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Abstract

Motivated by Pittel’s study of minimally intersecting set partitions, we investi-

gate minimally intersecting set partitions of type B. Our main result is a formula for

the number of minimally intersecting r-tuples of Bn-partitions. As a consequence, it

implies the formula of Benoumhani for the Dowling number in analogy to Dobiński’s

formula.

1 Introduction

This paper is primarily concerned with the meet structure of the lattice of type Bn parti-
tions of the set {±1, ±2, . . . , ±n}. The lattice of type Bn set partitions has been studied
by Reiner [8]. It can be regarded as a representation of the intersection lattice of the
type B Coxeter arrangements, see Björner and Wachs [3], Björner and Brenti [2] and
Humphreys [6].

A set partition of type Bn is a partition π of the set {±1, ±2, . . . , ±n} into blocks
satisfying the following conditions:

(i) For any block B of π, its opposite −B obtained by negating all elements of B is
also a block of π;

(ii) There is at most one zero-block, which is defined to be a block B such that B = −B.

We call ±B a block pair of π if B is a non-zero-block of π. For example,

π1 = {{±1, ±2, ±5, ±8, ±12}, ±{3, 11}, ±{4, −7, 9, 10}, ±{6}}

is a B12-partition consisting of 3 block pairs and the zero-block {±1, ±2, ±5, ±8, ±12}.
Our main result is a formula for the number of r-tuples of minimally intersecting Bn-

partitions. We have used similar ideas in Pittel [7], but the variable setting for type B

does not seem to be a straightforward generalization.

the electronic journal of combinatorics 17 (2010), #R22 1



Let us give a precise formulation of Pittel’s results. Let Πn be the lattice of partitions
of [n] = {1, 2, . . . , n}. The minimum element in Πn is

0̂ = {{1}, {2}, . . . , {n}}.

The partitions π1, π2, . . . , πr are said to intersect minimally if

π1 ∧ π2 ∧ · · · ∧ πr = 0̂.

Let π be a partition of the set [n], and let i1, . . . , ik be the sizes of the blocks of π listed
in any order. Given l > 1, the number N(π, l) of partitions with exactly l blocks that
minimally intersect π equals

N(π, l) =
i!

l!

[

xi
]





∏

α∈[k]

(1 + xα) − 1





l

, (1.1)

where
i! =

∏

α∈[k]

iα!,

and
[

xi
]

stands for the coefficient of xi in the power series expansion. As pointed out by

Pittel, the expression (1.1) reduces to Dobiński’s formula. In other words, setting π = 0̂
one obtains

Bn = e−1
∑

k>0

kn

k
, (1.2)

where Bn denotes the Bell number. Moreover, in view of (1.1), Pittel deduced that the
number N(π) of partitions that minimally intersect π equals

N(π) = i!
[

xi
]

exp





∏

α∈[k]

(1 + xα) − 1



 . (1.3)

Pittel also obtained the number N2(k) of ordered pairs (π, π′) of minimally intersecting
partitions such that π consists of exactly k blocks, that is,

N2(k) = e−1 n!

k!
[xn]

∑

l>0

1

l!

[

(1 + x)l − 1
]k

. (1.4)

Using the above formula, he further derived the following expression for the number N2n

of ordered pairs of minimally intersecting partitions

Nn,2 = e−2
∑

k,l>0

(kl)n

k!l!
, (1.5)
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where (m)n = m(m−1) · · · (m−n+1) denotes the falling factorial. By the same method,
Pittel generalized (1.5) and showed that the number Nn,r of r-tuples (r > 2) of minimally
intersecting partitions equals

Nn,r =
1

er

∑

k1, ..., kr >0

(k1 k2 · · · kr)n

k1! k2! · · · kr!
. (1.6)

Canfield [4] found a formula connecting the generating functions of Nn,r and the r-th
power of Bell numbers.

The set of partitions of type B on {±1,±2, . . . ,±n} forms a lattice under refinement,
denoted ΠB

n , with the minimal element

0̂B = {±{1}, ±{2}, . . . , ±{n}}.

The Bn-partitions π1, π2, . . . , πr are said to be minimally intersecting if

π1 ∧ π2 ∧ · · · ∧ πr = 0̂B.

We shall study the meet structure of ΠB
n in analogy with Pittel’s formulas. Our main

result is the following theorem.

Theorem 1.1 Let r > 2. The number of minimally intersecting r-tuples (π1, π2, . . . , πr)
of Bn-partitions equals

NB
n,r =

2n

er/2

∑

k1, ..., kr >0

(fr)n

(2k1)!! (2k2)!! · · · (2kr)!!
, (1.7)

where

fr =
1

2





∏

t∈[r]

(2kt + 1) − 1



 .

