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Abstract

By using the Szemerédi Regularity Lemma [10], Alon and Sudakov [1] recently
extended the classical Andrásfai-Erdős-Sós theorem [2] to cover general graphs. We
prove, without using the Regularity Lemma, that the following stronger statement
is true.

Given any (r+1)-partite graph H whose smallest part has t vertices, there exists
a constant C such that for any given ε > 0 and sufficiently large n the following is
true. Whenever G is an n-vertex graph with minimum degree

δ(G) >

(

1 −
3

3r − 1
+ ε

)

n ,

either G contains H, or we can delete f(n,H) 6 Cn2− 1

t edges from G to obtain an
r-partite graph. Further, we are able to determine the correct order of magnitude
of f(n,H) in terms of the Zarankiewicz extremal function.

1 Introduction

We define the graph Kr(s) to be the complete r-partite graph whose parts each have
s vertices. Given a graph H , whose chromatic number is χ(H), we examine all the
proper χ(H)-colourings of H . We choose one whose smallest colour class is of smallest
possible size; then σ(H) is the size of this smallest colour class. Otherwise, our notation
is standard.

We recall the classical theorem of Zarankiewicz [12]:

Theorem 1. If the n-vertex graph G has minimum degree exceeding
(

1 − 1
r

)

n then G
contains Kr+1.
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This theorem is an immediate corollary of Turán’s theorem [11]. As is well known, it is
best possible, the extremal example being a complete balanced r-partite graph (sometimes
called a Turán graph). An old result of Andrásfai, Erdős and Sós [2], which amounts to
a (very strong) stability result for Zarankiewicz’ theorem, is the following.

Theorem 2. Suppose r > 2. If the n-vertex graph G has minimum degree exceeding
(

1 − 3
3r−1

)

n and G does not contain Kr+1, then G is r-partite.

This theorem is best possible; however the extremal example is a little more complex
than the Turán graph. We construct a graph Er(n) as follows: we partition n vertices
into r − 2 sets X1, . . . , Xr−2 each containing 3n

3r−1
vertices and five sets Y1, . . . , Y5 each

containing n
3r−1

vertices. Each of these sets is independent; we set every vertex in each
Xi adjacent to all vertices outside Xi, and we make (Yi, Yi+1 mod 5) a complete bipartite
graph for each i (so that the five sets form a blow-up of C5). It is straightforward to check
that each vertex has degree

(

1 − 3
3r−1

)

n; since χ(C5) = 3 the chromatic number of Er(n)
is r + 1, but Er(n) does not contain Kr+1.

Erdős and Stone [6] extended Zarankiewicz’ theorem, showing that for any fixed graph
H , the chromatic number of H governs the minimum degree threshold at which H appears
in a large graph G:

Theorem 3. Let H be any fixed graph with chromatic number r+1. If the n-vertex graph

G has minimum degree exceeding
(

1 − 1
r

+ o(1)
)

n then G contains H.

Although the extremal graphs for this theorem are not necessarily r-partite, it is true
that one may delete o(n2) edges from any extremal graph to obtain an r-partite graph.
Indeed, it is not hard to show that there exists ̺ = ̺(H) > 0 such that deletion of only
O(n2−̺) edges from an extremal graph yields an r-partite graph.

Quite recently, Alon and Sudakov [1] gave an extension of Andrásfai, Erdős and Sós’
result to cover all fixed graphs H (Erdős and Simonovits [5] had previously considered
the case when H is critical, i.e. when there is an edge of H whose removal decreases the
chromatic number):

Theorem 4. Let any fixed graph H with chromatic number r + 1 and constant ε > 0 be

given. Then there exist ̺ = ̺(H) > 0 and n0 = n0(H, ε) such that the following holds.

If n > n0 and G is an n-vertex graph with minimum degree exceeding
(

1 − 3
3r−1

+ ε
)

n
which does not contain H, then one can delete at most O(n2−̺) edges from G to yield an

r-partite graph.

