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Abstract

In [14], the analogue of the promotion operator on crystélype A under a general-
ization of the bijection of Kerov, Kirillov and Reshetikhiretween crystals (or Littlewood—
Richardson tableaux) and rigged configurations was prapdsehis paper, we give a proof
of this conjecture. This shows in particular that the bimttbetween tensor products of

typeA,(f) crystals and (unrestricted) rigged configurations is ameffrystal isomorphism.

1 Introduction

Rigged configurations appear in the Bethe Ansatz study aftlxaolvable lattice models as
combinatorial objects to index the solutions of the Betheatigns [5, 6]. Based on work by
Kerov, Kirillov and Reshetikhin [5, 6], it was shown in [7]dhthere is a statistic preserving bi-
jection ® between Littlewood-Richardson tableaux and rigged cordions. The description

of the bijection® is based on a quite technical recursive algorithm.

Littlewood-Richardson tableaux can be viewed as higheghwerystal elements in a ten-
sor product of Kirillov—Reshetikhin (KR) crystals of typ@ﬁf). KR crystals are affine finite-
dimensional crystals corresponding to affine Kac—Moodglatgs, in the setting of [7] of type
AP, The highest weight condition is with respect to the finitbagebrad,. The bijection
® can be generalized by dropping the highest weight requintime the elements in the KR
crystals [1], yielding the set of crystal patis On the corresponding set of unrestricted rigged
configurationsRC, the A,, crystal structure is known explicitly [14]. One of the remiaig
open questions is to define the full affine crystal structuréhe level of rigged configurations.

*Partially supported by NSF grants DMS—0501101, DMS-06%26A4d DMS—0652652.
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Given the affine crystal structure on both sides, the bipecft has a much more conceptual
interpretation as an affine crystal isomorphism.

In type AV, the affine crystal structure can be defined using the pranaiperatorpr,
which corresponds to the Dynkin diagram automorphism mappode: to i+ 1 modulon + 1.
On crystals, the promotion operator is defined using jetiadetin [15, 17]. In [14], one of
the authors proposed an algoritipn on RC and conjectured [14, Conjecture 4.12] that
corresponds to the promotion operataerunder the bijectiorb. Several necessary conditions
of promotion operators were established and it was shownritspecial casepr is the correct
promotion operator.

In this paper, we show in general thlb pr o ®—! = pr (i.e., ® is the intertwiner between
pr andpr):

P -2, RC

prl lﬁ

P —— RC.
@

Thuspr is indeed the promotion oRC and® is an affine crystal isomorphism.

Another reformulation of the bijection from tensor prodsiof crystals to rigged configura-
tions in terms of the energy function of affine crystals aralitiverse scattering formalism for
the periodic box ball systems was givenin [8, 9, 11, 12, 13].

This paper is organized as follows. In Section 2, we reviesvdéfinitions of crystal paths
and rigged configurations, and state the main results ofpiyeer. Theorem 2.38 shows that
pr is the analogue of the promotion operator on rigged configana and Corollary 2.40 states
that ® is an affine crystal isomorphism. In Section 3, we explaindb#ine of the proof and
provide a running example demonstrating the main ideagid®sc4 to 9 contain the proofs of
the results stated in the outline. Further technical resar delegated to the appendix.

Acknowledgements

We would like to thank Nicolas Thiéry for his support with MAD-Combinat [4] and Sage-
Combinat [10]. An extended abstract of this paper appearethe FPSAC 2009 proceed-
ings [18].

2 Preliminaries and the main result

In this section we set up the definitions and state the mauitsesf this paper in Theorem 2.38
and Corollary 2.40. Most definitions follow [1, 7, 14].

Throughout this paper the positive integestands for the rank of the Lie algebrg,. Let
I = [n] be the index set of the Dynkin diagram of tyde. LetH = I x Z-, and defineB to
be a finite sequence of pairs of positive integers

B = ((ry,s1),...,(rg, sg))
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with (r;, s;) € Handl <i < K.

B represents aequence of rectanglew/here thei-th rectangle is of height; and widths;.
We sometimes use the phrase “leftmost rectangle” (regitimost rectangle”) to mean the first
(resp. last) pair in the list. We uge, = (r;, s;) as thei-th pairin B.

Given a sequence of rectanglBswe will use the following operations for successively re-
moving boxes from it. In the following subsections, we detime set of path®(B) and rigged
configurationsRC(B), and discuss the analogous operations define®@8) and RC(B).
They are used to define the bijectidnbetweenP(B) and RC(B) recursively. The proof of
Theorem 2.38 exploits this recursion.

Definition 2.1. [1, Section 4.1,4.2].
1. If B=((1,1),B), letlh(B) = B’. This operation is callet&ft-hat.

2. If B=((r,s),B")withs > 1, letls(B) = ((r, 1), (r,s — 1), B"). This operation is called
left-split. Note that whers = 1, Is is just the identity map.

3. f B=((r,1),B)withr > 2,letlb(B) = ((1,1), (r—1, 1), B"). This operation is called
box-split.

2.1 Inhomogeneous lattice paths

Next we define inhomogeneous lattice paths and present #dtegares of the left-hat, left-split,
box-split operations on paths.

Definition 2.2. Given(r, s) € H, defineP,(r, s) to be the set of semi-standard Young tableaux
of (rectangular) shape”) over the alphabefl1,2,...,n + 1}.

Recall that for each semi-standard Young tableawe can associate a weight(t) =
(A1, A2, ..., A\uy1) inthe ambient weight lattice, whepe is the number of times thatppears in
t. Moreover,P, (r, s) is endowed with a typel,,-crystal structure, with the Kashiwara operator
eq, fo for 1 < a < n defined by the signature rule. For a detailed discussionseasample [3,
Chapters 7 and 8.

Definition 2.3. Given a sequencl as defined above,
PN(B) = Pn(rla 51) Q- Pn(’l“[{, SK).

As a setP,(B) is a sequence of rectangular semi-standard Young table#uis. also
endowed with a crystal structure through the tensor produlet The Kashiwara operators
eq, fo for 1 < a < n naturally extend from semi-standard tableaux to a list bfedaux using
the signature rule. Note that in this paper we use the oppasiKashiwara’s tensor prod-
uct convention, that is, all tensor products are revertedr bF @ by @ --- @ b € P,(B),
wt(b @by ®- - - ®b) = wt(by) +wt(be) +- - - +wt(bx ). For further details see for example [1,
Section 2].
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Definition 2.4. Let A = (A1, Ao, ..., \y11) be alist of non-negative integers. Define
Pu(B,A\) = {p € Pu(B) | wt(p) = \}.

Example 2.5.Let B = ((2,2), (1,2),(3,1)). Then

—
[\]

p = ®[1]2]®[2]
212

is an element oP;(B) andwt(p) = (3,4, 1,1).

We often omit the subscript, writing P instead ofP,,, whenn is irrelevant or clear from
the discussion.

Definition 2.6. Let A = (A, Ao, ..., A1) be a partition. Define the set of highest weight paths
as

Pu(BA) = {p € Pu(B,N) | es(p) = Dfori=1,2,....n}

We often refer to a rectangular tableau just as a “rectanghegn there is no ambiguity. For
example, the leftmost rectanglejrof the above example is the tableau

1]2
23]

For anyp € P(B), therow word (respectivelycolumn word) of p, row(p) (respectively
col(p)), is the concatenation of the row (column) words of eachargte inp from left to right.

Example 2.7. The row word of thep of Example 2.5 isow(p) = row( 12 ) -row([1]2]) -

23

row(| 2 |) = 2312-12-421 = 231212421, and similarly the column word isl(p) = 213212421.

Definition 2.8. We sayp € P(B) andq € P(B’) are Knuth equivalent, denoted py=x ¢, if
their row words (and hence their column words) are Knuth\ejant.

Example 2.9.Let B’ = ((2,2),(3,1),(1,2)),and

—
[\]

q = ®[2|®[1]2]€ P(B)
213

thenp =g q.

The following maps orP(B) are the counterparts of the malbs Ib andls defined onB.
By abuse of notation, we use the same symbols as on rectangles

Definition 2.10. [1, Sections 4.1,4.2].
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1. Letb = c® ' € P((1,1), B'). Thenlh(b) = ¥/ € P(B').

2. Letb=c®V € P((r,s), B'), wherec = cic, - - - ¢, and¢; denotes the-th column ofec.
Thenls(b) =c; ®cy---cs V.

b
by
3. Letb=—|®@b € P((r,1),B"), whereb, < --- <b,. Then
by
b
b(b) =| b |@| : |V
br—l

2.2 Rigged configurations

A general definition of rigged configuration of arbitrary ggcan be found in [14, Section 3.1].
Here we are only concerned with typk, rigged configurations and review their definition.
Given a sequence of rectanglBs following the convention of [14] we denote timeulti-
plicity of a given(a,i) € H in B by settingLEa) =#{(r,s) e B|r=a,s=1}.
The (highest-weight) rigged configurations are indexed bgquence of rectanglésand a
dominant weight\. The sequence of partitions= {v(? | a € T} is a(B, A)-configuration if

S imPag= > LA, — A, (2.1)

(a,i)eH (ai)eH

wheremga) is the number of parts of lengthin partition»(®, o, is thea-th simple root and\,,
is thea-th fundamental weight. Denote the set of @, A)-configurations byC(B, A). The
vacancy numberof a configuration is defined as

p@ =3 min(i, HL® = S (aulay) mingi, j)m?.

j=1 (b,j)eEH

Here(-|-) is the normalized invariant form on the weight lattiPesuch thatd,, = («,|a) is
the Cartan matrix (of typel,, in our case). ThéB, A)-configuratiornv is admissibleif pﬁ“) >0
for all (a,i) € H, and the set of admissibié3, A)-configurations is denoted (B, A).

A partitionp can be viewed as a linear orderifyg >) of a finite multiset of positive integers,
referred to aparts, where parts of different lengths are ordered by theire/adund parts of the
same length are given an arbitrary ordering. Implicitly,emhwe draw a Young diagram of
we are giving such an ordering. Ongeis specified<, <, and> are defined accordingly.

A labelling of a partitionp is then a map/ : (p, ~) — Zx, satisfying that ifi, j € p are
of the same value and- j, thenJ(i) > J(j) as integers. A paifz, J(x)) is referred to as a
string, the partz is referred to as the size or length of the string ditd) as itslabel.
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Remark 2.11. The linear ordering- on parts of a partitiorp can be naturally viewed as an
linear ordering on the corresponding strings. It is dingétbm its definition that- is a finer
ordering than> that compares the size (non-negative integer) of the striAgother important
distinction is that> can be used to compare strings from possibly different foams.

Given two stringss andt, the meaning of equality is clear from the context in most cases.
For example, ifs andt are strings from different partitions, then= ¢ means that they are of
the same size§ = ¢t — 1 means that the length ofis 1 shorter than that af In the case that
s andt are from the same partition and ambiguity may arise, we veset t to means andi¢
are the same string and explicitly writé = |¢| to mean that and¢ are of the same length but
possibly distinct strings.

A rigging J of an (admissible}] B, A)-configurationv = (v(V ... (™) is a sequence of
maps/ = (J(@), eachJ@ is a labelling of the partition*) with the extra requirement that for
any parti € v

0< () < pl®.

For each stringi, J( (i), the difference:J@ (i) = p{”) — J@ (i) is referred to as theolabel
of the string.cJ = (¢J@) as a sequence of maps defined above is referred to astigging
of v. A string is said to beingular if its colabel is 0.

