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The diffusion model we consider in this paper is a generalization of bootstrap percolation
in an arbitrary graph (modeling a given network). Let G = (V| E) be a connected graph.
Given two vertices i and j, we write ¢ ~ j if {i,j} € E. The threshold associated to a node
i is 0(d;) where d; is the degree of i and 6 : N — N is given fixed function. Assume that
each node can be in one of the two possible states: inactive or active. Let a : N — [0, 1]
be a fixed given function. At time 0, each node i becomes active with probability «(d;)
independently of all the other vertices. At time ¢ € N, the state of each node 7 will be
updated according to a deterministic process: if a node i was active at time ¢ — 1, it will
remains active at time ¢. Otherwise, ¢ will become active if at least 6(d;) of its neighbors
were active at time ¢ — 1. For some applications of this model we refer to [2], [18], [19],
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Abstract

We consider diffusion in random graphs with given vertex degrees. Our diffusion
model can be viewed as a variant of a cellular automaton growth process: assume
that each node can be in one of the two possible states, inactive or active. The
parameters of the model are two given functions # : N — N and o : N — [0, 1].
At the beginning of the process, each node v of degree d, becomes active with
probability a(d,) independently of the other vertices. Presence of the active vertices
triggers a percolation process: if a node v is active, it remains active forever. And
if it is inactive, it will become active when at least 6(d,) of its neighbors are active.
In the case where a(d) = « and 6(d) = 6, for each d € N, our diffusion model is
equivalent to what is called bootstrap percolation. The main result of this paper is
a theorem which enables us to find the final proportion of the active vertices in the
asymptotic case, i.e., when n — oo. This is done via analysis of the process on the
multigraph counterpart of the graph model.

Introduction

[22] and [26].
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In the case where a(d) = « and 0(d) = 0, for each d € N, our diffusion model
is equivalent to what is called bootstrap percolation. This model has a rich history in
statistical physics, mostly on G = Z? and finite boxes. Bootstrap percolation was first
mentioned and studied in the statistical physics literature by Chalupa et al. in [8]. The
problem of complete occupation on Z? was solved by van Enter in [25]. A short physics
survey is [1]. Bootstrap percolation also has connections to the dynamics of the Ising
model at zero temperature [11]. Bootstrap percolation on the random regular graph
G(n,d) with fixed vertex degree d was studied by Balogh and Pittel [4]. Also Balogh et
al. [3] studied bootstrap percolation on infinite trees.

Let G be a graph with n nodes, i.e., |V| = n. Let A denote the adjacency matrix
of G, with A;; = 1if 7 ~ j and A;; = 0 otherwise. The state of the network at time ¢
can be described by the vector (X;(t))",: X;(t) = 1 if the node i is active at time ¢t and
X;(t) = 0 otherwise. Remark that X;(0) is a Bernoulli random variable with parameter
a(d;). The evolution of this vector at time ¢+ 1 follows the following functional equation,
i.e., at each time step t + 1, each node v applies:

Xi(t+1) = X,(t)+ (1 - X;(t)1 (Z AyX;(t) > e(di)> . (1)

From the definition, X;(¢) is non-decreasing; sure-enough, the equation (1) implies again
that X;(t +1) > X,(t). Define ®™(a,0,) as

d"(a,0,t) :=n"" i E[X;(t)].

We are interested in finding the asymptotic value when n — oo, of
oM (a, ) = lim d™ (a,0,1)

in the case of random graphs with given vertex degrees. The next section describes this
model of random graphs.