The proof of the above formula leads to a formula of Benoumhani [1] for the number
of Bn-partitions, called the Dowling number [5]. This paper is organized as follows. In
the next section, we derive type B analogues of the formulas from (1.1) to (1.6) and we
give a proof of Theorem 1.1. In Section 3, we shall consider the corresponding problems
with respect to Bn-partitions without zero-block.

2 Minimally intersecting Bn-partitions

The main objective of this section is to derive a formula for the number of minimally in-
tersecting r-tuples of Bn-partitions. If π ∈ ΠB

n has a zero-block Z = {±r1,±r2, . . . ,±rk},
we say that Z is of half-size k. Let j = (j1, j2, . . . , jk) be a composition of n. Let π be a
Bn-partition consisting of k block pairs and a zero-block of half-size i0. We often assume
that the block pairs of π are ordered subject to certain convention for the purpose of
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enumeration. We say that π is of type (i0; j) if the block pairs of π are ordered such that
the i-th block pair is of length ji.

We first consider the problem of counting the number of Bn-partitions with l block
pairs which minimally intersect a given Bn-partition.

Theorem 2.1 Let π be a Bn-partition consisting of a zero-block of half-size i0 (allowing
i0 = 0) and k block pairs of sizes i1, i2, . . . , ik (k > 1) listed in any order. For any l > 1,
the number of Bn-partitions π′ containing exactly l block pairs that minimally intersect π

equals

NB(π; l) =
i!

(2l − 2i0)!!

∑

i′

[

xi′
]





∏

α∈[k]

(1 + xα)2 − 1





l−i0
∏

α∈[k]

(1 + xα)2i0 , (2.1)

where i′ ranges over all vectors (i′1, i
′
2, . . . , i

′
k) such that i′α ∈ {iα, iα − 1} for any α ∈ [k].

For example, ΠB
2 contains 6 partitions:

0̂B, {{±1, ±2}}, {±{1}, {±2}}, {±{2}, {±1}}, {±{1, 2}}, {±{1,−2}}.

Let π = {±{1}, {±2}}. We have i0 = 1, k = 1, and i1 = 1. For l = 1, by (2.1),

NB(π; 1) =
1
∑

i=0

[

xi
]

(1 + x)2 = 3.

The three B2-partitions which contain exactly 1 block pair and intersect π minimally
are {±{2}, {±1}}, {±{1, 2}}, and {±{1,−2}}. Recall that Pittel [7] characterized the
intersecting structure of two partitions in terms of 01-matrices. He used the coefficient

[

xiyj
]

∏

α∈[k], β∈[l]

(1 + xαyβ) (2.2)

to represent the number of ways to assign 0 or 1 to all kl pairwise intersections of blocks
of two minimally intersecting ordinary partitions. We will use a similar idea to deal with
the intersecting structure of Bn-partitions.
Proof of Theorem 2.1. Let Z1 be the zero-block of π, and ±B1,±B2, . . . ,±Bk the block
pairs of π. Let Z2 be the zero-block of π′, and ±B′

1,±B′
2, . . . ,±B′

l the block pairs of π′.
To ensure that π and π′ are minimally intersecting, it is necessary to characterize the

intersecting relations for all pairs (B, B′) where B is a block of π and B′ is a block of
π′. Since π and π′ intersect minimally, we observe that each B ∩B′ contains at most one
element, where both B and B′ may be the zero-block. So we have four cases.

• B = Z1 and B′ = Z2. We have Z1 ∩ Z2 = ∅ since the cardinality of Z1 ∩Z2 is even.
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• B 6= Z1 and B′ = Z2. We introduce the variable z2 to represent the zero-block Z2,
and the variable xα to represent the block Bα. The intersection Bα ∩ Z2 can be
represented by xαz2 if it is of cardinality 1. In this case, the intersection (−Bα)∩Z2

can be ignored since
(−Bα) ∩ Z2 = − (Bα ∩ Z2) .

• B = Z1 and B′ 6= Z2. We introduce the variable z1 to represent the zero-block Z1,
and the variable wβ to represent the block B′

β. Then Z1 ∩ B′
β can be represented

by z1wβ if it is of cardinality 1. In this case, the intersection Z1 ∩ (−B′
β) can be

disregarded since
Z1 ∩ (−B′

β) = −
(

Z1 ∩ B′
β

)

.

• B 6= Z1 and B′ 6= Z2. In this case, we introduce the variable yβ (resp. ȳβ) to
represent the block B′

β (resp. −B′
β). Then Bα ∩ B′

β (resp. Bα ∩ (−B′
β)) can

be represented by xαyβ (resp. xαȳβ) if it is of cardinality 1. Note that it is not
necessary to consider the intersection involving the block −Bα since

(−Bα) ∩ (±B′
β) = −

(

Bα ∩ (∓B′
β)
)

.