Definition 2.12. The pairrc = (v, J) described above is called a (restricteidyed configura-
tion. The set of all rigged B, A)-configurations is denoted BC,,(B, A). In addition, define
RC(B) = Uep+ RC(B, A), whereP is the set of dominant weights.

Remark 2.13. SinceJ andc.J uniquely determine each other, a rigged configuratiocan be
represented either by, .J) or by (v, ¢J). In particular, ifz is a part of(*) then(x, J@ (x)) and
(z,eJ@(z)) refer to the same string. We will use these two represemtsfiterchangeably de-
pending on which one is more convenient for the ongoing disicun. Nevertheless, in the later
part of this paper, when we say that a string is unchangesépred under some construction,
we mean the length and the label of the string being presetlieccolabel may change due to
the change of the vacancy number resulted from the congtruct

Equation (2.1) provides an obvious way of defining a weightfion onRC(B). Namely,
for rc € RC(B)
wt(re) = Z iLEa)Aa - Z imga)aa. (2.2)

(a,i)eH (ai)eH

Remark 2.14. When working with rigged configurations, it is often convemi to take the
fundamental weights as basis for the weight space. On ther bind, when working with
lattice paths we often use the ambient weight sgéice. Conceptually, this distinction is not
necessary, as weights can be considered as abstract vadtwsveight space. One can convert
from one representation to the other by identifying the fameéntal weight\; with (1¢, 0" 1)

as ambient weight. However, there is a subtlety in this ceiwa resulted from the fact that
the weights are not uniquely represented by ambient weidttsexample(0™*!) and (1" *1)
represent the same vector 4#), weight space. See Remark 2.23 for the conversion we use in
this paper.
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Remark 2.15. From the above definition, it is clear thRC(B) is not sensitive to the ordering
of the rectangles iB.

Definition 2.16. [14, Section 3.2] LeB be a sequence of rectangles. Define the senhod-
stricted rigged configurations RC(B) as the closure oRC(B) under the operator,, e, for
a € I, with f,, e, given by:

1. Definee, (v, J) by removing a box from a string of lengthin (v, J)(@ leaving all colabels
fixed and increasing the new label by one. Heéres the length of the string with the
smallest negative label of smallest length. If no such gtexistse, (v, J) is undefined.

2. Definef,(v,J) by adding a box to a string of lengthin (v, .J)(* leaving all colabels
fixed and decreasing the new label by one. Heis the length of the string with the
smallest non positive label of largest length. If no suchngtexists, add a new string of
length one and label -1. If in the result the new rigging isatyee than the corresponding
vacancy number, thefy, (v, J) is undefined.

The weight function (2.2) defined diC(B) extends tdRC(B) without change.

As their names suggesf, ande, are indeed the Kashiwara operators with respect to the
weight function above, and define a crystal structur&®6fi B). This was proved in [14].

From the definition off,, it is clear that the labels of parts in an unrestricted rajgenfigu-
ration may be negative. It is natural to ask what shapes d&dd@an appear in an unrestricted
rigged configuration. There is an explicit characterizaid RC(B) which answers this ques-
tion [1, Section 3]. The statement is not directly used inaof, so we will just give a rough
outline and leave the interested reader to the original pfapdurther details: In the definition
of RC(B), we required that the vacancy number associated to eaclispash-negative. We
dropped this requirement fARC(B). Yet the vacancy numbers IRC(B) still serve as the
upper bound of the labels, much like the role a vacancy nurplass for a restricted rigged
configuration. For restricted rigged configurations, thedo bound for the label of a part is
uniformly 0. For unrestricted rigged configurations, trésniot the case. The characterization
gives a way on how to find lower bound for each part.

Remark 2.17. By Remark 2.15 and Definition 2.16, it is clear that'(B) is not sensitive to
the ordering of the rectangles .

Example 2.18.Here is an example on how we normally visualize a restricte@stricted
rigged configuration. LeB = ((2,2), (1,2),(3,1)). Then

re= [ [ -1 11 []-1

is an element oRC(B, —A; + 3A,).

In this example, the sequence of partitions ((2),(1),(1)). The number that follows each
part is the label assigned to this part By The vacancy numbers associated to these parts
arepl’ = —1, p{¥ = 1, andp!¥ = 0. Note that the labels are all less than or equal to the
corresponding vacancy number. In the case that they ard,exjga for the parts in!) and
v?), those parts are called singular as in the case of restriggged configuration. In this

examplerc € RC \ RC.
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The following maps oRC(B) are the counterparts @i, b andls maps defined o.
Definition 2.19. [1, Section 4.1,4.2] .

1. Letrc = (v,J) € RC(B). Thenlh(rc) € RC(Ih(B)) is defined as follows: First set
¢ = 1 and then repeat the following process fok= 1,2, ...,n — 1 or until stopped.
Find the smallest index > ¢(“~1 such that/(@ (i) is singular. If no such exists, set
rk(v, J) = a and stop. Otherwise sét) = i and continue withu + 1. Set all undefined
({9 0 0.

The new rigged configuratiof, J) = Ih(v, J) is obtained by removing a box from the
selected strings and making the new strings singular again.

2. Letrc = (v, J) € RC(B). Thenls(rc) € RC(Is(B)) is the same a&, J). Note however
that some vacancy numbers change.

3. Letrc = (v,J) € RC(B) with B = ((r,1), B'). Thenlb(rc) € RC(Ib(B)) is defined
by adding singular strings of lengthto (v, .J)® for 1 < a < r. Note that the vacancy
numbers remain unchanged under

Remark 2.20. Although RC(B) does not depend on the ordering of the rectangleB {see
Remark 2.17), it is clear that the above maps depend on tlegingdn B.

In what follows, it is often easier to work with the inversdsioe above maph, Is andlb
maps. In the following we give explicit descriptions of thkaaverses. One can easily check
that they are really inverses as their name suggests. Sefrals

Definition 2.21. .

1. Letrc € RC(B, \) for some weight\, and let~ € [n+1]. The ma[i_h_1 takesrc andr as
input, and returnsc’ € RC(Ih™*(B), A + ¢,) by the following algorithm: Letl) = o
forj > r. Fork =r—1,...,1 select the--maximal singular string inc*) of lengthd*)
(possibly of zero length) such thét < d*+Y. Thenrc is obtained fromc by adding
a box to each of the selected strings, making them singuEinagnd leaving all other
strings unchanged.

We denote the sequence of stringsdrselected in the above algorithm by
D, = (D™ .. DW)

Itis called thd_h_l-sequenceof rc with respect to'. For simplicity for future discussions,
we append)® = (0, 0) to the end of the sequence.

In light of Remark 2.11, we writdd®*) < D*+1) and say thaD, is a weakly decreasing
sequence.

2. Letrc = (v, J) € RC(B) whereB = ((r,1), (r, s), B'). Thenls (1) € RC(Is"'(B))
is the same a§/, J).
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Note that due to the change of the sequence of rectanglegathacy numbers for parts
in v(") of size less thas + 1 all decrease by 1, so the colabels of these parts decrease

accordingly. Thuds ' is only defined onrc € RC((r, 1), (r, s), B') such that the colabels
of parts inrc®) of size less tham + 1 is > 1. All rcs that satisfy the above conditions

form Dom(Is ).

3. Letrc € RC(B) whereB = ((1,1), (r — 1,1), B'). Thenlb ' (1c) € RC(Ib""(B)) is
defined by removing singular strings of lengttirom rc® for 1 < a < r, the labels of
all unchanged parts are preserved.

Note that the vacancy numbers remain unchanged dhder As a result the colabels of
all unchanged parts are preserved.

The collection of alkc € RC((1,1), (r — 1,1), B’) such that there is a singular part of
size 1 inrc®@ for 1 < a < r forms Dom(Ib ).

2.3 The bijection betweenP(B) and RC(B)

The map® : P(B,\) — RC(B, \) is defined recursively by various commutative diagrams.
Note that it is possible to go froB® = ((rq, s1), (r2, $2), - - ., (T, Sk )) to the empty crystal via
successive application &, Is andlb. For further details see [1, Section 4].

Definition 2.22. Define the mapb : P(B,\) — RC(B, \) such that the empty path maps to
the empty rigged configuration and such that the followingditons hold:

1. Suppose3 = ((1,1), B’). Then the following diagram commutes:

P(B,\) 2, RC(B, \)

ol |s

U POb(B).u) —— |J RCON(B),n)

HENT HENT

where\~ is the set of all non-negative tuples obtained fréiny decreasing one part.

2. Supposeé3 = ((r, s), B") with s > 2. Then the following diagram commutes:

P(B,)) — RO(B,\)

| s

P(s(B),\) — RC(Is(B), \).

3. Suppose&3 = ((r, 1), B") with » > 2. Then the following diagram commutes:

P(B,)) —=— RC(B,\)

ol E

P(Ib(B), A) —— RC(Ib(B), ).

THE ELECTRONIC JOURNAL OF COMBINATORICS 17 (2010), #R24 9



Remark 2.23. By definition,® preserves weight. As pointed out in Remark 2.14, the ambient
weight representation is not unique. Yet foe P(B), wt(p) is the content op, which provides

a “canonical” ambient weight representation. Passingutina, on RC(B) side this provides

a “canonical” conversion between fundamental weight anbiant weight. In particular, when
we sayrc € RC hascanonical ambient weightA = (\y,..., \,1) we mean that\ is the
content of® ! (rc). Equivalently, we are requiring that the sum)ois the same as the total area
of B

n+1
Z A = Z r X Ss.
i=1 (r,s)eB

2.4 Promotion operators

Thepromotion operatopr onP,(B) is defined in [17, page 164]. For the purpose of our proof,
we will phrase it as a composition of ofiting operator and then seversliding operators
defined orP, (B).

Definition 2.24. The lifting operator onP,(B) lifts p € P,(B) tol(p) € P,+1(B) by adding
1 to each box in each rectanglezof

Definition 2.25. Givenp € P,.1(B), the sliding operatop is defined as the following algo-
rithm: Find inp the rightmost rectangle that containst 2, remove one appearanceof- 2,
apply jeu-de-taquin on this rectangle to move the empty baké opposite corner, fill i in
this empty box. If no rectangle containst 2, thenp is the identity map.

The application of jeu-de-taquin on a tablegdescribed above naturally defineslaling
route on S, which is just the path along which the empty box travels ftomer right corner to
upper left corner.

Example 2.26.Let S = . After sliding lower right outside corner to the upper left

S| O W

[ U NO

O DN =
D= W

. The sliding route of'is

inside corner, we obtaip(S) =

DO W
|| Ot W

D= N

—~ O =D

((4,3),(3,3),(2,3),(2,2),(1,2),(1,1)).

Definition 2.27. Forp € P, (B), define the promotion operator
pr(p) = p™ o l(p)

wherem is the total number of. + 2 in p.

The proposed promotion operaf@aron RC,,(B) is defined in [14, Definition 4.8]. To draw
the parallel withpr we will phrase it as a composition of one lifting operator d@hein several
sliding operators defined dRC(B).
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Definition 2.28. The lifting operator on RC,,(B, \) lifts rc = (v, J) € RC, (B, \) tol(rc) €
RC,;1(B, \) by settingl(rc) = f f;2 - f243 (rc), whereX = (Ay,..., \,11) is the canoni-
cal ambient weight ofc (see Remark 2.23) and= (0, A1, ..., A\ny1) is the canonical ambient
weight of/(rc). Notice that we use the fact thRIC,,(B) is naturally embedded iRC,,.(B)
by simply treating thén -+ 1)-st partition("+1) to bef().