1.1 Random Graphs with Given node Degrees

In this paper, we investigate random graphs with fixed given degree sequences (see for
example Molloy and Reed [20, 21] and Janson [14]) as the underlying model for the
interacting network, and analyze the above diffusion process on them. So ideally, we are
interested in (uniformly chosen) random graphs having a prescribed degree sequence. But
it is difficult to directly examine these random graphs, so instead, we use the configuration
model (or ‘CM’) which was introduced in this form by Bollobas in [6] and motivated in
part by the work of Bender and Canfield [5]. We briefly recall the definition of this model
and refer to [6], [9] and [24] for more on this.
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For each integer n € N, we are given a sequence D,, = (d,,;)7; of nonnegative integers
dnts .- dny, such that Y "  d,; is even. By D = {D,}, = {(d,;)’,}» we done the
family of all these given sequences. Define (2 to be the set of all (labeled) simple graphs
with degree sequence D,,, i.e., the degree of the node 7 is d, ;. A random graph on n
vertices with degree sequence D, is a uniformly random member of Q2 which we denote
it by G(n,D). Thus G(n,D) is a random graph with degree sequence D,, which has been
uniformly chosen between all the graphs with n nodes and having degree sequence D,,. We
denote by G(D) a random graph with degree sequence D which is a sequence of random
graphs G(n,D) where n varies over integers.

A random multigraph with given degree sequence D,,, denoted by C'M (n, D), is defined
by the following configuration model: Let E; denote a set of d,,; half-edges for each node
i. (The sets E; are disjoint.) The half-edges are joined to form the set of edges of a
multigraph on the set {1,...,n} in a very natural way: the set of all half-edges, i.e., the
union UF;, is partitioned into pairs and the two half-edges within a given pair are joined to
form an edge. Each partition of the half-edges is called a configuration. The configuration
is chosen uniformly at random over the set of all possible configurations. This procedure
generates a graph with degree sequence D,,; however, the graph may contain loops and/or
multiple edges. We denote by C'M (D) a random multigraph with degree sequence D), i.e.,
a sequence of random multigraphs C'M (n, D). It is quite easy to see that, conditioned on
the resulted multigraph being a simple graph, we obtain a uniformly distributed random
graph with the given degree sequence D,,, which we have denoted by G(n,D). The
sequence D is assumed to satisfy the following regularity conditions (when n — oo):

Condition 1. For each n, D, = (d, ;)i is a sequence of non-negative integers such that
>, dny is even and, for some probability distribution (p, )22, over integers, independent
of n € N; the following hold:

1. #{i : d,,;, = r}/n — p, for every r > 0 as n — oo (the degree density condition:
the density of vertices of degree r tends to p,);

2. A=) rp, € (0,00) = Ey(r) (finite expectation property);
3. > dni/n — X asn — oo (the average degree tends to a given value \);
4. 570 dfm- = O(n) (second moment property).

When talking about a random graph with a given degree sequence D, we consider the
asymptotic case when n — oo and say that an event holds w.h.p. (with high probability)

if it holds with probability tending to one as n goes to infinity. We shall use % for
convergence in probability as n — oo. Similarly, we use o, and O, in a standard way. for
example, if (X,,) is a sequence of random variables, then X,, = O,(1) means that “X,, is

bounded in probability” and X,, = 0,(n) means that X,,/n 2 0.

In the following we will need the following result of Janson.
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Theorem 2 (Janson [15]). Assume that D = {D, } satisfies Condition 1. Then

liminf P (CM(n,D) is simple) > 0.

n—oo
As a corollary we obtain:

Corollary 3. Let D = {D,} be a given fized degree sequence satisfying Condition 1. Then,
an event E, occurs with high probability for G(n,D) when it occurs with high probability
for CM(n,D) .

Proof. Let S, be the event that C'M(n,D) is simple, P* be the law of a uniform simple
random graph G(n,DD), and IP be the law of C'M(n,D). We recall that conditioned on the
event C'M(n, D) being a simple graph, C'M (n, D) is a uniform simple random graph with
that degree sequence. Hence

* - B . B P(ESNS,)
B (En) = P(ElS0) = 1= P(E,|S0) = 1 = =557

By Theorem 2, liminf, ., P(S,) > 0. Moreover, lim, .., P(ES) = 0, then

=

E'C
lim )

o B(S,)

=0.

This completes the proof. O

Corollary 3 allows to prove a property for uniform graphs with a given degree sequence
by proving it for the configuration model with that degree sequence.

1.2 Main Results

In this subsection, we state the main results of this work.