Alon and Sudakov gave a value for the constant ̺(H). They showed that if we have
H ⊆ Kr+1(s) then we may take ̺(H) = 1/4r2/3s. The purpose of this paper is to
give a simpler proof (avoiding the use of the Regularity Lemma) which gives the correct
order of magnitude of the number of edges that must be deleted (albeit in terms of the
Zarankiewicz problem).

Recall that given a family H of graphs, ex(n,H) is defined to be the maximum number
of edges in an n-vertex graph which does not contain a copy of any graph H ∈ H.
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Given a graph H , we define a quantity biex(n, H) as follows. Let c : V (H) → [χ(H)]
be any proper χ(H)-colouring of H . Let Sc = c−1({1, 2}) be the vertices receiving colours
1 and 2 in this colouring. Consider the family of graphs F containing all graphs of the
form H [Sc] for some proper χ(H)-colouring c of H . Then we set biex(n, H) = ex(n,F).

We note that if H is a complete r-partite graph, whose smallest part has t vertices
and whose next smallest part has s vertices, then biex(n, H) = ex(n, Kt,s).

The problem of estimating ex(n, H) when H is bipartite (or, more generally, ex(n,H)
for a family H of bipartite graphs) is the Zarankiewicz problem; for most H it is quite
far from being solved. However an upper bound is provided by the following classical
theorem of Kövári, Sós and Turán [8].

Theorem 5. Let 1 6 t 6 s be fixed integers. If G is any n-vertex graph with Ω(n2− 1

t )
edges, then G contains Kt,s.

We note that for t = 1, 2, 3 and when s > t! + 1 there exist lower bound constructions
matching the upper bound of Theorem 5 (see [9, 3, 7]); for t > 4 the best known lower

bound is Ω(n2− 2

t+1 ), but it is conjectured that the correct bound is Θ(n2− 1

t ).
We can now state our main theorem.

Theorem 6. To any graph H with chromatic number r + 1 there is associated a con-

stant C = C(H) such that whenever ε > 0 is given, there is n0 for which the following

holds. Whenever n > n0 and G is an n-vertex graph with minimum degree exceeding
(

1 − 3
3r−1

+ ε
)

n which does not contain H, then one can delete at most Cbiex(n, H)
edges from G to obtain an r-partite graph.

This theorem is best possible up to the value of C. For comparison with the result
of Alon and Sudakov, suppose H ⊆ Kt,s,s,...,s has chromatic number r + 1, where t 6 s.
Then, applying Theorem 5, we have

biex(n, H) 6 ex(n, Kt,s) = O(n2− 1

t ) .

It follows that if G satisfies the conditions of Theorem 6, then Theorem 4 guarantees

that G can be made r-partite by deleting O(n
2− 1

4r2/3s ) edges; Theorem 6 strengthens this to

Cn2− 1

t edges. On the assumption that the conjectured bound in the Zarankiewicz problem
is correct, this is best possible up to the value of the multiplicative constant. Furthermore,
the constant hidden behind the O(·) notation in Theorem 4 depends upon ε; specifically,
it grows as a polynomial function of 1/ε, whereas the constant C in Theorem 6, while
surely much larger than it ‘should’ be, does not depend on ε. Finally, owing to the use
of the Regularity Lemma, the constant n0 in Theorem 4 has an exceptionally unpleasant
dependence on ε, r and s.

We give two constructions which demonstrate the tightness of our theorem.
Given H , let E be an n-vertex graph with biex(n, H) edges and not containing any of

the forbidden bipartite subgraphs. Let E ′ be an n/r-vertex subgraph of E containing the
maximum possible number of edges. Note that e(E ′) > e(E)/2r2 = Ω(biex(n, H)).
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Consider the graph G obtained from the complete balanced r-partite graph by replac-
ing one part with E ′. This graph has minimum degree r−1

r
n, and does not contain a copy

of H . However to make G r-partite we must delete Ω(biex(n, H)) edges.
Alon and Sudakov asked whether it is possible to replace the term εn in the minimum

degree of their theorem with an O(1) term. It is not possible; indeed, for any µ > 0 there
are graphs H such that the corresponding term must be larger than n1−µ.