Definition 2.29. Givenrc € RC,.(B), the sliding operatop is defined by the following
algorithm: Find the--minimal singular string inc™*V). Let the length b&"*!). Repeatedly
find the ~-minimal singular string inc® of length¢®) > ¢*+V for all 1 < k < n. Shorten
the selected strings by one and make them singular again.

If the --minimal singular string inc™*Y) does not exist, thepis the identity map.

Let/ = (J™+Y .. 1MW 1) where fork = n + 1,...,1 the entryI®® is just the string
chosen fromc® in the above algorithm, anfl®) = (0o, 0). We call I the p-sequenceof rc.
We say7 is not well-defined onc if the =-minimal singular string inc™*!) exists but the
p-sequence can not be constructed following above algor(se® Example 2.32 for what could
go wrong).

In light of Remark 2.11, we writd®) > ¢+ and say that/ is a weakly increasing
sequence.
We note here that the above definitiongk a reformulation of [14, Definition 4.8].

Definition 2.30. Define

pr(rc) = p" o l(rc)
wherem is the number of boxes ire(" 1),

Remark 2.31. It is an easy matter to show thiat= ® o [ 0 . Indeed, we could have defined
I(p) = M f32 - £ (p), whered = (A, A, . . ., \us1) is the weight of. Since it was shown

in [14] that® is an A, -crystal isomorphism, the statement follows.

There is a question in Definition 2.27 on whether a sequenee pfoperators can always
be applied. The same question abputan be asked for Definition 2.30. The following are
examples on how things could go wrong:

Example 2.32.Let

11
P = 414 €P3(2,2).
If we try to constructp(p), we realize that after removing a copy #fand move the empty

box to the upper left corner we obtﬁirl‘. le , and filling the empty box with will violate the

column-strictness of semi-standard Young tableaux.
On theRC side, let

rc= 0 [T ]g [ []o €RCs(22).

We see thap(rc) is not well-defined.
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Therefore,p andp are partial functions of?,,,; andRC,, ;. This, however, will not cause
problems in our discussion because of the following two mdna

Remark 2.33. p is well-defined orp* (Img(1)) for any k. This follows from the well-known
fact that if " is a semi-standard rectangular tableau, and if we remowebd that contain the
largest number (which is a horizontal strip in the last rowyl apply jeu-de-taquin to move
these empty cells to the upper left corner, then these engityform a horizontal strip.

p is well-defined orp* (Img(1)) for any k. This is implied by [14, Lemma 4.10].

Thus we could have just restricted the domainp ¢:

Definition 2.34. Define
Dom(p) = | J p"(Img(1)).
k=0,1,2,...
Remark 2.35. It is not known at this stage thatis fully defined on®(Dom(p)). In fact, itis a
consequence of our proof.

Given a promotion operator in typé&,, we can define the affine crystal operateyand f,
as
ep =pr roejopr and fo=prtofiopr.
An A, -crystal together witleg and f, is called anaffine crystal. An affine crystal isomor-
phism between crystal® and B’ is a bijective mapy : B — B’ such thatf; o g(b) = g o f;(b)
forallb € Bandi € {0,1,...,n}. See [17, page 164] for further discussions.

2.5 Combinatorial R-matrix and right-split

Let B = ((r1,s1), ..., (rk, sx)) be a sequence of rectangles, andrlet S be a permutation
of K letters.o acts onB by 0(B) = ((75(1), S61)), - - - » (To(K)» So(K)))-

The R-matrix is the affine crystal isomorphisi®, : P(B) — P(o(B)), which sends
U ® - @ ug 10 Uy ® -+ @ us(k), Whereu; € P(r;, s;) is the unique tableau of content
(si7). It was shown in [7, Lemma 8.5] that for anmy ® o R, o ®~! = id on RC(B). (Note
that by Remark 2.15RC(B) and RC(c(B)) defines the same set, thus the above statement
makes sense.) Together with the fact tRatpreserves thel,,-crystal structure and the fact that
RC(B) andRC(c(B)) defines the same set (see Remark 2.17) we have the follovsod.re

Theorem 2.36.For anyo, ® o R, o ®~! = id onRC(B).
In the remainder of the paper, we often just wikend omit the subscript.

Definition 2.37. rs, Ts are calledight-split . rs operates on sequences of rectangles as follows:
Let B = ((r1,s1),...,(rk,SK)), and supposex > 1 (i.e, the rightmost rectangle is not a
single column). Themns(B) = ((r1, s1),- .-, (rK, sk — 1), (rk, 1)), thatis,rs splits one column
off the rightmost rectangle.

7s operates oRC(B) as follows: Ifrc € RC(B), thents(rc) € RC(rs(B)) is obtained by
increasing the labels by 1 for all partsiiet™<) of size less than,. Observe that this will leave
the colabels of all parts unchanged.

rs, which operates o(B), is defined ass = ® ots 0 1.
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2.6 The main result

We now state the main result of this paper.
Theorem 2.38.Let B = ((r1,s1),.-.,(rk,sx)) be a sequence of rectangles, aRdB),
RC(B), @, pr, andpr as given as above. Then the following diagram commutes:

P

P(B) —*— RC(B)

e |

P(B) —— RC(

P

e
g

(2.3)

Sy

).
Example 2.39.Take
p=T2]e L3 e Py(1),(2,2)), sothat pr(p) =[3]@ 1+

Under the bijectionb they map to

re=o(p)= [ ] __|1_1 I
and  ®(pr(p)= [Jo [ [1o []-1

It is not too hard to check that
loo) = (1111 H-Ho == 17,
and then using Definition 2.3@7(®(p)) = ®(pr(p)).

Using that the promotion operator oh),-crystals defines an affine crystal, this also yields
the following important corollary.

—_
—_

Corollary 2.40. The bijection® between crystal paths and rigged configurations is an affine
crystal isomorphism.

3 Outline of the proof of Theorem 2.38

In this section, we draw the outline of the proof and statemafiortant results needed in the
proof, but leave the details of the proofs to later sectidMs.also illustrate the main ideas with
a running example.
By Remark 2.31, for the proof of Theorem 2.38 it suffices tomsttwat the following diagram
commutes:
Dom(p) —— ®(Dom(p))

0| E

Dom(p) —— ®(Dom(p))

In particular, we need to show thais defined onb(Dom(p)).

THE ELECTRONIC JOURNAL OF COMBINATORICS 17 (2010), #R24 13



3.1 Setup the running example

As an abbreviation, for any € Dom(p), we useD(p) to mean the following statement:

p(®(p)) is well-defined and the diagram

(]
e

k)
0 — 3
e — o
<l

e
(]

commutes”.

Forp, ¢ € Dom(p) we writeD(p) ~» D(q) to mean thaD(p) reduces td(q), that is,D(q)
is a sufficient condition foD(p).

We will let » = 3 and use the following € P5((2,2), (3,2), (2,2)) as the starting point of
the running example:

12
2|2 1[2
p = ®|2|3|® :
414 314 2(3
After lifting to P, we have:
213
l(p) = 33@34®23€D0m(p).
515 15 34

Our goal is to shoviD(I(p)) by a sequence of reductions. Note that the rightmdqsthich
isn + 2 for n=3) appears in the second rectangle. Thasts on the second rectangle. The first
motivation behind our reductions is to try to get rid of boxesn the left and make act on the
leftmost rectangle:

Step 1
2|3 213
33 2|3\ s 2[3
D(55®34®34) D(®®34®34)
415 415
This is called ds-reduction, which is justified by Propositions 3.6 and 3.lbhe
Step 2
213 203
23] m 23
D(®® ?1 ;1 ®5 4)->D(®®® ?1 ;1 ®5 4)
This is called db-reduction, which is justified by Propositions 3.4 and 3.bhe
Step 3
203 203
213} m 2[3
D(®®®iz51®34) D<®®i§®34)

This is called dh-reduction, which is justified by Propositions 3.2 and 3.bie
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Step 4 Another application ofh-reduction.

2|3 23
2[3]) 2/3
D(I®®i§®34)~»p(®ig®34)

We repeat above reductions until the rightmost tableauatointy 5 becomes the first tableau
in the list. After that we want to further simplify the lisf, possible, to get rid of boxes from
right by pushing them column-by-column to the left using Erenatrix mapR, until we reach
the place where can proZe(e) directly:

Step 8

203 213
2[3) 1
D(3]4|® )~»D(34®I®I)
5] Bl 415
This is called as-reduction, which is justified by Propositions 3.10 and Jgfow.

2|3 2|3

3 R

D 34®®I ->Dl®34®

I NE MO FI EF|
This is called &k-reduction, which is justified by Proposition 3.12.

Step 9

Now since the rectangle thatacts on is no longer the leftmost one, we can go back to Step
1. Repeating the above steps umntiacts on the leftmost rectangle again, we need one more
R-reduction:

Step 13

273 212
D(3 4®)~R»D(® 3[3))
A

5] 8P s

Using these reductions, we will eventually reach one of thewing two base cases:

e Base case Iy is a single rectangle that containst- 2; or

e Base case 2» = S ® ¢, whereS is a single column that contaims+ 2, andn + 2 does
not appear in.

In certain cases it might be possible to reduce Base casdtefuo Base case 1. But we will
prove both base cases in this full generality without s&wif when this further reduction is

possible.
In the above example, we reached the second case.

Step 14 Now we have to prove this base case directly:

212
D(®33)

44

This is justified by Proposition 3.15. Base case 1 is proveé@faposition 3.14.
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3.2 The reduction
In this section, we formalize the ideas demonstrated in theipus section.
Definition 3.1. Define
LM = {p € Dom(p) | n + 2, if any exist, appears only in the leftmost rectangle pf

The next two propositions concern thiereduction:D(p) B D(Ih(p)).

Proposition 3.2. Letp € (Dom(p) \ LM )N Dom(lh). Thenlh(p) € Dom(p) and the following
diagram commutes:

Ih
ey

i)
0 — 3
e — o
i)

e
Ih

Proof. By definition, p acts on the rightmost rectangle pfthat contains the number + 2.
Givenp € (Dom(p) \ LM) N Dom(lh), the rightmost rectangle that containst 2 is not the
leftmost one irp, thusp does not act on the leftmost rectangleoButlh, by definition, acts on
the leftmost rectangle, and it is clear thiatp) € Dom(p) if p € Dom(p), and that the diagram
commutes. (|

Proposition 3.3. Letrc € ®((Dom(p) \ LM) N Dom(lh)) and assume thai(Ih(rc)) is well-
defined. Thep(rc) is well-defined and the following diagram commutes:

Ih
I¢c — o

| |7

e — o

1h
Proof. See Section 4. O

To see that the above two propositions suffice forltheeduction, we lep andrc be given
as above and consider the following diagram

[l
I
K y
[l
o —— 0
, pl lp
(<]
o ——>0
v
[l

This diagram should be viewed as a “cube”, the large outsidare being the front face and
the small inside square being the back face, the four tragebetween these two squares are
the upper, lower, left and right faces, respectively. Weeobs the following:

p C

I
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1. The upper and lower face commute by [1].
2. By Proposition 3.2, the left face commutes.