Let D be a random variable with integer values and with distribution P(D = r) = p,,
r € N. The two functions o : N — [0,1] and # : N — N are given as before. We define
the function f, : [0,1] — R as follows

fao(y) =2 —yE [ (1 — (D)) D1(Bin(D —1,1—y) <4(D))]. (2)
Let y* =y 4 be the largest solution to fae(y) = 0, i.e.,
y* = max{y € [0,1] | fasly) =0}

Remark that such y* exists because y = 0 is a solution and f, ¢ is continuous. The main
result of this paper is the following theorem.

Theorem 4. Let D be a given degree sequence satisfying Condition 1 and let G(n,D) be
a (simple) random graph with degree sequence D. Then we have:
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1. If9(d) < d for alld € N and furthermore y* = 0, i.e., if foo(y) > 0 for ally € (0,1],
then w.h.p. @™ (a,0) =1 — o0,(1).

2. If y* > 0 and furthermore y* is not a local minimum point of fae(y), then w.h.p.

™ (a,0) =1 -E [(1—a(D))1(Bin(D,1—y*) < (D))]+ o0,(1).

The second theorem of this paper is the following:

Theorem 5 (The cascade condition). Let D be a given degree sequence satisfying
Condition 1 and let G(n,D) be a (simple) random graph with degree sequence D. There
exists a single node v which can trigger a global cascade, i.e., v can activate a strictly
positive fraction of the total population w.h.p. if and only if E[D] < E[D(D—1)1(gp)=1)].

Remark 6. We note that in the case where 0(d) = 0d, Watts [26] obtained the same
condition by a heuristic argument validated through simulations. Our theorem provides
as a very special case a mathematical proof of his heuristic results.

In the rest of this introductory section, we provide some of the applications of our main
theorems above. But let us first briefly explain the methods used to derive Theorems 4
and 5. The base of our approach is some standard techniques similar to those used by
Balogh and Pittel [4] for the special d-regular case problem, Cain and Wormald [7] for the
k-core problem and Molloy and Reed [21] for the giant component problem. This means
we consider the diffusion process on the random configuration model and describe the
dynamics of the diffusion by a Markov chain. The proof of Theorem 4 is mainly based on
a method introduced by Wormald in [27] for the analysis of a discrete random process by
using differential equations. However, our model is more general and new difficulties arise
in treating the Markov chain and proving the convergence results. One special difficulty
is that, contrary to [4], here the number of variables is a function of n (and so is not
constant). We need also to generalize slightly Wormald’s theorem to cover the case of
an infinite number of variables. The proof of Theorem 5 is based on Theorem 4 and a
theorem of Janson [14] for the study of percolation in a random graph with given vertex
degrees. We refer to Section 3 for more details.

k-Core in Random Graphs with Given Degree Sequence. Let k& > 2 be a fixed
integer. The k-core of a given graph G, denoted by Core,(G), is the largest induced
subgraph of G with minimum vertex degree at least k. The k-core of an arbitrary finite
graph can be found by removing vertices of degree less than k, in an arbitrary order,
until no such vertices exist. Let Core,(ﬁn) be the expected number of vertices in the graph
Corei(G(n,D)).

The existence of a large k-core in a random graph with a given degree sequence has
been studied by several authors, see for example Fernholz and Ramachandran [10] and
Janson and Luczak [16]. Theorem 4 allows us to unify all these results into a single

THE ELECTRONIC JOURNAL OF COMBINATORICS 17 (2010), #R25 )



theorem. In fact by assuming the functions o and 6 to be equal to &(d) = 1 (d < k) and
0(d)=(d—k+1)y =(d—k+1)1(d > k) respectively, we obtain

Core\"

= 1- 0™ (a,0).
- (@, 0)

Let y = y;é be the largest solution to fd,é(y) = 0.