Combining the above four cases, we can represent the meet π ∧ π′ by

F (k; l)
∏

α∈[k]

(1 + xαz2)
∏

β∈[l]

(1 + z1wβ), (2.3)

where
F (k; l) =

∏

α∈[k], β∈[l]

(1 + xαyβ)(1 + xαȳβ). (2.4)

Notice that the expression (2.3) is analogous to

∏

α∈[k], β∈[l]

(1 + xαyβ)

in (2.2). Now we are going to introduce an operator for (2.3) which corresponds to
[

xiyj
]

in (2.2). In this way, we can express the number of ways to assign cardinalities 0 or 1 to
all pairwise intersections of blocks of two minimally intersecting Bn-partitions.

Let j0 be a nonnegative integer and j = (j1, j2, . . . , jl) a composition of n− j0. Denote
by NB(π; j0, j) the number of Bn-partitions π′ of type (j0; j) such that π′ minimally meets
π. In the above notation, we have

NB(π; j0, j) = c ·
∑

a+b+c=j

[

xizi0
1 z

j0
2 waybȳc

]

F (k; l)
∏

α∈[k]

(1 + xαz2)
∏

β∈[l]

(1 + z1wβ), (2.5)

where

c = i! · (2i0)!!

(2l)!!
, (2.6)
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and
x = (x1, x2, . . . , xk), i = (i1, i2, . . . , ik), xi =

∏

α∈[k]

xiα
α ;

w = (w1, w2, . . . , wl), a = (a1, a2, . . . , al), wa =
∏

β∈[l]

w
aβ

β ;

y = (y1, y2, . . . , yl), b = (b1, b2, . . . , bl), yb =
∏

β∈[l]

y
bβ

β ;

ȳ = (ȳ1, ȳ2, . . . , ȳl), c = (c1, c2, . . . , cl), ȳc =
∏

β∈[l]

ȳ
cβ

β .

Here we give a combinatorial explanation for the coefficient c in (2.6). In fact, for the
partition π′, by permuting the l block pairs or interchanging the two blocks in a common
block pair, we still have the same partition. This explains the denominator (2l)!!. On
the other hand, for any block Bα, every block of π′ contains at most one element of
Bα. Considering the assignment of an element to the intersection Bα ∩ B′, where B′ is a
block of π′, we are led to the factor i!. Similarly, the factor (2i0)!! is associated with the
assignment of elements in Z1 to the blocks of π′.

Denote by
(

S
m

)

the collection of all m-subsets of S. Since

[

z
j0
2

]

∏

α∈[k]

(1 + xαz2) =
∑

X∈([k]
j0
)

∏

α∈X

xα, (2.7)

[

zi0
1

]

∏

β∈[l]

(1 + z1wβ) =
∑

Y ∈([l]
i0
)

∏

β∈Y

wβ, (2.8)

substituting (2.7) and (2.8) into (2.5), we obtain that

NB(π; j0, j) = c ·
∑

a+b+c=j

[

xiwaybȳc
]







∑

Y ∈([l]
i0
)

∏

β∈Y

wβ













∑

X∈([k]
j0

)

∏

α∈X

xα






F (k; l)

= c ·
∑

X, Y, b



yb
∏

α∈[k]

xiα−χ(α∈X)
α

∏

β∈[l]

ȳ
jβ−bβ−χ(β∈Y )

β



F (k; l),

where χ is defined by χ(P ) = 1 if P is true, and χ(P ) = 0 otherwise. Therefore the
number of Bn-partitions π′ containing exactly l block pairs that intersect π minimally
equals

NB(π; l) =
∑

j0+j1+···+jl=n

j0>0, j1,...,jl>1

NB(π; j0, j) = c ·
∑

j0, X

[

∏

α

xiα−χ(α∈X)
α

]

∑

j0+j1+···+jl=n

j1,...,jl>1

f(j), (2.9)

where

f(j) =
∑

Y,b

[

yb
∏

β

ȳ
jβ−bβ−χ(β∈Y )
β

]

F (k; l).
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In view of the expression (2.4), the total degree of xα in F (k; l) agrees with the sum of
the degrees of yβ and ȳβ. Concerning (2.9), we find

∑

α∈[k]

iα − χ(α ∈ X) =
∑

β∈[l]

bβ + (jβ − bβ − χ(β ∈ Y )),

that is,
j0 + j1 + · · ·+ jl = i0 + i1 + · · · + ik = n.