Consider the following modification of Er(n). Let c be some sufficiently small positive
quantity. We let each of the independent sets Y1, . . . , Y5 have n

3r−1
+(r−2)cn1−2/t vertices.

We let each of the independent sets X1, . . . , Xr−2 have 3
3r−1

−5cn1−2/t vertices. Finally, we

take a Kt,t-free graph E ′ on |Y1| vertices with minimum degree (3r − 1)cn1−2/t: provided
c > 0 is chosen sufficiently small, such a graph exists. We replace each of the independent
sets Y1, . . . , Y5 with E ′ to obtain E ′

r,t(n). Now observe that the minimum degree of E ′

r,t(n)

is 3r−4
3r−1

n + 5cn1−2/t. However it is not possible to find a copy of Kr+1(2t) in E ′

r,t(n). The
reason is that it would be necessary to find a copy of K3(2t) within the graph induced by
Y1 ∪ . . . ∪ Y5; this would require that one of the Yi contained Kt,t, which by construction
is false. Finally, it is clear that to make E ′

r,t(n) r-partite requires the removal of Ω(n2)
edges.

2 Constructing (r + 1)-partite graphs

Given an (r + 1)-partite graph H , a large graph G, and a family F consisting of the
bipartite subgraphs of H whose removal decreases the chromatic number of H by two,
we describe a construction of the graph H from a suitably well-structured set of copies
of Kr+1 in G. Alon and Sudakov made use of a related construction: the difference is
that their construction as its first step finds (by use of the Kövári-Sós-Turán theorem)
one specific bipartite subgraph of G and proceeds to build H using it. Our construction
avoids this, relying instead on counting the number of suitable objects until the final step
in the construction. This difference is primarily responsible for our improved bounds.

Given a graph G and a vertex v ∈ G, let Gv be the neighbourhood graph obtained by
deleting from G every edge which is not contained in the neighbourhood of v.

We give first a counting variant of a lemma of Erdős [4]; this is essentially a statement
about dense hypergraphs generalising the Kövári-Sós-Turán theorem.

Lemma 7. For every r, s and ε > 0 there exists δ = δr,s(ε) > 0 such that the following

holds for sufficiently large n. If the n-vertex graph G contains at least εnr copies of Kr,

then G contains δr,s(ε)n
rs copies of Kr(s).

Proof. For r = 1 the statement holds trivially. We complete the proof by induction.
Let G be an n-vertex graph containing εnr copies of Kr: then there are some εn/2

vertices D of G which are each contained in εnr−1/2 copies of Kr in G. By construction, for
each d ∈ D, Gd contains εnr−1/2 copies of Kr−1; by induction it contains δr−1,s(ε/2)n(r−1)s

copies of Kr−1(s).
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For a given copy S of Kr−1(s), let dS be the number of vertices of D whose neigh-
bourhoods contain S. Then we have (using the convention that

(

a
b

)

= 0 when a < b) at

least 1
r

∑

S

(

dS

s

)

copies of Kr(s) contained in G. Since the mean value of dS is at least
δr−1,s(ε/2)|D|, applying Jensen’s inequality the number of copies of Kr(s) in G is at least

1

r

∑

S

(

dS

s

)

>
1

r
δr−1,s(ε/2)n(r−1)s

(

δr−1,s(ε/2)|D|

s

)

= δr,s(ε)n
rs ,

as required.

Note that the value of δr,s(ε) obtained by the above method is polynomial in ε.
To complete our construction, we give the following corollary of Lemma 7.

Corollary 8. Given ε > 0 and H there exists C such that for sufficiently large n the

following is true. Every n-vertex graph G in which there are more than Cbiex(n, H) edges

E of G, each contained in εnr−1 copies of Kr+1, contains H.

Proof. Let G be a graph with a set E of edges each of whose common neighbourhoods
contains εnr−1 copies of Kr−1. Suppose that n is large enough to permit us to con-
clude, by Lemma 7, that the common neighbourhood of each edge of E contains at least
δr−1,v(H)(ε)n

(r−1)v(H) copies of Kr−1(v(H)). Let C = 1/δr−1,v(H)(ε). Suppose furthermore
that |E| > Cbiex(n, H).