Corollary 7 (Janson-Luczak [16]). Let D be a given degree sequence satisfying Condition 1
and let G(n,D) be a (simple) random graph with degree sequence D. Then we have:

1 If§ =0, ie, if f4(y) >0 for all y € (0,1], then w.h.p. Core,(cn) =o(n).

2. If y > 0 and furthermore 1 is not a local minimum point of f&’é(y), then w.h.p.
Corel™ =nP (Bin(D,5) = k) n + o(n).

Bootstrap Percolation on Random Regular Graphs. In the case of random regular
graphs, i.e., in the case d; = d for all 7, our diffusion model is equivalent to bootstrap
percolation. Bootstrap percolation on the random regular graph G(n, d) with fixed vertex
degree d was studied by Balogh and Pittel in [4]. By Theorem 4 we can recover a large
part of their results. Let A; be the final set of active vertices. We find that

Corollary 8 (Balogh-Pittel [4]). Let the three parameters a, 0 and d € [0, 1] be given with
1 <0< d—1. Consider the bootstrap percolation on the random d-regular graph G(n,d)
in which each vertex is initially active independently at random with probability o and the

threshold is 0. Let o be defined as follows

a.:=1— inf - i )
0<y<t P(Bin(d — 1,1 —y) <6 —1)

We have
(1) If @ > o, then |Af| =n —o,(n).
(ii) If o < a., then w.h.p. a positive proportion of the vertices remain inactive. More

precisely, if y* = y*(«) is the largest y < 1 such that P (Bin(d — 1,1 —y) <0 —1) Jy
=(1—a)™!, then

%i1-(1—a)IP>(Bin(d,1—y*)<9—1) <1

Proof. It remains only to show that in case (i7), y* is not a local minimum point of

fao(y) = dy2(1 —(1— a)P(Bin(d -1, 1y— y) <6 — 1))

In fact, P( Bin(d — 1,1 — y) < § — 1) /y is decreasing when # = d — 1 and has only one
minimum point when 6 < d — 1 (see [4] for details). Thus for # < d — 1, the only local
minimum point is the global minimum point § with IP’(Bin(d - 1,1—-9) <6-— 1)/gj =
(1 — a.)~! and otherwise, when 6 = d — 1, there is no local minimum point. O
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In this case, Balogh and Pittel [4] have also studied the threshold in greater detail by
allowing « to depend on n; we have

e if n'/?(a(n) — a.) — oo, then w.h.p. |As| = n;
e if n'/2(a, — a(n)) — oo, then w.h.p. |A;| < n and furthermore

|Af =n (1 — (1 —a(n)P(Bin(d,1 —y*) <8 —1) ) + Op(n"/*(a. — a(n)) V).

It would be interesting to generalize these results to our case. For this we need to obtain a
quantitative version of Wormald’s theorem for the case of an infinite number of variables.
Quantitative version for the case of a finite number of variables has been recently obtained
in [23]. Note that Balogh and Pittel [4] do not use Wormald’s theorem. Indeed they
analyze directly the system of differential equations via exponential supermartingales
by using its integrals to show that the percolation process undergoes relatively small
fluctuations around the deterministic trajectory.

1.3 Organization of the Paper

Diffusion process on C'M(n, D) is studied in detail in Section 2.1. The proof of our results
are based on the use of differential equations for solving discrete random processes, and
this is due to Wormald [27]. This is also discussed in Section 2.2. The proofs of our main
results, Theorem 4 and Theorem 5, are given in Section 3.

2 Diffusion Process in CM(n,D)

In this section we provide the mathematical tools we need for the proof of our main
theorems in Section 3.

2.1 The Markov Chain

The aim of this section is to describe the dynamics of the diffusion process as a Markov
chain, which is perfectly tailored for the asymptotic study. We first describe the diffusion
process on C'M(n,D) where the sequence D = {D,}, D,, = (d,;)},, satisfies Condition
1. Let 2m(n) := > " | d,; denote the number of half-edges in the configuration model.

Let us introduce the sets Sy, ..., Sy, |Si| = d,.;, representing the vertices 1,...,n, re-
spectively. Let M, be a uniform random matching on S = U;S; which gives us CM (n, D).
Let A(0) and I(0) be the initial sets of active and inactive vertices, respectively. In par-
ticular we have V' = A(0){I(0). Let S;(0) := S; denote the initial set of half-edges
hosted by the vertex i. We call the half-edges of a subset S;(t) active (resp. inactive) if
i € A(t)(resp. i € I(t)). We define the following process: in step 0, we pick a pair (a, b),
with @ € S; and b € S, such that ¢ € A(0), and then delete both a and b from S; and
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S; respectively. Recursively, after ¢ steps, we have the set of (currently) active vertices at
step t, A(t), and the set of (currently) inactive vertices at step ¢, I(¢). We also denote by
S;(t) the state of set S; at step t. At step t + 1, we do the following

e We pick an active half-edge a € S;(t) for i € A(t);

We identify its partner b : (a,b) € M,;

And we delete both a and b from the sets S;(t) and S;(¢);

If j is currently inactive, and b is the 6(d;)-th half-edge deleted from the initial set
S;, then j becomes active from this moment on.