So we may drop this condition in the inner summation of (2.9). In order to reduce the
factor

∑

j1,...,jl>1 f(j), we introduce

S(A) =
∑

j1,...,jl>0
jβ=0 if β 6∈A

f(j) =
∑

Y

∑

bγ ,jγ>0
γ∈A

[

∏

γ∈A

ybγ
γ ȳjγ−bγ−χ(γ∈Y )

γ

]

F (k; A)

for any A ⊆ [l], where

F (k; A) =
∏

α∈[k], γ∈A

(1 + xαyγ)(1 + xαȳγ).

Since jγ and bγ run over all nonnegative integers, the exponent jγ − bγ − χ(γ ∈ Y ) can
be considered as a summation index. It follows that

S(A) =
∑

Y ∈(A
i0
)

∑

bγ ,cγ>0, γ∈A

[

∏

γ∈A

ybγ

γ ȳcγ

γ

]

F (k; A) =

(|A|
i0

)

∏

α∈[k]

(1 + xα)2|A|.

By the principle of inclusion-exclusion, we have

∑

j1,...,jl>1

f(j) =
∑

A⊆[l]

(−1)l−|A|S(A) =
∑

m

(

l

m

)

(−1)l−m

(

m

i0

)

∏

α∈[k]

(1 + xα)2m

=

(

l

i0

)

∏

α∈[k]

(1 + xα)2i0





∏

α∈[k]

(1 + xα)2 − 1





l−i0

.

Now, employing (2.9) we find that NB(π; l) equals

i!

(2l − 2i0)!!

∑

X⊆[k]





∏

α∈[k]

xiα−χ(α∈X)
α





∏

α∈[k]

(1 + xα)2i0





∏

α∈[k]

(1 + xα)2 − 1





l−i0

, (2.10)

which can be rewritten in the form of (2.1). This completes the proof.
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Summing (2.1) over l > i0, we obtain the following formula.

Corollary 2.2 The number NB(π) of Bn-partitions that minimally intersect π is

NB(π) =
i!√
e

∑

i′

[

xi′
]

F (x), (2.11)

where

F (x) =





∏

α∈[k]

(1 + xα)2i0



 exp





1

2

∏

α∈[k]

(1 + xα)2



 . (2.12)

Setting π = 0̂B in (2.11), we get i0 = 0 and

NB(0̂B) =
1√
e

∑

i′α∈{0,1}

[

x
i′1
1 · · ·xi′n

n

]

∑

j>0

1

(2j)!!

n
∏

α=1

(1 + xα)2j .

This immediately reduces to Benoumhani’s formula for the Dowling number

∣

∣ΠB
n

∣

∣ =
1√
e

∑

k>0

(2k + 1)n

(2k)!!
, (2.13)

in analogy to Dobiński’s formula (1.2). In fact, the number NB(π) can also be written as
an infinite sum.

Corollary 2.3

NB(π) =
1√
e

∑

j>0

(2i0 + 2j + 1)!k

(2j)!!

∏

α∈[k]

1

(2i0 + 2j + 1 − iα)!
. (2.14)

Proof. From (2.12) it follows that

F (x) =
∑

j>0

1

(2j)!!

∏

α∈[k]

(1 + xα)2(i0+j).

Hence

NB(π) =
i!√
e

∑

j>0

1

(2j)!!

∏

α∈[k]

((

2(i0 + j)

iα

)

+

(

2(i0 + j)

iα − 1

))

=
i!√
e

∑

j>0

1

(2j)!!

∏

α∈[k]

(

2(i0 + j) + 1

iα

)

,

which gives (2.14). This completes the proof.
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Corollary 2.4 Let NB
n,2(i0; k) denote the number of ordered pairs (π, π′) of minimally

intersecting Bn-partitions such that π consists of exactly k block pairs and a zero-block of
half-size i0 (allowing i0 = 0). Then

NB
n,2(i0; k) =

(2n)!!

(2i0)!!(2k)!!
√

e

[

xn−i0
]

∑

j>0

1

(2j)!!

(

(1 + x)2i0+2j+1 − 1
)k

. (2.15)

Proof. By a simple combinatorial argument, we see that the number of Bn-partitions of
type (i0; i1, . . . , ik) equals

c =

(

n

i0, i1, . . . , ik

)

2n−i0−k

k!
=

(2n)!!

(2i0)!!(2k)!!
· 1

i!
.

Thus by (2.11), we have

NB
n,2(k) =

∑

i0+i1+···+ik=n

i1,...,ik>1

c · NB(π) =
(2n)!!