By averaging, there is one copy S of Kr−1(v(H)) in G which lies in the common
neighbourhood of each of the edges E ′ ⊆ E, with |E ′| > biex(n, H). By definition of
biex(n, H), the edges E ′ must contain a copy of some bipartite subgraph of H in F . Let
this subgraph be B. Then B ∪ S contains H .

Note that the value of δr,s(ε) given by Lemma 7 is clearly far smaller than the truth;
but this affects only the constant C; furthermore, the dependence on ε is polynomial.

3 Proof of Theorem 6

We first prove a density version of Theorem 2. We note that Alon and Sudakov [1] proved
a similar lemma; however their method (while in most ways similar to ours) obtained a
first ‘coarse’ version by application of the Szemerédi Regularity Lemma. We avoid this
by making use of an induction argument.

Lemma 9. Given r and ε, let µ = εr/r! and η = εr+1/(r + 1)!. Then whenever n is suf-

ficiently large, the following is true. Any n-vertex graph G with δ(G) >
(

1 − 3
3r−1

+ 4ε
)

n
either contains more than ηnr+1 copies of Kr+1, or has a partition into D ∪ V1 ∪ . . .∪ Vr,

with the properties that ∆(G[Vi]) 6 εn for each i, each vertex of D is contained in more

than µnr copies of Kr+1, and |D| 6 εn.
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Note that when ε = 0 we have µ = η = 0, and we obtain the statement of Theorem 2.
The intuition is that since we are looking at graphs which do not contain a high density of
copies of Kr+1, rather than not containing any at all, we must expect that there may be
some small set of vertices, and a few edges leaving every vertex, which ‘misbehave’. These
are, respectively, the set D and the replacement of the independent sets of Theorem 2
with sets which simply have restricted maximum degree.

Proof. We prove the lemma by induction. The r = 1 case is a triviality: either there are
more than εn vertices of degree exceeding µn, in which case G certainly contains more
than ηn2 edges, or we can let D be the set of all vertices of degree exceeding µn, and
together with V1 = V (G) \ D the partition conclusion is satisfied.

Suppose r > 2. We assume as our induction hypothesis that the lemma holds for r−1.
Let G be an n-vertex graph with minimum degree

(

1 − 3
3r−1

+ 4ε
)

n. We presume G
contains at most ηnr+1 copies of Kr+1.

Let D ⊆ V (G) be the set of all vertices d ∈ G such that there are more than µnr

copies of Kr in Γ(d). Then |D| 6 εn since G contains at most ηnr+1 copies of Kr+1.
Let G′ = G[V (G) − D]. This graph has minimum degree greater than

(

3r−4
3r−1

+ 3ε
)

n;
none of its vertices are contained in more than µnr copies of Kr.

Let X1 be a maximum cardinality set in V (G′) with the property that ∆(G′[X1]) 6 εn.
Let v ∈ X1.

Consider the graph N = G′[Γ(v) \ X1]. Because v /∈ D, the neighbourhood graph Gv

contains at most µnr copies of Kr, and so in particular N contains at most µnr copies of
Kr. Because ∆(G′[X1]) 6 εn, v(N) > 3r−4

3r−1
n + 2εn. Now consider u ∈ N . We have

dN(u) > v(N) −

(

3

3r − 1
− 4ε

)

n

> v(N) −

(

3

3r − 1
− 4ε

)

3r − 1

3r − 4
v(N) >

(

3r − 7

3r − 4
+ 4ε

)

v(N) .

By induction, we have that N has a partition V (N) = B ∪ X2 ∪ . . . ∪ Xr, where
|B| 6 εn and ∆(N [Xi]) 6 εn for each of the r − 1 sets X2, . . . , Xr.