The system is described in terms of
e A(t) : the number of half-edges belonging to active vertices at time t;

o [,,(t), 0 < j < 6(d), the number of inactive nodes with degree d, and j deleted
half-edges, i.e., 7 active neighbors at time t;

e [(t) the number of inactive nodes at time t.

It is easy to see that the following identities hold:

Alt) = Z 15; (¢

1€EA(t
I.(t) = {zeI d; =d, \Si(t)|:d—j}|, 0<j<6(d).
0(d)—

I(t) = Z Z (1) (3)

Because at each step we delete two half-edges and the number of half-edges at time 0 is
2m(n), the number of existing half-edges at time ¢ will be 2m(n) — 2t and we have

Aty =2m(n) —2t =Y Y (d—j)Ig(t) (4)

d j<6(d)

The process will finish at the stopping time 7'y which is the first time ¢ € N where A(t) =
The final number of active vertices will be |Af| = n — I(Ty). By the definition of our
process { A(t), {1a;(t)}aj<00) } 1> 18 Markov. We write the transition probabilities of the
Markov chain. There are three possibilities for B, the partner of a half-edge e of an active
node A at time ¢ + 1.

A(t)

W, and we have

1. B is active. The probability of this event is

At +1) = At) -2,
Iij(t+1) = I45(t), (0<j<6(d)).
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2. B is inactive of degree d and the half-edge e is the (k + 1)-th deleted half-edge, and

k41 < 6(d). The probability of this event is mij_‘g’;g, and we have

At +1) = A(t) — 1,
Tup(t+1) = Lip(t) — 1,

Tppa(t+1) = Loga(t) + 1,

I j(t+1)=1,;(t), for 0<j<6(d), j#kk+1.

3. B isinactive of degree d and e is the 0(d)-th deleted half-edge of B. The probability
(d=0(d)+1)146(ay—1

)21 The next state is

of this event is
Alt+1)=A(t) +d—0(d) — 1,
Loj(t+1) =1q;(t), (0<j<06(d)—1),
]d,e(d)—l(t + 1) = Id,e(d)—l(t) — 1.
Let F, denote the pairing generated by time ¢, i.e., F; = {ej,es} be the set of half-

edges picked at time ¢. We obtain the following equations for expectation of A(t 4 1),
{Li,j(t + 1)}d,j<9(d) conditioned on A(t), {[d,j<t>}d,j<9(d):

—At) +224(d — 0(d) +1)(d — 6(d)) La.(a)-1(t)

E[A(t+1)— A@t)|F] = -1+ o0)+ 1id |
Eltaot +1) - a0 | F) = a0
Blluy(t+ 1)~ Ity | ) = G2 D) = (@ us)

2.2 The Differential Equation Method

In this section we briefly present a method introduced by Wormald in [27] for the analysis
of a discrete random process by using differential equations. In particular we recall a
general purpose theorem for the use of this method. This method has been used to
analyze several kinds of algorithms on random graphs and random regular graphs (see for
example [7], [21] and [28]).

Recall that a function f(us,...,u;) satisfies a Lipschitz condition on @ C R’ if a

constant L > 0 exists with the property that

|f(ur,...;uj) — for, ..., 05)] < Lflglzang lu; — vy
for all (uy,...,u;) and (vy, ....,v;) in Q. For variables I, ..., I, and for Q C R*!, the stop-
ping time To(I4, ..., Iy) is defined to be the minimum ¢ such that (¢/n; I;(t)/n, ..., I,(t)/n) ¢
Q). This is written as T when I, ..., I, are understood from the context. For simplicity
the dependence on n is usually dropped from the notation.
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The following theorem is a reformulation of Theorem 5.1 of [28], modified and extended
for the case of an infinite number of variables. In it, “uniformly” refers to the convergence
implicit in the o) terms. Hypothesis (1) ensures that I; does not change too quickly
throughout the process. Hypothesis (2) tells us what we expect for the rate of change to
be, and property (3) ensures that this rate does not change too quickly. The proof of this
theorem is given in the Appendix.