(2i0)!!(2k)!!
√

e

∑

i0+i1+···+ik=n

i1,...,ik>1

∑

i′

[

xi′
]

F (x). (2.16)

For any A ⊆ [k], consider

S(A) =
∑

i0+i1+···+ik=n

i1,...,ik>0
iα=0 if α6∈A

∑

i′

[

xi′
]

F (x) =
∑

i0+
P

α∈A iα=n

iα>0, α∈A

∑

i′|A

[

xi′
∣

∣

A

]

F
(

x
∣

∣

A

)

,

where x
∣

∣

A
(resp. i′|A) denotes the vector obtained by removing all xα (resp. i′α) such that

α 6∈ A from the vector x (resp. i′). Let t be the number of α’s such that i′α = iα − 1 in
the inner summation. Noting that

F
(

x
∣

∣

A

)

=

(

∏

α∈A

(1 + xα)2i0

)

exp

(

1

2

∏

α∈A

(1 + xα)2

)

,

S(A) can be written as

S(A) =

(

∑

t

(|A|
t

)

[

xn−i0−t
]

)

(1 + x)2i0|A| exp

(

1

2
(1 + x)2|A|

)

=
[

xn−i0
]

(1 + x)(2i0+1)|A| exp

(

1

2
(1 + x)2|A|

)

.

In view of the principle of inclusion-exclusion, we deduce from (2.16) that

NB
n,2(k) =

(2n)!!

(2i0)!!(2k)!!
√

e

∑

A⊆[k]

(−1)k−|A|S(A),

which gives (2.15). This completes the proof.
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Summing over 0 6 k 6 n − i0 and 0 6 i0 6 n, we obtain the number of ordered pairs
of minimally intersecting Bn-partitions.

Corollary 2.5 The number NB
n,2 of ordered pairs (π, π′) of minimally intersecting Bn-

partitions is given by

NB
n,2 =

2n

e

∑

k,l>0

(2kl + k + l)n

(2k)!!(2l)!!
.

For example, NB
1,2 = 3, NB

2,2 = 23, NB
3,2 = 329. For general r, we have Theorem 1.1.

We now proceed to give a proof as a direct generalization of the proof of Corollary 2.5.
Proof of Theorem 1.1. For any s ∈ [r], let is be an nonnegative integer and js =
(js,1, js,2, . . . , js,ks) be a composition of n. Let πs be a Bn-partition of type (is; js), with
the zero-block Zs and block pairs

±Bs,1, ±Bs,2, . . . , ±Bs,ks. (2.17)

Suppose that π1, π2, . . . , πr are minimally intersecting. Let Bs be a block of πs (1 6 s 6 r).
It may be either the zero-block Zs or any one of the 2ks blocks in (2.17). We shall consider
each intersection

B1 ∩ B2 ∩ · · · ∩ Br. (2.18)

Since π1, π2, . . . , πr are minimally intersecting, each intersection (2.18) contains at
most one element. We consider the number t ∈ {0, 1, . . . , r + 1} such that

B1 = Z1, B2 = Z2, . . . , Bt−1 = Zt−1, Bt 6= Zt.

In particular, the case t = 0 (resp. t = r + 1) implies that all Bs’s are non-zero-blocks
(resp. zero-blocks). Note that

⋂

s∈[t−1]

Zs ∩ (−Bt) = −





⋂

s∈[t−1]

Zs ∩ Bt



 .

So the intersection in the form of (2.18) can be excluded when Bt = −Bt,i for some i ∈ [kt].
We now assume that Bt = Bt,i for some i. We use the variable zs to represent Zs for

all s ∈ [r], and use xt,i to represent the block Bt,i. For p > t + 1, we use the variable yp,i

(resp. ȳp,i) to represent the block Bp,i (resp. −Bp,i), where i ∈ [kp]. So we can represent
the intersection property by a factor

ft = 1 + z1 · · · zt−1xt,αtYt+1 · · ·Yr, (2.19)

where αt ∈ [kt] and
Yp ∈

{

zp, yp,1, ȳp,1, . . . , yp,kp, ȳp,kp

}
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for any p > t + 1. Let

xs = (xs,1, . . . , xs,ks), as = (as,1, . . . , as,ks), xas
s =

∏

i∈[ks]

x
as,i

s,i ;

ys = (ys,1, . . . , ys,ks), bs = (bs,1, . . . , bs,ks), ybs
s =

∏

i∈[ks]

y
bs,i

s,i ;

ȳs = (ȳs,1, . . . , ȳs,ks), cs = (cs,1, . . . , cs,ks), ȳcs
s =

∏

i∈[ks]

ȳ
cs,i

s,i .