Because X1 has maximum cardinality subject to ∆(G′[X1]) 6 εn, |X1| > |Xi| for each
i. In particular, we have

|X1| + . . . + |Xr| >

(

3r − 4

3r − 1
+ ε

)

rn

r − 1
>

(3r − 4)rn

(3r − 1)(r − 1)
+ εn .

Since every vertex in G has more than 3r−4
3r−1

n+4εn neighbours in G, and since for each

i we have ∆(G[Xi]) 6 εn, it follows that |Xi| < 3
3r−1

n for each i.

Now suppose that for some i we have |Xi| 6
2

3r−1
n. Because X1 was chosen to be

maximal, we may assume 2 6 i 6 r; without loss of generality let us suppose i = r. We
have |B| + |X2| + . . . + |Xr| = v(N) >

3r−4
3r−1

n + 2εn, and since also |B| 6 εn, we have

|X2|+ . . .+ |Xr−1| >
3r−6
3r−1

n + εn. It follows that among the r− 2 sets X2, . . . , Xr−1, there

the electronic journal of combinatorics 17 (2010), #R21 6



must be one whose size exceeds 3r−6
(3r−1)(r−2)

n = 3
3r−1

n, which is a contradiction. Thus we

have that for each i, 2
3r−1

n < |Xi| < 3
3r−1

n.
Now, if we have any two adjacent vertices u and v of G′ whose codegree exceeds

3r−6
3r−1

n+ εn, then we may construct a clique Kr+1 extending uv greedily by simply picking
any common neighbour of the so far chosen vertices at each step. At the final step (and
therefore at all steps) we have at least εn choices. It follows that any edge uv of G
in which the common neighbourhood of u and v exceeds 3r−6

3r−1
n + εn lies in more than

εr−1nr−1/(r − 1)! cliques Kr+1.
Furthermore, if u has more than εn neighbours with each of which its codegree exceeds

3r−6
3r−1

n+εn, then u lies in more than εrnr/r! = µnr copies of Kr+1. This contradicts u /∈ D.
Since ∆(G[Xi]) 6 εn, if a vertex u outside Xi has less than |Xi| −

n
3r−1

neighbours

in Xi, then the codegree of u and any neighbour v ∈ Xi exceeds 3r−6
3r−1

n + εn. It follows
that any vertex of G′ outside Xi has either fewer than εn neighbours in Xi or more than
|Xi| −

n
3r−1

neighbours in Xi.
Consider the set Li of vertices of L which all have less than εn neighbours in Xi. Any

one of these vertices has codegree exceeding 3r−6
3r−1

n + εn with any other, and with any
vertex of Xi. It follows that Li ∪Xi has maximum degree εn. Let this set be Vi. Let the
vertices of G′ not in any X ′

i be L′.
If L′ = ∅ then we have V (G) = D ∪ V1 ∪ . . . ∪ Vr is the desired partition. So we may

assume there is a vertex l ∈ L′. This vertex is non-adjacent to fewer than n
3r−1

vertices of
each set Vi. It is convenient to assume that the sets V1, . . . , Vr are in order of decreasing
size.

Finally, consider the following greedy construction. We start with the vertex l ∈ L′.
We now choose vertices v1, . . . , vr from the respective sets V1, . . . , Vr, such that after each
choice the vertices chosen together with l form a clique.

At the first step we have more than |V1| −
n

3r−1
choices for v1. At the second step we

have more than

|V2| −
n

3r − 1
−

(

3

3r − 1
− 4ε

)

n + (|V1| − εn) = |V1| + |V2| −
4

3r − 1
n + 3εn

choices for v2; there are less than n
3r−1

non-neighbours of l in V2, and at most 3n
3r−1

− 4εn
non-neighbours of v1 in G, of which at least |V1| − εn are in V1. In general, for each
2 6 i 6 r, we have at the ith step more than

|V1| + . . . + |Vi| −
3i − 2

3r − 1
n + 3εn

choices for vi. Because the sets V1, . . . , Vr are in order of decreasing size, the number of
choices is least when choosing either v1 or vr. Since |V1| > |X1| > 3r−4

(3r−1)(r−1)
n >

2
3r−1

n,
the number of choices for v1 is greater than n

3r−1
. Since

|V1| + . . . + |Vr| > |X1| + . . . + |Xr| >
(3r − 4)r

(3r − 1)(r − 1)
n + εn ,

the electronic journal of combinatorics 17 (2010), #R21 7



the number of choices for vr is at least r−2
(3r−1)(r−1)

n + 4εn. It follows that at each step
there are more than εn choices; therefore l is contained in more than εrnr > µnr copies
of Kr+1 in G, which contradicts l /∈ D.