3. If we assume that the back face commutes, in particulartioa the right edge of the
back face is well-defined, then by Proposition 3.3 we can lcolecthat the right face is
well-defined and commutes.

Thus, if we assume the commutativity of the back face, theroatativity of the front face
follows by induction.

The next two propositions are fds-reduction:D(p) N D(Ib(p)).

Proposition 3.4. Letp € (Dom(p) \ LM )N Dom(lb). Thenlb(p) € Dom(p) and the following
diagram commutes:

b
e

he)
0 — 3
e — o
he)

e
b

Proof. The proof is similar to the argument for thie-reduction (see Proposition 3.2). [

Proposition 3.5. Letrc € ®((Dom(p) \ LM) N Dom(lb)) and assume thai(Ib(rc)) is well-
defined. Then both(rc) andlb(p(rc)) are well-defined and the following diagram commutes:

Proof. See Section 5. O

The reason that the above two propositions suffice folltheduction is analogous to the
reason for theéh-reduction.
The next two propositions are f+reduction:D(p) 5 D(ls(p)).

Proposition 3.6. Letp € (Dom(p) \ LM) N Dom(ls). Thenls(p) € Dom(p) and the following
diagram commutes:

Is
-

i)
0 — 3
e — o
i)

—
Is

Proof. The proof is similar to the argument fdi-reduction (see Proposition 3.2). 0J
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Proposition 3.7. Letrc € ®((Dom(p) \ LM) N Dom(ls)) and assume thai(ls(rc)) is well-
defined. Thef(rc) is well-defined and the following diagram commutes:

Is
c — @

| |7

e — o

Is

Proof. See Section 6. O

The reason that the above two propositions suffice fod¢treduction is analogous to the
reason for théh-reduction.

The abovéh/1b/Is-reductions make it clear that we halép) for anyp € (Dom(p)\ LM ),
thus reducing the problem to provifd(p) for p € LM.

Forp € LM, D(p) is proved by another round of reductions, unptils in one of the two
base cases (not mutually exclusive):

Definition 3.8 (Base case 1)
BC1 = {p e LM | pis asingle rectangle
Definition 3.9 (Base case 2)
BC2 = {p € LM | the leftmost rectangle gf is a single columh.

The next two propositions deal witk-reduction:D(p) ~ D(rs(p)).

Proposition 3.10.Letp € LM \ BC1. Thenrs(p) € LM \ BC'1 and the following diagram
commutes:

Irs
—

)
0 — 3
e — o
i)

—_—
Proof. See Section 7. O

Proposition 3.11. Letrc € ®(LM \ BC1) and assume thgi(ts(rc)) is well-defined. Then
p(rc) is well-defined and the following diagram commutes:

TS
Ic — o

| |7

e — o
TS

Proof. By the definition ofp and by the fact that preserves the colabels of all parts, it is clear
that if thep-sequence aofs(rc) exists, then th@-sequence ofc must exist and be the same as
that forts(rc). Then commutativity follows. O
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To see that the above two propositions suffice foritheeduction, we lep andrc be given
as above and consider the following diagram

[
r
\i y
[
o ——0
p Pl lﬁ
[
o —0
N
[

p C

I

We observe the following:

1. The upper and lower face commute by the definitiomrsodndrs as stated in Defini-
tion 2.37.

2. The left face commutes by Proposition 3.10.

3. If we assume that the back face commutes, in partigutar the right edge of the back
face is well-defined, then by Proposition 3.11 we can corecthdt the right face is well-
defined and commutes.

Thus, if we assume the commutativity of the back face, theroatativity of the front face
follows.
The next proposition is foR-reduction:D(p) X D(R(p)).

Proposition 3.12. Letp € LM C P(B) whereB = ((r1, s1), (12, s2)). ThenR(p) € Dom(p)
and the following diagram commutes:

R
e

k)
0 — 3
e — o
i)

e
R

Proof. It was shown in [16, Lemma 5.5, Eq. (5.8)] thatand p commute on standardized
highest weight paths (the maps are caledndC, in [16], respectively). For a givep, we can
always find &y € P(B’) for someB’ such thap ® ¢ is highest weight ang does not contain
anyn + 2 (basicallyqg needs to be chosen such thatg) > ¢;(p) foralli = 1,2,...,n + 1).
SinceR respects Knuth relations, it is well-behaved with respeatandardization. Similarly,
pis well-behaved with respect to standardization becauségetaquin is. Since by assumption
p € Dom(p), this implies the statement of the proposition. 0J

As the next remark shows, we only need Proposition 3.12 irsfieeial case, = 1. An
independent proof of Proposition 3.12 fey = 1 will appear in the PhD thesis of the second
author.
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Remark 3.13. We would like to point out that Proposition 3.12 fey = 1 suffices for the
R-reduction.

By definition, p acts on the rightmost rectangle that contains 2. If p € LM, then the
rightmost rectangle that containst 2 is also the leftmost (thus the only) rectangle that contains
n+ 2. This implies that if some permutatiendoes not involve swapping the first two rectangle
(that is,s; does not appear in the reduced word-pfthenp clearly commutes witt,,.

Without loss of generality, we can further assume that tivese rectangle is a single col-
umn. For if it is not, we can use right-split to split off a siagcolumn from the rightmost
rectangle (which commutes wiihby Proposition 3.11). Then we can use théo move this
single column to be the second rectangle (which commutdspily above argument). Hence
it suffices to consider the cage= ((r1, s1), (r2, 1)).

It is worth pointing out that although Proposition 3.12 ostates the commutativity of
andR in this special case, that as a consequence of our main fHsedtrem 2.38p andR
commute in general.

To see that the above proposition suffices for Hreeduction, we consider the following

diagram
[
r
N,
o 2.0
1 L)
o 2.0
N
[

C

p

I

We observe the following:

1. The upper and lower face commute by Theorem 2.36.
2. The left face commutes by Proposition 3.12.

3. The right face commutes trivially.

Thus, if we assume the commutativity of the back face, theroatativity of the front face
follows.
Finally, we state the propositions for dealing with the beases:

Proposition 3.14(Base case 1)Letp € BC'1, thenD(p).
Proof. See Section 8. O
Proposition 3.15(Base case 2)Letp € BC2, thenD(p).

Proof. See Section 9. O

THE ELECTRONIC JOURNAL OF COMBINATORICS 17 (2010), #R24 20



4 Proof of Proposition 3.3

The statement of Proposition 3.3 is clearly equivalent eofthlowing statement: Letc € RC
be such thap is well-defined onrc andE_l(rc, r) € ®((Dom(p) \ LM) for somer € [n + 2].
Thenp is well-defined orﬁ_l(rc, r) and the following diagram commutes:

mt
I¢c — o

| |7

e — o
571

Indeed, this is the statement we are going to prove.

Let us first consider the case thats the identity map omc. The mapp being the identity

means thatc"*! does not contain any singular stringrlic n + 2, thenlh  (rc, 7)™+ still
does not contain any singular string since no strings orn@caumbers in thén + 1)-st rigged

partition change. Thugis the identity map om_h_l(rc, r). ClearlyTh ' andp commute.

If » = n + 2, then by Definition 2.21, thE_l-sequence ofc with respectton + 1 is a
sequence of all 0s. Thus for eaghlh ' (rc)® has a singular sting of size 1. Therefore the
p-sequence ﬂ_l(rc) exists and is a sequence of all 1s. Combining with the fa¢itha and
p preserve all unchanged strings we can concludelTHfalttandp commute.

From now on, we shall assume thais not the identity map ornc

Let D, be theE_l-sequence given in Definition 2.21. Létbe thep-sequence given in
Definition 2.29. We note that by definitiai"*?) % D™ andI© » D{”. Thus, one of the
following two statements must hold:

1. Thereis aninde® € {1,...,n+ 1} such thatD") = 1™ and DN~ < V-1,
2. Thereis aninde®’ € {1,...,n+ 1} such thatD{") = 1)
Remark 4.1. In either case above, we s&@y. and/ cross at the positionV.

Letrc = (u,U), Th '(rc) = (v,V), plrc) = (w, W), andIh " o A(rc) = (z,X), p o
b '(rc) = (y,Y). We denote by(D) thelh '-sequence dfi(rc), and denote byh (1) the
p-sequence ofh ™ (rc).

The readers may want to review Remark 2.11 for notations urstiee following proof.

4.1 Casel

In this case we must havé"¥—" > D) and DW= < T), This then implies thaDV 1) <
I™N=1 _ 1, from which we can conclude (considering the changes inn@caumbers) that

° ﬁ(D)(k) — D® for k +£ N, andﬁ(D)(N) _ ) g

THE ELECTRONIC JOURNAL OF COMBINATORICS 17 (2010), #R24 21



o ' V(1)® = 1® for k # N, andlh ' (1)™ = DM 4 1.

To show(z, X) = (y,Y), we first argue that®) = 5*), then we show that on correspond-
ing parts ofz*) andy®), X*) andY *) either agree on their labels or agree on their colabels.
All the above and the fact that, X') and(y, Y) have the same sequence of rectangles implies
thatX =Y thus(z, X) = (y,Y).

We divide the argument into the following three cases:

e k>N
e kL=N:
o 1 <k<N,;

Fork > N, sincep(D)® = D® andIh ' (I)® = I® we knowz® = y®, both differ
from u™ by “moving a box fromI/® to D®)”, Furthermore, by the definition ¢gf andh ', in
bothz® andy®, the labels of all unchanged strings are preserved. In tbeehanged strings,
one gets a box removed and one gets a box added, and they lateeposingular.

Fork = N,Th_(I)™ = D™ + 1 implies that fromu™ to v to y™) one box is added
to DY) and then is removed, thus keepin@” = «™¥). Similarly, 5(D)™) = I™) — 1 implies
that from«™) to w®™) to ™) one box is removed froni) and then is added back, thus
keepingz®™) = u™), Hencez™) = 4™, FromU™) to VIV to Y) the labels of all strings
other thanD™) are unchanged, and for pa™), bothTh ' and7 preserve its singularity.

Forl < k < N, a similar argument as the> N shows the desired result.

42 Case?2
Let N = max{k | I® = D®} and letM = max{k | I®) > D®}. Thus clearlyM < N
and fork > N, D® = [®); for M < k < N, [I®| = |D®| (it may not be the case

thatI®) = D®): for k < M, I® = DW in particular fork = M, D™ < DM+1) gnd
JMAY 7)o D*) < () 1 for k < M.
The above discussion implies that

o 5(D)® = D® andlh " (1)® = I® for k > N;
o 5(D)® =" _1andlh ' (I)® = D® +1for M < k < N;
o 5(D)® = D® andlh " (1)® = I® for k < M.

Following the same strategy as in Case 1, we divide our argum# the following three
cases:

e k> N;
o M < k<N,

e 1 <k M.
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Fork > N, the argument is the same as the: N discussion of Case 1.

ForM <k < N,Th (I)® = D® + 1 implies that fromu to v to y( one box is
added toD® and then is removed, thus keeping’ = «®. Similarly, (D)* = 1) — 1
implies that fromu® to w*) to 2*) one box is removed frorﬂ(’“ and then is added back, thus
keepingz® = u®). Hencex™®™ = y®). FromUW®) to V®*) to Y*) the labels of all parts other

than D™ are unchanged, and for pa®), bothTh ' andz preserve |ts singularity. Moreover,
the vacancy number of parts of size® | is unchanged fror*) to Y *) due to the cancellation
of the effects of removing*~Y (or changing the sequence of rectangles for the dase 1)
and adding/ **1. Thus the label oD® is unchanged fror*® to Y'¥). HenceU*) = Y®),
An analogous argument shows that) = X®*), ThusX® =y &),

Fork < M, the argument is similar to the cake> N.