Denote by NB(π1; i2, j2; . . . ; ir, jr) the number of (r−1)-tuples (π2, . . . , πr) of Bn-partitions
such that πs (2 6 s 6 r) is of type (is, js) and π1, π2, . . . , πr intersect minimally. In the
notation of ft in (2.19), we get

NB(π1; i2, j2; . . . ; ir, jr) = c
[

x
j1
1 zi1

1

]

∑

as+bs+cs=js
26s6r

[

xas

s ybs

s ȳcs

s zis
s

]

Fr,

where

c = j1! · (2i1)!!
∏

26s6r

(2ks)!!
−1, (2.20)

Fr =
∏

t∈[r]

∏

αt∈[kt]

∏

Yp∈{zp,yp,1,ȳp,1,...,yp,kp
,ȳp,kp}

t+16p6r

ft.

The value of the coefficient c in (2.20) can be explained similar to the one in (2.6). We
omit the explanation here.

Now, let NB(π1, k2, . . . , kr) be the number of (r−1)-tuples (π2, . . . , πr) of Bn-partitions
such that πs contains exactly ks block pairs and π1, π2, . . . , πr intersect minimally. Then

NB(π1, k2, . . . , kr) =
∑

is>0, js,1,...,js,ks
>1

js,1+···+js,ks
+is=n

NB(π1; i2, j2; . . . ; ir, jr). (2.21)

We claim that the conditions js,1 + · · · + js,ks + is = n can be dropped in the above
summation. In fact, for any i ∈ {1, 2, . . . , r}, the sum of the degrees of xi, yi, ȳi, and zi

is 0 or 1 in the factor ft. More importantly, this sum is independent of i. In particular,
the sum for i = 1 equals the sum for any 2 6 s 6 r, that is,

js,1 + · · ·+ js,ks + is = j1,1 + · · ·+ j1,k1 + i1 = n. (2.22)

Hence we can ignore the conditions (2.22) in (2.21). This implies that

NB(π1, k2, . . . , kr) = c
[

x
j1
1 zi1

1

]

∑

is>0, as+bs+cs>1

26s6r

[

xas

s ybs

s ȳcs

s zis
s

]

Fr,
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where as + bs + cs > 1 indicates that as,hs + bs,hs + cs,hs > 1 for any 1 6 hs 6 ks. We
will compute

∑
[

xas
s ybs

s ȳcs
s zis

s

]

Fr for s = 2, 3, . . . , r by the following procedure. First, for
s = 2, we have

∑

i2>0,a2+b2+c2>1

[

xa2
2 yb2

2 ȳc2
2 zi2

2

]

Fr =
∑

l2

(

k2

l2

)

(−1)k2−l2Fr,2,

where Fr,2 equals

∏

α1,Yp

(1 + x1,α1Y3 · · ·Yr)
2l2+1

∏

Yp

(1 + z1Y3 · · ·Yr)
l2

∏

t>3, αt, Yp

(1 + z1z3 · · · zt−1xt,αtYt+1 · · ·Yr).

So NB(π1, k2, . . . , kr) equals

c
[

x
j1
1 zi1

1

]

∑

l2

(

k2

l2

)

(−1)k2−l2
∑

is>0, as+bs+cs>1

36s6r

[

xas

s ybs

s ȳcs

s zis
s

]

Fr,2. (2.23)

To compute the inner summation, let

gs =
1

2

(

∏

26i6s

(2li + 1) − 1

)

.

For any s > 2, it is clear that

(2ls+1 + 1)gs + ls+1 = gs+1.

Starting with (2.23), we can continue the above procedure to deduce that for any 2 6

h 6 r − 1, NB(π1, k2, . . . , kr) equals

c
[

x
j1
1 zi1

1

]

∑

l2,...,lh

∏

26i6h

(

ki

li

)

(−1)ki−li
∑

is>0, as+bs+cs>1

h+16s6r

[

xas

s ybs

s ȳcs

s zis
s

]

Fr,h,

where

Fr,h =
∏

α1,Yp

(1 + x1,α1Yh+1 · · ·Yr)
Q

26i6h(2li+1)
∏

Yp

(1 + z1Yh+1 · · ·Yr)
gh

·
∏

t>h+1, αt, Yp

(1 + z1zh+1 · · · zt−1xt,αtYt+1 · · ·Yr) .

In particular, for h = r − 1, we have

NB(π1, k2, . . . , kr) = c
[

x
j1
1 zi1

1

]

∑

l2,...,lr−1

(

∏

26i6r−1

(

ki

li

)

(−1)ki−li

)

G, (2.24)
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where

G =
∑

ar+br+cr>1

[

xar

r ybr

r ȳcr

r

]

∏

α1,Yp

(1 + x1,α1)
Q

26i6r−1(2li+1)
∏

Yp

(1 + z1)
gr−1

∏

αr

(1 + z1xr,αr)

=
∑

lr

(

kr

lr

)

(−1)kr−lr(1 + z1)
gr

∏

α1

(1 + x1,α1)
Q

26i6r(2li+1)
.