Theorem 9 (Wormald [28]). Let b = b(n) be given (b is the number of variables). For
1 <1 < b, suppose I)(t) is a sequence of real-valued random wvariables such that 0 <
I;(t) < Cn for some constant C, and F; be the history of the sequence, i.e., the sequence
{L;(k), 0<j<b 0<k<t}.

Suppose also that for some bounded connected open set Q = Q(n) C R containing
the intersection of {(t, i1, ...,1) : t = 0} with some neighborhood of the domain

{ (0,41, ...y dp) P(Il(O) =un,1 <1< b) 20 for some n },
the following three conditions are verified:
1. (Boundedness). For some function § = (3(n) > 1 and for all t < Tg

lngliié\lz(t +1) = ()| < 6.

2. (Trend). For some function A = \i(n) = o(1) and for all 1 < b and t < Tg,
|E[L(t+1) = L(t)|H | — filt/n, L(t)/n, ... L(t)/n) | < Ai.

3. (Lipschitz). For each l the function f; is continuous and satisfies a Lipschitz condi-
tion on Q) with all Lipschitz constants uniformly bounded.

Then the following holds
(a) For (0,iy,...,7) € Q, the system of differential equations

di

— = 1y eees l=1,...,b

ds fl(suzla 7”)7 ) s Yy
has a unique solution in Q, 4y : R — R for 1l = 1,...,b, which passes through
0(0) =1, Il =1,...,b, and which extends to points arbitrarily close to the boundary

of Q.

(b) Let A > Ay with A = o(1). For a sufficiently large constant C, with probability
1-0 (% exp (—%—f)), we have

Ii(t) = ni(t/n) + O(An)

uniformly for 0 < t < on and for each I. Here 4(t) is the solution in (a) with
iy = 1,(0)/n, and o = o(n) is the supremum of those s to which the solution can be
extended before reaching within [°°-distance CX of the boundary of 1.

THE ELECTRONIC JOURNAL OF COMBINATORICS 17 (2010), #R25 10



We note that f; depends only on s and 41, ...,%;. This is to avoid complicated issues
around the solutions of infinite sets of differential equations. We will also use the following
corollary of the above theorem, which is namely Theorem 6.1 of [28]. This theorem states
that, as long as condition 3 holds in €, the solution of the system of equations above can
be extended beyond the boundary of €, into €.

Corollary 10 (Wormald [28]). For any set Q = Q(n) C RP*, et To = Ty (1 - Iy) be
the minimum t such that (£, 117(15)7 ce IZ’T(t)) ¢ Q) (the stopping time). Assume in addition
that the first two hypotheses of Theorem 9 are verified but only within the restricted range
t <Tg oft. Then the conclusions of the theorem hold as before, after replacing 0 <t < on

by 0 <t < min{on, Ty}.
Proof. For 1 < j < b, define the random variables I ; by

. [ Lt+1) if t < T,
Li(t+1) = { Li(t) + fi(t/n, Li(t) /n, ..., I;(t) /n) otherwige,

for all t > 0. The I ;'s satisfy the hypotheses of Theorem 9, and so the corollary follows
since [;(t) = I;(t) for 0 < t < T, O

3 Proofs of the Main Theorems

In this section we present the proofs of Theorem 4 and Theorem 5.

3.1 Proof of Theorem 4

The proof of Theorem 4 is mainly based on Theorem 9. Indeed we will apply this theorem
to show that the trajectory of I ; throughout the algorithm is a.a.s. close to the solution
of the deterministic differential equations suggested by these equations.