4.3 Some remark

We could have in both cases above definéd= max{k < N | I*) > [*+D} Then it would
agree with thel/ defined in Case 2, and the proof of Case 2 could conceptuailly the two
cases into one argument, but it probably would not make tbefpnore readable. But this
definition of M does simplify statement like the following.

Lemma 4.2. For anyk € [n+ 1], Th (1)® I . The strlctlnequalltyh D)W < I s
obtained precisely onM, N]. In particular, lh Y1 ) = [®if DK > [,

The lemma follows from the proof in Case 1 and 2, and will bemefd to in the future
sections.

Remark 4.3. The same idea used in the proof of this section can be usedve e following
converse of Proposition 3.3, which will be used in the prddPmposition 3.5 in Section 5.

Proposition 4.4. Letrc € RC be such thap(rc) is well-defined. Thep is well-defined on
lh(rc) and the following diagram commutes:

Th
I¢c — o

¢ —— ¢
Th

5 Proof of Proposition 3.5

In this section we give the proof of the following equivaletdtement of Proposition 3.5:
Letrc € Dom(Ib ') be such thap is well-defined onre and1b ™' (r¢) € ®(Dom(p) \
LM). Thenp(rc) € Dom(E_l) andp is well-defined Ori_b_l(rc) and the following diagram
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commutes:

b
I¢c — o

Without loss of generality we shall assume thas not the identity map.

Let us firstly argue thap is well-defined orlb ' (rc). Given thatrc € Dom(Ib ), we
know thatrc corresponds to the sequence of rectanglésl), (r — 1,1),...). Moreover,rc =
Ih ™' (Ih(xc), ¢) for somet > 7. (Indeed from the condition th@ls ' (rc) € ®((Dom(p) \ LM)
we can deduce a stronger conclusion r, but we only need the weaker statement in the our
proof. So we actually proved a stronger result.) (Bt*+V, ..., D) be thelh ' -sequence of
Th(rc) with respect ta, we knowD® = 0 for k < r. By the definition of i, rc(*) is obtained
from Ih(rc)®) by adding a singular string of size 1 for each: r.

Let (/+D ... IM) be thep-sequence ofc. We observe that®) > 1 for eachk < r.
To see this, lej be the least index such that?) > 0 (the existence of such afollows from
Lemma 5.2 below). Nowe € Dom(Ib ') implies thatj > . Note that all strings inc?) of
length< DY) are non-singular, it follows that the smallest singulaingtiof rc'?) is at least of
lengthDY) 41 > 1. Since(I/™*+Y, ... 1) increases, we obtaiff*) > 1 for eachk < r.

Now b ' acts onrc by removing a singular part of size 1 from® for eachk < r, and
leaving the label and colabel of the remaining parts uncednd hen by the result from the
previous paragraph, thiesequence df_o_l(rc) is exactly thep-sequence ofc. This shows that
b~ (rc) € Dom(p).

We extract from the above arguments the following fact, Whidll be referred to in the
future sections:

Lemma 5.1. For anyk € [n+ 1), 16 (I)®) = I®),

Let us secondly argue thatrc) € Dom(E_l). We note thatc andp(rc) correspond to
the same sequence of rectanglés 1), (r — 1,1),...). rc € Dom(ﬁ_l) means that for each
k < r rc®) has a singular part of size 1, The arguments from the abowsgpph show that
does not touch these parts, thus for each r, 5(rc)®) has a singular part of size 1. Therefore
5(rc) € Dom(Ib ).

The above arguments also clearly show @@ (rc)) =1Ib ' (B(xc)).

Now the only thing left is the following lemma:

Lemma 5.2. Letre, Ih(rc) and D, = (DY ... D) be given as above. Then there exists a
least indexj such thatD@) > 0,

Proof. By the definition oflh ' (see Definition 2.21), the above statement is clearly true fo
t <n+2sinceD® = oo for k > t.

In the case that= n+2, ourassumptiontha_b_l(rc) ¢ ©(LM) implies thatrc ¢ ®(LM).
This then impliegh(rc) ™+ =£ (). By Proposition 4.4p is well-defined orih(xc), in particular
this means thah(rc) ™! contains a singular string. Thug"+! > 0. O
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6 Proof of Proposition 3.7

In this section we give the proof of the following equivalstdtement of Proposition 3.5:
Let rc € Dom(Is ') be such thap is well-defined oncc andls~ (rc) € ®(Dom(p) \

LM). Thenp(rc) € Dom(ls ') andp is well-defined orls " (rc), and the following diagram
commutes:

!
I¢c — o

)| s

e —— O
—1
Is

Letp = ®~!(rc). Then by the condition that: € Dom(ls 1), we have

by Thg| - |Tia
p=S@T®q= : |® | : | :|®q,

br Tr,s Tr,l

where S is a single column tableau of heightandT is a tableau of shape, s) with s > 0.

By the conditiori_s_l(rc) ¢ LM, we haven + 2 appears inp and1 does not appear ifi norT’,
in particularb; > 1 andb, > r.

We shall induct or¥, the number of columns &f. To facilitate the induction, let us denote
rc; = ®(p) wherep is defined as above, that is, the subscsiplf rc, indicates the width of
tableaur.

Let (1"Y ..., 1) be thep-sequence ofc,.

The hypothesis we want to carry across inductive steps idadjieal disjunction of the
following two sufficient conditions for the commutativity above diagram:

Hypothesis 6.1(Simplified version) For eachs € Z-,, rc, satisfies one of the following two
conditions:

A TUY S g
B. 1" < s but the colabel of any part of!") with sizes in[[s(’”“), s|is > 2.

To see that the first condition is sufficient, we recall ﬂ_sé%(rcs) decreases the colabels for
all parts inrc!” of size< s by 1. Now if 1™ > s thenls " will not affect the choice of ",
In this case it is also easy to see tpatill not affect the action ofs .

To see that the second condition is sufficient, we noticeithat™ < s and the colabel of
any part ofrc{”’ with sizes in[I*", s] is > 2, then wherls ' decreases the colabels for parts
in rc{” of size< s by 1, the parts with size in the interv@ls(’"“), s| will still be non-singular.
ThusTs  will not affect the choice of". In this case, this colabel condition also prevemts
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from affectingls ' 7 decreases the colabels of partsifi’ of size in the interval7 ", 1{")
by 1, thus the parts if(rc,)") of size in< s will still be non-singular.

Conditions A and B can be viewed as two possible states,of\We will show below in a
more precise setting that, either stays in its current state or transits from A to B (bewer
comes back). Intuitively, we can imagiréeing time, and when is small (s starts from 0),
rcg starts in state A. As time goes by, we start merging columnsexghtr on the left ofp,
corresponding on thBC side tOE_l(rcs), the condition that after each merging we get a valid
tableau (weakly increasing along rows) corresponds oRitieside to the fact thalh ' and

affectrcs for k > r “less and less”. As time pass tﬂ,"“) will possibly stabilize, and
s WI|| possibly catch up and paslé’”“), and from this time omc, will get stuck in the state B
forever.

To make all above statements precise, we first need to seti@ sotation.

Letrc; , for j < r be the image undeb of the following path element:

by Thg| - |Tia
ST®q=| : |®| : ; D ®q.

bj Tr,s Tr,l

Definercy s = ®(17' ® q) = E_l(rcs_l). In particular,rco o = ®(¢). With this notation, our
previously definedc; is denoted byc, ;.

Let Dy, = (Df), ... DY) ) be thelh "_sequence with respect . To avoid awk-
ward sublndlces we denolé] = Dr, ..

Let I;, = (I""V,... . 1\)) be thep-sequence ofc, .. Our previously defined,, in this
notation, is denoted by, .. We denote by, = (Iéf;“), e 078) the p-sequence ofc, , =
5 (rcps1).

Equipped with this notation, we can give a precise desompdn howE_l-sequences in-
teract withp-sequences.

For a fixeds, for eachk € [n + 1], let us consider the sequen(oé ))je[r] By Lemma 4.2,
we have:

Lemma 6.2. (I )je[r] |s weakly increasing with respect o More precisely, for any and
anyk, we have[(k ]H Jforj=0,...,r—1

SetA,; , = {k | I("C > I } Then by Lemmas 4.2 and B.1 we have

Lemma 6.3. 4;, = [1 a; | for somel < a;, < n+1,anda; s < --- < a,,. Moreover,
Aj,s\Aj—l,s = {k | I](7 > I( ) }

Jj—1s

An equivalent statement of the above lemma is the following:
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Lemma 6.4. (I;ﬁ))je[r} satisfies] - I]Jrl s everywhere except possibly one positign
where the inequality is stridtf, < ]f,’? 116+ Jis IS Weakly increasing with respect toand
Ajs \Ajors ={k | Jrs = J}.

If we specialize Lemma 6.2 to the caBe= r + 1, thenl(”l) is weakly increasing with

respect toj. Now we note thals  does not affectc!” for k > r + 1. ThusI{"t) = 17",

Now by the fact that! ;7:1 is weakly increasing with respect o we conclude the following
lemma:

(r+1)

Lemma 6.5. I; is weakly increasing with respect to

Remark 6.6. The above argument shows that for any fixeg » + 1, ]j( 5) is weakly increasing

with respect td’s, 7) in dictionary order. Indeed this is also the case for Ary r + 1, but this
fact is a consequence of Proposition 3.7 which we are goipgdee.

Now we can finally make precise the statement we want to prove.
Hypothesis 6.7(Precise version)For eachs, rc, satisfies:

IH1. IV > s+ 1.
IH2. 177V = 173" whenD{”, > 1{"1Y.
IH3. rc, is in one of the following states:

SAL 1Y > s andD" < 1Y,
SA2 1Y 5 s andD( > 1Y,

SB I < s, and the colabel of any part ef.” with size in[Iﬁ’"“), s|is > 2, and the
colabel of any part with size+ 1is> 1.

We remark here that [IH3] is the core of the hypothesis, wigdd and SA2 combined
correspond to the condition A in Hypothesis 6.1, and SB spoeds to the condition SB in
Hypothesis 6.1. As we have argued before, being in one oétkiedes implies the commuta-
tivity of 7 andls

By Lemma 6.5,/" 1" > 1", [IH2] then states that"*") stabilizes (stops increasing)
onceD{" > 1.

6.1 Base case:

We haves = 0 as our base case.

Let us first verify [IH1], that isJO’" = IT’"O > 1. Suppose not, then it must be tﬁé’ﬁ =1,
and thus[ ¢ = 1forallj=0,...,r by the fact thaﬂ is weakly increasing with respect §o
(see Lemma 6.2). But this is |mp055|ble sice> r and thusD, o andI,_; , cross at position

> r (by Lemma 6.3, this |mplleﬁf§) > 1’070, a contradiction).
[IH2] is an empty statement for base case.
Finally, it is clear thatc, is either in SA1 or SA2, thus verifies [IH3].
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6.2 Induction:

Assume thatc, satisfies Hypothesis 6.7. We considey, ;.