Since the number of Bn-partitions of type j1 equals

c′ =

(

n

i1

)(

n − i1

j1

)

2n−i1−k1

k1!
=

(2n)!!

(2i1)!!(2k1)!!j1!
,

by (2.24), we obtain

NB
n,r =

∑

j1,1,...,j1,k1
>1

i1+j1,1+···+j1,k1
=n

c′
∑

k2,...,kr

NB(π1, k2, . . . , kr)

= (2n)!!
∑

k2,...,kr
l2,...,lr

(

∏

26s6r

(

ks

ls

)

(−1)ks−ls

(2ks)!!

)

∑

i1,k1

1

(2k1)!!

[

zi1
1

]

(1 + z1)
grH, (2.25)

where

H =
∑

i1+j1,1+···+j1,k1
=n

j1,1, j1,2, ..., j1,k1
>1

[

x
j1
1

]

∏

α1

(1 + x1,α1)
Q

26i6r(2li+1)

=
∑

l1

(

k1

l1

)

(−1)k1−l1
[

xn−i1
]

(1 + x)l1
Q

26i6r(2li+1).

Using the identity
∑

k

(

k

l

)

(−1)k−l

(2k)!!
=

e−1/2

(2l)!!
, (2.26)

we can simplify the summation over k1, k2, . . . , kr > 0 in (2.25) in the following way.

NB
n,r = (2n)!!

∑

k1,k2,...,kr
l1,l2,...,lr





∏

t∈[r]

(

kt

lt

)

(−1)kt−lt

(2kt)!!





∑

i1

[

xn−i1zi1
1

]

(1 + z1)
gr(1 + x)l1

Q

26i6r(2li+1)

=
(2n)!!

er/2

∑

l1,l2,...,lr

1

(2l1)!!(2l2)!! · · · (2lr)!!
[xn] (1 + x)gr+l1

Q

26i6r(2li+1). (2.27)

To further simplify the above summation, we observe that

gr + l1
∏

26i6r

(2li + 1) =
1

2





∏

t∈[r]

(2lt + 1) − 1



 . (2.28)

Substituting (2.28) into (2.27), we arrive at (1.7). This completes the proof.

For example, we have N1,r = 2r − 1 and NB
2,3 = 187.
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3 Minimally intersecting Bn-partitions without zero-

block

In this section, we consider Bn-partitions without zero-block and give analogous results
for the minimally intersecting problems which was investigated in the last section. Clearly
Bn-partitions without zero-block form a meet-semilattice under refinement. The minimal
Bn-partition without zero-block is still 0̂B. We will omit the redundant proofs.

Inspecting the proof of Theorem 2.1, we can restrict our attention to the Bn-partitions
without zero-block by setting i0 = 0 and X = ∅ in (2.10). Concretely speaking, let π be
a Bn-partition consisting of k block pairs of sizes i1, i2, . . . , ik listed in any order. For a
given l > 1, the number ND(π; l) of Bn-partitions π′ consisting of l block pairs, which
intersect π minimally, is equal to

ND(π; l) =
i!

(2l)!!

[

xi
]





∏

α∈[k]

(1 + xα)2 − 1





l

. (3.1)

The number of Bn-partitions without zero-block that intersect π minimally is given by

ND(π) =
i!√
e

[

xi
]

exp





1

2

∏

α∈[k]

(1 + xα)2



 . (3.2)

For example, let n = 3, π = {±{2}, ±{1,−3}} and l = 2. Then (3.1) yields ND(π; 2) = 5.
In fact, the Bn-partitions consisting of 2 block pairs which intersect π minimally are
exactly the 5 partitions consisting of two block pairs except for π itself.

Let Nn be the number of Bn-partitions without zero-block. Taking π = 0̂B in (3.2),
we obtain that

Nn =
1√
e

∑

k>0

(2k)n

(2k)!!
. (3.3)

Let Nn(k) denote the number of Bn-partitions containing k block pairs but no zero-block.
It should be noted that the formula (3.3) can be easily deduced from the relation

Nn(k) = 2n−kS(n, k), (3.4)

where S(n, k) are the Stirling numbers of the second kind, and the following identity on
the Bell polynomials [9, 10]:

n
∑

k=0

S(n, k)xk =
1

ex

∑

k>0

kn

k!
xk.

Inspecting the proof of Corollary 2.4, we obtain the following result. Let ND
n,2(k)

denote the number of ordered pairs (π, π′) of minimally intersecting Bn-partitions without
zero-block such that π consists of exactly k block pairs. Then

ND
n,2(k) =

(2n)!!

(2k)!!
√

e
[xn]

∑

j>0

1

(2j)!!