At last, we can complete the proof of our main theorem. Again, our method is similar
to that of Alon and Sudakov [1]; we take a little more care in order to ensure that the
constant C in our theorem is independent of ε.

Proof of Theorem 6. Given r > 2 and ε > 0, let G be a sufficiently large n-vertex graph
with δ(G) >

(

1 − 3
3r−1

+ ε
)

n which does not contain the (r + 1)-partite graph H .
By Lemma 9 there exist positive constants η, µ such that either G contains ηnr copies

of Kr+1 or V (G) may be partitioned as V (G) = D∪ V1 ∪ . . .∪Vr, where ∆(G[Vi]) 6 εn/4
for each i, each vertex of D is contained in at least µnr copies of Kr+1, and |D| 6 εn/4.

When n is sufficiently large, by Lemma 7 every graph G with ηnr+1 copies of Kr+1

contains Kr+1(v(H)) and thus H . It follows that V (G) possesses the given partition.
As in the proof of Lemma 9, for each i, since ∆(Vi) 6 εn/4 and δ(G) > 3r−4

3r−1
n + εn,

we have |Vi| < 3
3r−1

n − 3εn/4. Again, if for some i we have |Vi| 6
2

3r−1
n then among the

r − 1 sets V1, . . . , Vr remaining there must be one whose size is at least

(

n − εn/4 −
2

3r − 1
n

)

/(r − 1) >
3

3r − 1
n − εn/2 ,

which again is a contradiction. Thus for each i we have 2
3r−1

n < |Vi| < 3
3r−1

n.
We alter slightly the partition given by Lemma 9 as follows. For each 1 6 i 6 r, let

Wi be the set of vertices with at most n
4(3r−1)

neighbours in Vi. Let Yi be the vertices of

D with more than n
4(3r−1)

neighbours, but less than |Vi| −
3

2(3r−1)
n neighbours in Vi. Let

X be the vertices of D not contained in any set Wi or Yi. By definition of Vi, we have
Vi ⊆ Wi for each i.

Consider the vertex x ∈ X. We make use of a greedy construction as in the proof
of Lemma 9. We presume that the sets V1, . . . , Vr are in order of decreasing size. We
choose greedily vertices v1, . . . , vr in sets V1, . . . , Vr (in that order), such that the set
{x, v1, . . . , vr} are the vertices of an (r + 1)-clique in G. As in the proof of Lemma 9, at
the ith step we have at least

|V1| + . . . + |Vi| −
3

2(3r − 1)
n −

3i − 3

3r − 1
n + 3εn/4

choices for vi. As before, since the sets Vi are in order of decreasing size the number of
choices is fewest at either the first or the last step. The number of choices at the first step
is at least |V1| −

3
2(3r−1)

> 1
2(3r−1)

n; since the sets V1, . . . , Vr together cover all of G except

the at most εn/4 vertices of D, the number of choices at the last step is at least

n − εn/4 −
3

2(3r − 1)
n −

3r − 3

3r − 1
n + 3εn/4 >

1

2(3r − 1)
n .
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It follows that at every step there are at least 1
2(3r−1)

n choices, and hence x is contained
in at least

(

n

2(3r − 1)

)r

copies of Kr+1 in G.
Consider the vertex y ∈ Yi. Let u be any neighbour of y in Vi. The common neigh-

bourhood of u and y contains at least

2

(

3r − 4

3r − 1
+ ε

)

n −

(

n −
3

2(3r − 1)
n + εn/4

)

>
6r − 11

2(3r − 1)
n

vertices. Now we construct an (r + 1)-clique greedily starting from uy. At the final step,
and thus at every step, we have at least n

2(3r−1)
choices. It follows that uy lies in at least

(

n
2(3r−1)

)r

/(r − 1)! copies of Kr+1 in G. Since y has at least n
4(3r−1)

neighbours in Vi, y

lies in at least
(

n
4(3r−1)

)r

/r! = γnr copies of Kr+1 in G.