Let us first verify [IH1], that |st(+1 > s+ 2. By [IH1] onrc,, "> s+1,sowe just need
to showI(Jrl > 11, Suppose not, so thafJrl < I, By [IH3] on rc, Is ' does not interfere
with the p-sequence, sé{),, = I.”. Now by Lemma 6.21"), > I'). , thusIs’jr)1 > 11,
Therefore we it must be the cagg’, = I1{”. This then implies thatj(’iqul =17 forall j € [r].
However, this is impossible sincg.; = b, > r and thusD,.,; and/,_; s, Cross at position

> r (by Lemma 6.3, this implleﬁ(’” L > I, a contradiction).
The verification of [IH2] and [IH3] depends on the stateaf

6.2.1 rc,isin state SA1

By assumptionD!” < 1™, so [IH2] is vacuously true in this case.

We verify [IH3] by showing thatc,,, is either in SA1 or SA2. For this we just need to
argue that’""" > s 4+ 1. Knowing thatl{"*" > s (sincerc, in SA1) and/{t" > 1"+
(Lemma 6.5), it is clear that we just need to show the impagsyibf Iﬁf{l = s+ 1. Suppose
otherwise. Then it must be the case that" = 1" = s 4 1. This implies thatD{” = s (it
is clear thatD!” > s by the fact thatc, € Dom(Is '), and it is also clear thab!” < s by the
fact thatD!"” < I1{""Y). This then implies that!” = s + 1 (sincerc, has a singular string of
sizeD{"” +1=s+1,andl{""" = s + 1). But this is a contradiction to [IH1] orr,.

6.2.2 rc,isin state SA2

Let us verify [IH2] onrc,, ;. Givenrc, in state SA2, we hav®!"” > 1"V so we need to show
183" = 187, We have argued before thaf,) = 1"+, so it suffices for us to show that

10 =155y, Usmg Lemmas B.1, B.2 and 6.3, it can be inductively shovan ™ > 71"
impliesD(r > I e andI("Jrl = IO(TS+1 forall j € [r].

We verlfy [IH3] by showing thatc,, is either in state SA2 or SB. Our first observation is
that by [IH2] onrc,,, which we have just verified above! (" = 11" < D" < DI*Y (the
last < follows from Lemma B.2). Thusc,,; cannot be in state SA1.

Next, rc, is in state SA2 means thﬁty) > I§T+1) > s. There are two possibilities: either
I s st 1or i = s+ 1. 1f 1™ > s+ 1, then by [IH2] onrc,,,, we know
109 = 18 > s 4+ 1. HenceD!), > 14"V > s 4+ 1, sorc,,y isin SA2. IF 17 = s 41,
then we want to show that, ; is in state SB. For this we need to show thaxtciﬁz1 the colabel
of any part of sizes + 1 is > 2 and the colabel of any part of size+ 2 is > 1. To see this,
we note that inc!” the colabel of any part of size+ 1is > 1 (other\lee]( =541,
contradicting [IH1] onrc,). Sincels ' does not change the colabel of any partaﬁ) of size
s+ 1,in E_l(rcs)(’” the colabel of any part of size+ 1 is > 1. Moreover, by Lemma B.1,

Dﬁ’_ﬁl > s+ 1 implies D,i,,SJr1 > s+ 1 forall k € [r], thus the colabel of any part in!” of
sizes + 1 is weakly increasing along this sequence of applications ofoTh . Furthermore,
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D(")Jrl > s+ 1 implies that inrcgﬂl the colabel of any part of siz€ s + 2 increases by. Thus

r,s

any part of sizes + 1 must be of colabet 2, and any part of size + 2 must be of colabel 1.

6.2.3 rc,isin state SB

This impliesI{" ™ < s, which further impliesD!” > 17"V so [IH2] onre,.; is not vacuous
in this case. The verification is exactly the same as for tse taatrc, is in state SA2.

Let us verify [IH3] by showing thatc,..; must be in SB. Sincé 1" = 1"V < s < s+1,
rcgyq1 can not be in state SA1 nor SA2. Moreover, we note that decreases colabels of all
parts inrc”) of size< s, so the colabels of all parts I8 (xc,)") of size< s+ 1 are> 1. Then
by Lemma B.l,Dg’_Bl > s+ 1 implies thatD,Ef:g+1 > s+ 1forall k € [r]. Hence the colabel

of any part inrc!” of size< s + 1is weakly increasing along this sequence of applications of
b o . FurthermoreD,(f)Jrl > s+ 1 implies that inrc”), the colabel of any part of size

< s + 2 increases by, thus any part of size + 1 must be of colabel 2, and any part of size
s 4+ 2 must be of colabeb 1.

This finish the induction.

7 Proof of Proposition 3.10

Letp € LM \ BC1. Then Proposition 3.10 states thatp) € LM \ BC1 andp o rs(p) =
1s 0 p(p).

The main idea of the proof is to observe that bptindrs are “local” operations, and their
actions are “far away” from each other. Thus one operatidimet interfere the other operation.
The notion of “local” and “far away” are made precise below.

By assumptionp =Ty ® --- @ T =Ty @ M = N ® Tk with n + 2 appearing only irfg.
By definition, p acts onl and the changes made’tp do not depend ofi/. In another words,
p(Ty ® M) = p(Ty) ® M. In this sensep acts “locally” on the left.

We claim thatrs changes only'x, and the changes made i@ do not depend omV. In
another wordyrs(N @ Tx) = N ® rs(Tk). Thusrs acts “locally” on the right. Given that
p & BC1, Ty andTk are distinct. Hence andrs act on distinct tensor factors and therefore
“far away” from each other.

Therefore, we are left to show(N ® Tx) = N @ rs(Tk). This is clearly implied by the
following general statement:

Lemma7.l.Letp=T1 ®---® Tx € P whereK > 1. Thenrs commutes witlh (or Ib or Is)
for p € Dom(lh) (or p € Dom(lb) or p € Dom(ls), respectively):

1h/1b/1s
_

Is Is

0 — I3
e — @

 —
1h/1b/1s
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To prove Lemma 7.1, we recall thatis defined to b&@ ! oTso ®, so it is natural to consider
the following counterpart statement on tR€’ side:

Lemma 7.2. Letrc € RC(B), whereB = ((r1,81), ..., (rk, sx)) whereK > 1. Thents com-
mutes withh (or Ib or Is) for rc € Dom(lh) (or rc € Dom(lb) or rc € Dom(ls), respectively).

Th/T5/T5
I¢c ——— @

A |

¢ ——— ¢
Ih/Ib/Is
Proof. Recall the action ofs onrc: If rc € RC(B), thents(rc) € RC(rs(B)) is obtained by
increasing the labels bifor all parts inrc("x) of size less tharny. In particulars leaves the
colabels of all parts unchanged.

By definition, the action ofh depends only on the colabels of parts, #ingreserves labels
for all unchanged parts, thus commutes viith

Ib adds a singular string of length 1 to eack® for 1 < a < r; and preserves both labels
and colabels for all other parts, whiie preserves colabels and thus the singularity of all parts.
Solb andts commute.

The action ofls splits one column from left of the rectangle;, s;), and increases the
colabel of any part of size: s, in rc™") by 1. The action of splits one column from right on
the rectangléry, sx ), and increases the label of any part of sizey in rc("x) by 1. Clearly
they commute. 0J

To see that Lemma 7.2 implies Lemma 7.1, we consider now tlevimg diagram:

]
r
\h/lb/ls E/Ef‘y
]
o ——0
s rsl \Lrs TS
P
e ——0

1h/ b/ly’ wl/m
@

p

C

We observe the following on this diagram:

1. The upper and lower face commutes by the definitioth.of
2. The front and back face commutes by the definitiorsof
3. The right face commutes by Lemma 7.2

The above observations imply that the left face commuteshvisithe statement of Lemma
7.1. This proves the main statement.

THE ELECTRONIC JOURNAL OF COMBINATORICS 17 (2010), #R24 30



8 Proof of Proposition 3.14
Letp € BC1, then the following diagram commutes:

(]
e

k)
o — 3
e — @
!

(]

Before we start the proof, we first give an alternative dedimn of ¢ for the special case of
a single tensor factor.

8.1 An algorithm for computing ®(p) for p € P(r,c)

Definition 8.1. Givenp € P, (r, c), define¥(p) = (uq, ..., u,), Where eachu is the part ofp
that is formed by all boxes that

1. are onj-th row forj < k;

2. contain a numbes k.

112]3]4
2141415
Example 8.2.Letp € P;(4,4) be3 616 6,then
D|7|7]8
34 4 ?666
U(p) = (2D314) pryrsylalalsl_[616]6] =gy [TITI8L8) -
6.6]6]5|7]7]8

Remark 8.3. Eachu, in the above list has the shape of a Ferrers diagram of sonti¢iqrar
rotated by180°. This follows from the fact thap is a semi-standard Young tableau. Thus, we
can set¥(p) to be the list of (rotated) partitions associatedit@). It is often useful to think

of eachu, literally as the “area” op occupied by the boxes af,. For example, the bax]in

up = 4]is the(1,2)-box of p; the box 3]in u; = is the same box containiry

inuy = 1 i g since they are both the, 3)-box of p. As another example, rof6[6[6]in

us, w4, andus literally denotes thé3, 2), (3, 3) and(3, 4)-boxes ofp in all three cases.
To stress the point we are making, we rewrite Example 8.2 glglighting the boxes of each
ug in pinred:

1121314 [1[2[314] [112]3[4] [1[2]3]4] [1]2]3]4] [1]2]3]4] [1]2]3]4
\If()—(2445 2[474[5] [2]14]4[5] [2[4]4]5] [2]4]4]5] [2]4]4]5 2445)
P) = \316/6(6][36.6]6] 36|66 36|66 [36]6.6[36/6.6] [3[6616
S 7I7I8] [BITIT[8] [DI7I7I8] [BITI T[] [5[7]718] [BI7T[7T]8] [5]7]718

There is an alternative description of the mipwhich recursively constructs(p)* from
W (p)*+1), Our proof exploits this construction.
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Definition 8.4.
1. ¥(p)™ is the area of boxes gfthat contains: + 1. The area is clearly a horizontal strip.

2. U(p)* is obtained from¥ (p)*+1) by adding all boxes of that containk + 1 (which
forms a horizontal strip) and then removing ttke+ 1)-strow ofp if £ + 1 < r.

The equivalence of the above two descriptions is clear.
We have the following result that relatésand ®:

Proposition 8.5. For p € P(r, ¢), we havel (p) = &(p), where all strings of? (p) are singular.
Proof. This is proved in Appendix A. O
Corollary 8.6. For p € P(r, ¢), the rigged configuratio®(p) has only singular strings.

From now on, we identifﬁ!(p) with a rigged configuration as described in Proposition 8.5.

8.2 Jeu-de-taquin on¥(p)

By Remark 8.3, each element in W(p) can be viewed as a collection of boxespin Thus
jeu-de-taquin om is directly reflected on(p).

Definition 8.7. Forp € P,.,1(r, ¢), definep(¥(p)) = ¥(p(p)).