[

(1 + x)2j − 1
]k

. (3.5)
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The number ND
n,2 of ordered pairs (π, π′) of minimally intersecting Bn-partitions without

zero-block is given by

ND
n,2 =

2n

e

∑

k, l>0

(2kl)n

(2k)!! (2l)!!
. (3.6)

For example, ND
1,2 = 1, ND

2,2 = 7, ND
3,2 = 75.

The following theorem is an analogue of Theorem 1.1 with respect to the meet-
semilattice of Bn-partitions without zero-block.

Theorem 3.1 For r > 2, the number of minimally intersecting r-tuples (π1, π2, . . . , πr)
of Bn-partitions without zero-block equals

ND
n,r =

2n

er/2

∑

k1, ..., kr >0

(2r−1 k1 k2 · · · kr)n

(2k1)!! (2k2)!! · · · (2kr)!!
. (3.7)

Proof. Let 1 6 t 6 r. Let jt = (jt,1, jt,2, . . . , jt,kt) be a composition of n. Assume that
πt is of type (0; jt). Let ND(π1, j2, . . . , jr) be the number of (r − 1)-tuples (π2, . . . , πr) of
such Bn-partitions such that (π1, π2, . . . , πr) is minimally intersecting. By the argument
in the proof of Theorem 2.1, we find

ND(π1, j2, . . . , jr) = c ·
[

xj1
]

∑

bs+cs=js

[

yb2
2 ȳc2

2 · · ·ybr

r ȳcr

r

]

f(j), (3.8)

where

c = j1!
∏

26s6r

(2ks)!!
−1,

f(j) =
∏

α∈[k1]

Ys∈{ys,1, ȳs,1, ..., ys,ks
, ȳs,ks}

(1 + xαY2Y3 · · ·Yr) .

Let ND(π1, k2, . . . , kr) be the number of (r − 1)-tuples (π2, . . . , πr) of Bn-partitions
such that πs consists of ks block pairs, and π1, π2, . . . , πr are minimally intersecting. It
follows from (3.8) that

ND(π1, k2, . . . , kr) = c ·
[

xj1
]

∑

bs+cs=js>1

[

yb2
2 · · · ȳcr

r

]

f(j)

= j1!
∑

l2,...,lr





[

xj1
]

∏

α∈[k1]

(1 + xα)2r−1l2···lr





∏

26s6r

(

ks

ls

)

(−1)ks−ls

(2ks)!!
.

Consequently,

ND
n,r =

∑

k1

1

(2k1)!!

∑

j1,1+···+j1,k1
=n

j1,1,...,j1,k1
>1

2nn!

j1!

∑

k2,...,kr

ND(π1, k2, . . . , kr)

= (2n)!!
∑

k1,k2,...,kr
l1,l2,...,lr

∏

16s6r

(

ks

ls

)

(−1)ks−ls

(2ks)!!
[xn](1 + x)2r−1l1l2···lr .
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Applying (2.26), we can restate the above formula in the form of (3.7). This completes
the proof.

For example, when n = 2 and r = 3, by (3.7) we find that ND
2,3 = 25. In fact, there

are 3 B2-partitions without zero-block, that is,

0B, π1 = {±{1, 2}}, π2 = {±{1,−2}}.

Among all 27 3-tuples of B2-partitions without zero-block, there are only two partitions
(π1, π1, π1) and (π2, π2, π2) that are not minimally intersecting.

Acknowledgments. We are grateful to the referee for helpful comments. This work was
supported by the 973 Project, the PCSIRT Project of the Ministry of Education, and the
National Science Foundation of China.

References

[1] M. Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159
(1996), 13–33.

[2] A. Björner and F. Brenti, Combinatorics of Coxeter Groups, 2005, Springer Sci-
ence+Business Media, Inc.

[3] A. Björner and M.L. Wachs, Geometrically constructed bases for homology of parti-
tions lattices of types A, B and D, Electron. J. Combin. 11 (2004), #R3.

[4] E.R. Canfield, Meet and join within the lattice of set partitions, Electron. J. Combin.
8 (2001), #R15.

[5] T.A. Dowling, A class of geometric lattices based on finite groups, J. Combin. Theory
Ser. B 14 (1973), 61–86.

[6] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Ad-
vanced Mathematics 29, Cambridge Univ. Press, Cambridge, 1990.

[7] B. Pittel, Where the typical set partitions meet and join, Electron. J. Combin. 7
(2000), #R5.

[8] V. Reiner, Non-crossing partitions for classical reflection groups, Discrete Math. 177
(1997), 195–222.

[9] J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1980.

[10] S. Roman, The Umbral Calculus, Academic Press, New York, 1984.

the electronic journal of combinatorics 17 (2010), #R22 16