Finally we have that every vertex of Z = Y1 ∪ . . . ∪ Yr ∪ X lies in at least γnr copies
of Kr+1 in G.

Now by Lemma 7 there exists δ > 0 such that whenever n is sufficiently large, every
graph G with γnr copies of Kr contains δnrv(H) copies of Kr(v(H)). If |Z| > (σ(H)−1)/δ,
then there is one copy S of Kr(v(H)) in G which is in the neighbourhood of each of σ(H)
vertices B of G. But then H ⊆ G[B ∪ S], which is a contradiction. It follows that
|Z| 6 (σ(H) − 1)/δ. It is important to note that γ, and hence δ, are independent of ε.

Finally, let E be the set of edges of G which are contained in any one of the sets Wi.
For any edge uv ∈ E, there is i such that u, v ∈ Wi. Then the common neighbourhood

of u and v in V (G) contains at least

2

(

3r − 4

3r − 1
+ ε

)

n −

(

n − |Vi| +
n

2(3r − 1)

)

>
6r − 11

2(3r − 1)
n + 2εn

vertices, since both u and v are adjacent to at most n
4(3r−1)

vertices of Vi. As before, we
can extend uv to a clique Kr+1 by choosing vertices greedily; at each stage we have at
least n

2(3r−1)
choices, and hence uv is contained in at least nr−1

(6r−2)r−1(r−1)!
copies of Kr+1.

By Lemma 8, since G does not contain H , there exists C ′ such that |E| 6 C ′biex(n, H).
Observe that C ′ does not depend on ε.

If biex(n, H) < n − 1, then it must be the case that there is some bipartite subgraph
F of H such that F ⊆ K1,n−1 and the graph H [V (H) \ V (F )] is (r − 1)-colourable. But
then there is a proper (r + 1)-colouring of H in which one colour class has size one; so
σ(H) = 1.

Upon deleting from G all edges incident to Z or contained in E, one obtains an r-partite
graph. The total number of edges deleted is at most n(σ(H)−1)/δ +C ′biex(n, H). Since
n|Z| > 0 only if σ(H) > 1, i.e. only if biex(n, H) > n− 1, we have n|Z|+C ′biex(n, H) 6

Cbiex(n, H), and C is as required independent of ε since C ′ and δ are.
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4 Concluding remarks

Perhaps the main conclusion of this paper is that (if such is necessary) there is a further
motivation for solving the Zarankiewicz problem of determining ex(n,F) for all families
F of bipartite graphs.

However there remain some open questions which are independent of the Zarankiewicz
problem.

First, it would be interesting to know what the best possible value of µ(H) is such
that the following statement is true.

Given H , with χ(H) = r + 1, there exists C such that for all sufficiently large n, if G
is an n-vertex H-free graph with minimum degree at least 3r−4

3r−1
n + Θ(n1−µ), then G can

be made r-partite by deleting at most Cbiex(n, H) edges.
It follows (by careful analysis of the proof given) that µ(H) must always be positive:

but it seems likely that the value so obtained is much smaller than optimal.
Second, although we have shown that the correct number of edges which we should

delete from a dense H-free graph G to obtain a (χ(H)−1)-partite graph is Θ(biex(n, H)),
it seems certain that the multiplicative constants proved for our upper and lower bounds
are not best possible. We have made no particular effort to optimise our upper bound:
but probably such effort using our techniques would produce only a somewhat less bad
upper bound.

It would be interesting to know whether there exists a best possible value for the
constant C, and if so, what it is. It seems likely that (despite the result of this paper) the
best possible value will depend upon ε.
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