Example 8.8.

p(¥(p) =
1134 1134|1134 (1]1]3|4 1]1/3]|4|/1|1|3[4]/1]|1]3]4
(2245 2/2(4/5]]2]2/4]5]]2|2]4]5//2|2]4|5]|2]2/4]5 2245>
3/4(6/6[3/4|6/6[/3|4]/6/6] 3|4/6|6]3|4/6[/6/3|4/6/6/3]4/6|6
5167 7|56\ 7|7]5|6]7|75]6]7|7]|5]6/7|7]5|6]7|75]6]/7|T7

Let SR be the sliding route o € BC'1 underp (see Definition 2.25). We have:

Lemma 8.9. SR intersects¥ (p)*¥) for eachk. If (i, 5) is the last box inSR (recall SR is a
sequence of boxes pfthat is also in¥(p)*) then(i, 5) is an upper left corner o (p)*).

Proof. We shall induct on the recursive definition &f(see Definition 8.4) with the following
hypothesis:

Hypothesis 8.10.For eachkt € [n + 1],

IH1. SR intersectsV(p)®). If (iy, j) is the last box inSR that is also in¥ (p) ™ then iy, j;.)
is an upper left corner of (p)*),

IH2. i) < K.
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In the base case we conside(p)™*Y. Given thatp € BC1, there is a horizontal strip of
(n + 2)'s in p, which formsW (p)(»+1), By the definition of sliding route, an initial segment of
SR overlaps with this horizontal strip, thuds,; = r. It is clear that IH1 and IH2 hold.

Now assume that IH1 and IH2 hold far(p)* 1. From ¥ (p)*+Y to ¥(p)*) a horizontal
strip of boxes that contairis+ 1 is added. We distinguish two cases:

1. There is a box containing+ 1 above box(iy. 1, jx+1) Of p.
2. There is no box containing+ 1 above boxXiy 1, jx+1) Of p.

In the first case, letix, jx) = (ix41 — 1, 7). Then IHL and IH2 hold foi (p)*),

In the second case, l&t;, j.) = (ix+1, jx — [) wherel is the length of the horizontal strip of
(k4 1)'sin row i, (possiblyl = 0). To check IH2, we assume the contrary that i, > k.
We also havey;, 1, < k. Thusp;,_1; < i — 1. This is impossible fop € BC1 C
Dom(p). IH2 then implies that the,.-th row will not be removed while constructing(p)*)
from ¥ (p)**+Y hence IH1 holds. O

By the above lemma we see tiatemoves a box from some part of sizgin W (p)*) for
eachk. We call(b,, 1, ..., b)) thep-sequenceof ¥(p) (or equivalentlyd(p)).

Example 8.11.Continuing Example 8.8 we haveé;, ..., b;) = (1,3,3,3,3,3,3).

8.3 Proof of Proposition 3.14

As the result of the above two sections, we just need to §idwp)) = p(¥(p)) forp € BC1.
Let@ = (ans1,. .. ,a1) be thep-sequence ob(p) (see Definition 2.29). Let = (b1, ..., b1)
be thep-sequence of’ (p) defined above.

It suffices to show that = b. We shall induct on the recursive definition of

As base casey,,; = b,41 since¥(p)™*Y has only one (singular) part. Now assume
ar+1 = by, 1. By the definition of the-sequencey,, is the size of the shortest part (all parts are
singular) in¥(p)*) that is no shorter tham, ;. From ¥ (p)*+1 to ¥(p)*) a horizontal strip of
boxes that contains + 1 is added. There are three possibilities:

1. There is no added box containihg- 1 adjacent (above or to the left) to the box removed
from W (p)*+V by 7.

2. There is a box containirg+ 1 added above the box removed fraitp) “+1) by 2.

3. There is a box containing+ 1 added on the left to the box removed frokip)*+1 by
p. But no box containing + 1 added above.

In the first case, the removed box is already an inside coifm&t) (¥, thus by the definition
of , no further Schiitzenberger’s sliding can be done, hépee b, ;. Itis also clear that the
part in ¥ (p)*) that contains the removed box is the shortest part which shoater than, 1,
thUSCLk = Ak41 = bk+1 = bg.

In the second case, we need one more Schitzenbergenggligito get to the inside corner
when constructing(¥ (p))*), thusa;, = ajy1 = byt = by
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In the third case, we possibly need several more Schitrget®slidings left to get to the
inside corner when constructing ¥ (p))*). Thenb, is the size of the part that contains the
removed box in¥(p)*), but this part is clearly also the shortest part which is nortn than
apy1. Thereforeg, = by, > apr1 = bpyq-

9 Proof of Proposition 3.15

In this section we prove that fare BC2, we havep o &(p) = @ o p(p).
Givenp € BC2, we have

S1

p=5S®q=|: |®q

St

wheres; > 1, s, = n + 2, andq € P,..1(B) for someB, andn + 2 does not appear anywhere
ingq.
For k < t, denoteS), be the single column tableau formed by the firdtoxes ofS. That is

S1

52

Sk

Then(p(S))k+1 is the single column tableau

S1

(P(S))k41 =

Sk

Let us first lay out the road map of the proof. We will descrimenbinatorial construction
a:RC(((k,1), B),\) — RC(((k + 1,1), B), A+ €1), and inductively argue tha (S, ® q) +
D((p(9))ks1 ® q) forall k < t. In particular,®(S,_; ® q) = ®(p(S) ® ¢). Then we argue the
commutativity of the following diagram:

Eilomil(st)

D(S-1 ®q) (S ®q) (9.1)
P(p(S) ® q) —— l
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This then impliesb(p(S ® q)) = ©(p(S) ® q) = p(®(S ® ¢)) which finishes the proof.

Recall that by Remark 2.13, we can either describecan RC as(v, J) in terms of its label
or as(v, c¢J) in terms of its colabel. In the following definition, it is m®ronvenient for us to
use colabels.

Definition 9.1. Letk < t. Fori € [k] let D; := Dy, be theE_l-sequence ob(S;_1 ® ¢) with
respect tos; (see Definition 2.21). By constructio@éi) < D(’ Y. For notational convenience,
we takeD” = .

Let £; be the sequence of singular stringslinS; ® ¢) that were obtained by the action of
b that adds a box to each string .

Let (v,cJ) = (S ® q). Then(v, Z]) = a(v,cJ) is defined by the following construction
(recall Remark 2.11, when we compare parts below, we are agngptheir length):

1. forj > k+1, (3,c])9 = (v,c])D

~ (k1) . .
2. forj =k + 1,50+ = o+, 7" is obtained from./ 1) by

. —~(k+1
o for stringss < D, 7"

—~(k+1
e for stringss > Dk , J( o

(5) = cJ*HD(s) + 1;
(5) = eJ D (5),

3. forj = k, 2®) removes one box from the pﬂ in v* cJ |s such that
¢ the shortened part has colabel O;

e )= e0s) =

e for stringsD{" < s < DIV ,Ef] (5) = cJW)(s) + 1;

—~(k
e for stringss > D"V, o )(s) =cJ®(s).

e for stringss < D,Ef“), cJ

4. for1 < j < k, oY) removes one box from the pa’fﬁj) in v, o7 is such that
¢ the shortened part has colabel O;

for stringss < D](.Z:{l), cAj(j)(s) = cJ)(s);
for stringsDY 1Y < s < | DY, Z](y)(s) = cJW(s) —1;
—~(7)

e (s) = cJV(s) + 1;
)

[ ]

b/\
,_.
Nt

forstrlngsD(J <s< DY

for stringss > D Ve (s) = cJU)(s).

Lemma 9.2. For eachk < t, (S, ® q) = ®((p(S))rr1 ® q). MoreoverE(k is the smallest
singular string in(®(S, ® ¢))*) of size greater than 0; and for < j < k — 1, E(J is the

smallest singular string ii®(S; © ¢))"% of size greater thark; ”1).
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Proof. Proceed by induction.
In the base caske =1, let (vl,cjl ®([s1]® ¢). By assumptions; > 1, thusD(l) < 0.
The definition ofa then saygo;, ch) = a(vy, ¢Jp) is such that
1. (01, ¢))9) = (v1, ¢y for j > 2;
~ (2 . —
2. 5;? = vf’, ch( )(s) = ch(Q)(s) + 1 for stringss < Dgl), cJy
5 > Dgl);

@ () = cJP (s) for strings

3. 5;W removes one box from the paﬁﬁl in vy ), ch( ) is such that the shortened part has

colabel O,cJ1 ( ) = ch ( ) — 1 for stringss < D%l), ch(l)(s) = ch(l)(s) + 1 for strings
5> Dg)

A direct computation shows tha{vy, c.J;) = @(@q). Moreover, the fact that]l(l)(s) =
1

ch(l)(s) — 1 for stringss < Df) implies thatEf) is the smallest singular string of size greater
than 0 in(®(s,]® ¢))™. This proves the base case.

Now let (vg, cJi) = ®(S, ® q) and (T, c.Jx) = ®((p(S))rs1 ® ¢), and suppose that
(g, cJi) v (Tr, cJy). Consider the difference betweén, .1, cJi.1) = b olh  (®(S), ®
q), 551) and (Vi 1) = b oI (D((p(S))krs @ q), ses1). We will argue that the
difference is exactly the effect @f

Let Dyyq andﬁkH be thelh -sequences dfvy, cJy) and(vy, ch) with respect tog 1 >
k + 1, respectively. £, ., and Ekﬂ are defined as before correspondingi?g,; and Dkﬂ,
respectively.

Consider the difference betweénkﬂ, chH) and (U1, 1)@ for a > k + 2. By
induction, forj > & + 1, (v, ¢.Jy)9) and (o, cJ;)9) are the same, thuBy), = f)k;rl for
j = n+1 down tok+2. This then implies that fof > k+2, (vk+1,ch+1)(J (Thg1, cTps1) ).

Consider the difference betweén, 1, c.J;,1)*+? and (T, chH) (k+2) " The arguments

from the previous paragraph also shows that” = o"*?. By induction, v = T,

and for stringss < Dk : ch (s) = cJ(k“)( ) + 1. Then by definition of ' we have
DAY > D,i’fll). By the fact thap(S),.1 is of heightk + 1 We haveD{""" = 0. Thus by the

definition ofE , 0" has one box added on the strinf’" " of v ") Whl|e~,(€lf;1) = ),

Therefore,, ka ! can be obtained fror’ak’f:;1 by removmg one box from E}e paEf,fﬂl . All
above and the fact that the sequence of rectar{gles- 2, 1), B) of (vx41, cJx+1) contributes

1 more to the vacancy number of strings(if.. 1, Ejkﬂ)(’f”) than the sequence of rectangles
((k+1,1), B) of (vp41, cJi11) contributes to the vacancy number of stringéip, 1, ¢/, ) ¢ +?
implies that

. (k+2
e for stringss < D,gfjll : JkJr1 )(s) = J,i’f{z)(s) +1;

. (k+2
e for stringss > D,gle : JkJrl )(s) = Jk]f{”(S).
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Consider the difference betweén,, 1, c.Jis1)*+Y and (Tp.1, cJer)*+Y. We have just
shown in the previous paragraph tﬁéﬂl) Is obtained frorrv,(f’:l) by removing one box from

the partEk'f;l). By definition oflb ', the part with this box removed has colabel 0. By in-

ductlon,ch J("“rl + 1 for parts< D(k Also by inductionv ~(k) can be obtained from
»'* by removing one box from the pai."”. All above and the fact that the sequence of rect-
angles((k + 2,1), B) of (vy+1,cJr41) contributesl less to the vacancy number of strings in

(’17k+1,gjk+1)(’“+1) than the sequence of rectangl(és + 1, 1), B) of (v, cJi+1) contributes
to the vacancy number of strings (it 1, cJ,,1)* TV implies that

(k+1
e for stringss < D,i’f:”ll : J,Cfl )( )= J,ﬁ’f{l (s) —1;
(k+1) (k) —3E+D O (k1) .
o forstringsD,’ |’ <s <D, ¢/, (s)=cli (s)+1,

. —~(k+1
e for stringss > D,(f), cJ,ifl )(8) = erglfgl)(s)-

(k+1)

By the first bullet point above’:],C is the smallest singular string {1, c.Jp41)*+Y of

size> 0.

