
the partial order so that X restricted to S ∪ {p} is equal to P restricted to S ∪ {p}, u < s

in X if p < s in L and u > s in X if p > s in L, and u ⊥ p. By the mapping extension
property, there are infinitely many embeddings of X into P which fix {p} ∪ S.

Item 4: Let a, b ∈ P \ (T ∪ {p}) with a 6= b. Both a and b must be related to p. If a < p

and b > p, or if a > p and b < p, then clearly ¬(a
(T )
∼ b) as g(p) = p for g ∈ G(T ). Hence

we may assume without loss of generality that a < p and b < p and b 6< a. Let x be an
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element not in P and X = ({p, a, b, x}, 6) the partial order so that the restriction of X to
{p, a, b} is equal to the restriction of P to {p, a, b}, x ⊥ p, x > a, and x ⊥ b. Since there

is an embedding f of X which fixes {p, a, b} and maps x into T , then ¬(a
(f(x))
∼ b).

This completes the proof of Theorem 5.6.

A very peculiar example of a homogeneous directed graph and the second exceptional
case is the twisted universal partial order P∗ (see [2], [3] where it is called P(3)).

To describe P∗, first partition the domain P of the universal partial order P into three
dense subsets Pi indexed by the integers modulo 3. Identifying the three binary relations
holding in P with the integers modulo 3 (for example identify <, ⊥, > with 0, 1, 2
respectively), let P′ be the variant of P obtained by shifting the cross types in Pi × Pj

by j − i modulo 3. Finally the twisted partial order P∗ is the directed graph on P ∪ {a}
characterized by (a⊥, a′,′ a) = P′. It is proved in [2] that P∗ is indeed an homogeneous
directed graph.

Theorem 5.7. D(P∗) = 2.

Proof. Let G be the automorphism group of P∗ = (P ∗, <∗), and using the notation above
consider the partition A0 = P0, and A1 = P ∗ \A0. As in the proof of Theorem 5.6, choose
any p ∈ P0 and let T = {b ∈ P0 : b ⊥ p} = {b ∈ P ∗ : b ⊥ {a, p}}. We claim that (p, T ) is
a fixing type for G and partition (A0, A1).

For item 1, consider an element g ∈ G and finite S ⊆ A0 such that g(S) ⊆ A0. Now
consider a partial map h on S ∪ {a} fixing a and such that h ↾ S = g ↾ S. Then h is a
partial isomorphism since a is perpendicular to every element of A0. Then by homogeneity
h extends to an automorphism g0 of P∗. However g0 ∈ G0 = G{A0} since a is fixed and
A0 = P0 = a⊥.

Similar arguments to those of Theorem 5.6 show that the remaining items are satisfied.

There is yet another construction similar to that of Q∗ above yielding a homogeneous
directed graph, called S(3) in [2]. It is obtained this time by partitioning Q into three
disjoint dense sets Q0, Q1, and Q2 and reversing edges between them. Identifying the two
possible orientations of an edge with the number ±1, while 0 represents the absence of
an edge, shift the edges between Qi and Qj by j − i modulo 3. A similar argument to
Theorem 5.1 shows its distinguishing number is again ω.

5.4 Free graphs

Consider for each n the generic directed graph Dn which is the amalgamation of all finite
directed graphs omitting an n-element independent set. For n = 2, this is simply the
universal tournament T∞, and therefore D(D2) = 2. By a similar proof, this is true in
general.

Theorem 5.8. For n > 2, D(Dn) = 2.
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Finally let T be a class of finite tournaments and let A(T ) be the class of directed
graphs containing no embeddings of members of T . Then A(T ) has free amalgamation,
and the corresponding homogeneous structure has distinguishing number two by Theorem
3.1.

6 Conclusion

Of course there are many other interesting homogeneous structures, for example the “dou-
ble rationals”. Consider the class of finite structures equipped with two independent lin-
ear orders 6 and �. This is an amalgamation class and the corresponding homogeneous
structure is called the double rationals, written Q2. We have already discussed that the
rationals themselves have distinguishing number ω, the double rationals however have
distinguishing number only two.

Theorem 6.1. D(Q2) = 2.

Proof. Construct a 6-strictly increasing sequence (an : n ∈ N) which is dense in the �
ordering, that is for any b ≺ c, there is an an in between under the � ordering.
Indeed given an and b ≺ c, let x be an element not in Q2 and X = ({an, b, c, x}, 6,�) be
the structure so that the restriction of X to {an, b, c} is equal to the restriction of Q2 to
{an, b, c}, an < x and b � x � c. There is an embedding f of X which fixes {an, b, c} and
maps x into Q2.

Let B = (B0, B1) be the partition of Q2 with B0 := {an : n ∈ N}. Then any
g ∈ Aut(Q2)↓B must be the identity on B0 since it is an increasing 6 sequence, and the
identity on B1 by the density of B0 in the � ordering.

Based on the previous examples and calculations, we conjecture that the distinguishing
number of any primitive countable homogeneous relational structure is either 2 or ω.
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