Consider the difference betweén, 1, cJi1)* and(Ugy1, /i) . By inductionﬂ,ik) is
obtained fromv by removing one box from the paﬂ?(k). By definition ofE_1 andE_l,
@“,i’le = v,i andv,m = v,(f) Moreover, we have,wz1 = vk andv,m = vk "for all j < k.
Therefore the difference betweed,iﬂ and chH is determined by the difference between

cJ and ch, , the change of sequence of rectangleﬂljoy oTh" and the location of the
added boxE,E],’f;;1 \ Dk’fgl . We note that the sequence of rectangles change decreases th
contribution tOCJk_H( s) by 1 for any strings, while the added bO)EkkH \ Dk'f;l increases

the contribution to:J,gil( ) for all s of size> |D,(€’f:r11 |. Thus
e for stringss < D,i’f:rll ,NJ,M( )= cJ,i’fl(s);

. —~(k
e for strrngsD,i’fl1 <s< D,(f), chile(s) = cJ,ﬁ’fl(s) - 1;
o for stringsD}f) <s< D,(f 11 : gjkll( ) = cJ,i’fl(s) +1;

. _ —~(k
o for stringss > DY, cJ,(chl(S) = I ().

By the second bullet point abo@,ik) is the smallest singular string i1, cJi1)* is
greater or equal ta """

Consider the difference betweenk+1,cjk+1)(j and (’z?kﬂ,gjkﬂ)(f) forl < j < k-
1. Notice that(v.1, ces1)? = (vg, cJi)@ and (Tj1, chJrl)(J) = (B, ETJk) J). Thus by

induction we haver;,wz1 removes one box from the paﬁiﬁ in ka, anch,CJr1 is such that

e the shortened part has colabel O;
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1y, —50) j .
for stringss < |DUJr l, edp(s) = eI (s);

.
o forstringsDY}" < s < DY, cAj,(:ll(s) = cJI (s) - 1;
o forstringsD' < s < DY), gj,(ﬁl(s) = cJ) (s) + 1
o for stringss > Dj 1 ,Z]kﬂ( ) = cJ,ﬁQl(s).
By the second bullet point abO\léj(.j) is the smallest singular string i, 1, ¢/, 1)Y) >
RUth ]

Jj+1

Lemma 9.3. The diagram(9.1) commutes.

Proof. By Lemma 9.2, the difference betweéS;_; ® q) = (v, cJi) and®((p(5)): ® q) =
(p(S ®q)) = (vr,¢Jy) is

1. forj > t, (¥,c])9) = (v,cJ)(”

2. forj =t, 00 = ot cJ is obtained frome.J® by

o for stringss < D{'7", Ej(t)(s) =cJO(s) + 1;

e for stringss > D"V, Ej(t)(s) =cJ®(s).

~(t—1
3. forj =t — 1, 5= removes one box from the pat’ ;" in v(t-. 7"V is such that
¢ the shortened part has colabel 0;

t—1
() = eg () — 1:
(t—1)

e for stringss < D"}V, cJ

o for stringsD\" Y < s < D3P, cJ
—~(t-1)

(5) = cJEV(s) + 1;

o forstringss > D27, e (s) = cJED(s).

4. for1 < j <t —1,7Y% removes one box from the pa’iﬁj) in v, o7 is such that

¢ the shortened part has colabel O;

for stringss < DYV, T (s) = cJO(s);

for strlngsD](ﬁ:’1 <s< D(.j), Ej(])(s) =cJW(s) —1;
()

for stringsDY) < s < DYV, cJ

for stringss > D]( b, Af”(s) = cJU)(s).

(5) = cJW(s) + 1;
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Let (u,cl) = (S ®q) = b o E_l(q)(st_l ® q),n + 2). Thus,u can be obtained from
v by adding a box td)t(j) for j = n + 1 down tot. Now we use the fact that + 2 does not
appear anywhere i, which implies that/*+Y is empty. HenceD, is the sequence of empty
strings. This implies that the colabels of all unchangeidgsrare preserved when passing from
(v,¢J) to (u, cl) (since the vacancy number for all unchanged strings areepred, and their
labels are preserved). Then the difference betweandv is given by the following:

1. forj > t, (v, J)V) is obtained from: by removing a string of size 1;
2. forj = ¢, 7 is obtained from.® by removing a box from the paf.”’;

3. forj =t — 1,5V is obtained from:(*~1 by removing a box from the pa#";";

4. for1 < j <t— 1,79 is obtained fromu® by removing a box from the pan(.j);
By Lemma 9.2, the sequence of boxes removed is precisely-feguence. Furthermore, the

difference betwee(w, c¢J) and(v, Zj) mandated by precisely makeg(u, cI) = (v, Z]). O
A Proof of Proposition 8.5
The aim here is to prove Proposition 8.5. To do this, we willally prove a stronger statement.

Let us first generalize the constructionbfin Section 8.
Letc > 0,and0 <t < r. Letp € P,((t,1), (r,c)) and write

Ty, Sia|-o | | Sie

Tt,l Sr,l ST’,Z Sr,c

We require thaff}, ; < S, fork =1,... ¢, and writep as

Tiq|Spal-- |- [Ste

Sr,l Sr,? Sr,c

Definey(p) = (uq, . .., u,) Where eachy is the area op that is formed by all boxes that

1. are on thg-th row forj < k;
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2. contain numbers k.

1/2]3]4
Example A.1. Letp € P-((2,1), (4,4)) be 2 é é 2 , then
71718
3]4 4 5 666
(p) = (2]3]4), [4T4[5.76]6 6], (7]718][8)) -
4]415 6616l 778 71718

Remark 8.3 also applies here.

Definition A.2. Define U(p) = (¥(p),J) € RC,((t, 1), (r,c)), where(p) is viewed as a
sequence of partitions, antlis such that it sets the colabels for all parts:jrof size< cto 1
and sets the colabels of all other parts to O.

Lemma A.3. For p given as abovep(p) = U(p).

Proof. We prove this statement by induction.
For a fixedr > 0, let E, (¢, t) be the following statement with > 0 and0 < ¢ < r as free
variables: "Forany = T ® S € P,((t,1), (r,c)) with T, ; < Si; fork =1,...,t we have

D(p) = ¥(p)~

The induction is on; (c, ) with (c, t) in the latticeZ, x [r]. For the base casé; (0,0)
is true since botlb(p) and ¥ (p) are lists of empty partitions. The induction step has foltayv
two cases:

1. Assumek, (c,t) for ¢ > 0 andt < r, showE, (¢, t + 1);
2. AssumeF,.(c,r) for ¢ > 0, showE,.(c + 1,0).

For the first case, gived(p) = ¥(p) for the following

Tl,l Sl,l R Sl,c
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we would like to compar@(p’) and ¥ (p') for

Tl,l Sl,l R Sl,c

Sr,l Sr,2 Sr,c

WhereSH_l’l = a> Tt71.

The change fron®(p) € RC((¢,1), (r,¢)) to &(p') € RC((t + 1,1), (r,¢)) is caused by
b oTh ' which is described in the following algorithm: Let?) = co. Fork = a — 1 down
tot+ 1, select the longest singular stringdrip)*) of lengths™*) (possibly of zero length) such
thats®) < s+, Add a box to each of the selected strings, and reset theildab make them
singular with respect to the new vacancy number, leavingthkr strings unchanged.

By the construction off’(p), the inductive assumption thét(p) = ¥(p), andSi,11 > a,
we can conclude that®) = ¢ for k = a — 1 down tot + 1 in the construction ofo(p’). The
changing of sequence of rectangles from 1), (r, ¢)) to ((¢t + 1, 1), (r, ¢)) causes the colabels
of all parts in®(p') 1) of size< ¢ setto 1 (increased by 1 from 0), and the colabels of all parts
in ®(p')® of size< c set to 0 (decreased by 1 from 1). This is precisely the effégoing
from U(p) to U(p').

For the second case, going frobip) to ®(p’) has the effect ofs ', which decreases the
Eolabelsfyfor all parts ib(p)(") of size< ¢ by 1. Again this is precisely the result of going from
U(p) to W(p'). O

B Several useful facts

In this section, several facts that are repeatedly useddtid®es are stated and proved.
For anyp € P,, letrc = ®(p). Then to each numbered box inone can associate a

I~ '-sequence. In the case

bl Tl,s T171
p=5S@T®q=| : [® : | : : |®q¢ePu(41)(rs),B),

bj Tr,s Tt Tr,l

we adopt the definitions afc; ; and D, ; as given in Section 6. Unlike those in Section 6,
however, results in this section are general facts abogedgonfigurations and not just about
(Dom(p)).
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Lemma B.1. For a fixed columry of 7"and for1l < a < b < r, we havefoJ D(k for any
k € [n].

Proof. By the definition oflh (Deflnltlon 2.21), we can inductively shoﬁ)aﬂj < foj_l)

for all & from n down to1. Combining this with the fact thab"”" < D", we haveD"), . <

(lj’

DM, O

Lemma B.2. For a fixed rowi of T’ and forl < c < d < s, we haveD("C > D ) for all k such
that D" # cc. In the caseD.") = oo, D{*) must be alsax.

Proof. We use the convention in this proof th&at plus any constant iso.

We proceed by induction on the row ind&»on the following inductive hypothesis
Hypothesis B.3.For anyk € [n], rc!”, | has a singular string of sizB\") + 1. Therefore
DY, > DI + 1.

By definition of @, rc,_; ;41 can be obtained front; , in 3 steps:

S1. Fromrc, , tore, by a sequence ab ol ' operations:

ICr s = E_l o E_l(' : 'E_l o E_l(rci,sa E-{—l,s) e 7Tr,s)~

—1
S2. Fromre, s tOrcy 511 by reg g1 =18 (e, s).

S3. (This step is empty far = 1.) Fromrcg . to re;_; .11 by a sequence dh olh

operations:

ICi—1,5+41 = E_l © E_l(' : 'E_l © m_l(rci,m T1,3+1) e ,Tz’—l,s+1)-

By definition ofTh ', for anyk € [n], rcl(-i,) has a singular string of siz@i’? + 1. By
Lemma B.1, all the consecutive applicationsl_bﬁ1 oTh " in S1 do not affect the singularity
of the above strings. Thus for arly € [n], rcﬁfs) has a singular string of siz@g‘? + 1. In
SZ,E_1 never makes any singular string into non-singular. Thusfork € [n], rcgfs)H has a
singular string of sizeDZ(f? + 1. Finally, by induction and Lemma B.1, we see tligt,., for
anyk < ¢ will not affect the singularity of the above strings. Thus_"t'uﬂi)lﬁ1 for eachk, there
is a singular string of siz@i(? + 1.

Note that7; ;. < T;,. This impliesD; .., > D;forall j > T;,.,. Using this as base
case, and the result we just proved above, a downward iratustiows thaD\",, > D) for

all k € [n] and as long a®.") < o0, D | > D). O
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