Let us define A, := max{d,;} and let b(n) := >, d.0(d). For simplicity the depen-
dence on n is dropped from the notations. For € > 0, we define the domains {2(¢) as

A1 —€)
2 7
A=2r— > (d—j)ia; >0 }.

d,j<0(d)

Q(E) = {(7‘, {id7j}j<0(d)) € Rb(n)+1 e < Z'dJ < )\, —e<T<

Let T, be the stopping time for €2 which is the first time ¢ when

(t/n,{la;(t)/n}) & .

Let (DE) be the following system of differential equations:

i/ (T) _ —did70(’7')
W= 5 N
7:2[79'(7—) _ (d —J+ l)zd,j—l(T) — (d _])ZdJ(T) (0 <j < 0(d>>’

A— 27
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with initial conditions
i4,0(0) = pa(1 — a(d)), iq;(0) =0 for 0 <j < 6(d).
We have

Lemma 11. 1. The system (DE) has a unique solution in Q2(€) which extends to points
arbitrarily close to the boundary of Q(e).

2. For a sufficiently large constant C', with high probability we have

I.;(t) = nig;(t/n)+o(n). (5)

uniformly for all t < no. Here o = o(n) is the supremum of those T for which
the solution of these differential equations can be extended before reaching within
1°°-distance Cn~Y* of the boundary of Q(e).

Proof. We will use Theorem 9. The domain §2(¢) is a bounded open set which contains
all initial values of variables which may happen with positive probability. Each variable
is bounded by a constant times n. By the definition of our process, the Boundedness
Hypothesis is satisfied with §(n) = 1. Trend Hypothesis is satisfied by some \;(n) =
O(1/n). Finally the third condition (Lipschitz Hypothesis) of the theorem is also satisfied
since A — 27 is bounded away from zero. Then we set A = O(n~'/4) > \;. The conclusion
of Theorem 9 now gives

11.;(t) = nig;(t/n) + O(n**)

with probability 1—O(n™/* exp(—n'/*)) uniformly for all ¢ < no. Finally, for 0 < j < 6(d),
we have I;,(0) = 0, and by Condition 1, I;4(0)/n 2 pa(1 — a(d)). This completes the
proof. O

To analyze o, we need to determine which constraint is violated when the solution
reaches the boundary of (e). It cannot be the first constraint, because (5) must give
asymptotically feasible values of I; until the boundary is approached. It remains to
determine which of the last two constraints is violated when 7 = 0.

We first solve the system of differential equations (DE) and then we analyze the point
up to which the resulting equations are valid. Note that these equations are similar to
those used in the special d-regular case in [4].

Lemma 12. The solution of the system of differential equations (DE) is

iasr) = palt = a(@) ()=

where y = (1 —27/\)Y2.
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Proof. Let u = u(r) = —3In(A — 27). Then u(0) = —1In(\), u is strictly monotone and
so is the inverse function 7 = 7(u). Let fy,(u) = i4;(7(u)). We write the system of
differential equations above with respect to u:

fao(u) = —dfao(u),
foj(w) = (d—=j+1)fa;-1(u) = (d—j)fa;(u).
Then using

d —j—1)(u—u —7j—1)(u—u )
0 ag)eld==0e=OD) = DO ) ()

and by induction, we find

fuslu) = —<dﬂ<“<°i(j_r) Oy ((0)),

r=0

0 < j<6(d) — 1. By going back to 7, we have

sz] (12w =2

It is then easy to finish the proof. O
Let us define

a(r) == A=27— ) (d—j)ig(r), and (6)

d,j<0(d)

i(r) = Y day(n). (7)

d,j<0(d)

Lemma 13. Assume 0 = o(n) be the same as in Lemma 11. Fort < no, we have
|1(t)/n —i(t/n)] 0, (8)
and
[A(t)/n — a(t/n)| = 0. (9)

Proof. By definition, we have

(@) /n—it/n)] = | Y Lay(t)/n—iay(t/n))

d,j<0(d)

< Z d|]d7j(t)/n—id,j(t/n)|,

d,j<0(d)

A /n—a(t/n)] = [2m(n)/n—=X= Y (d=j)(La;(t)/n —ia,(t/n))

d,j<0(d)

< Rmn)/n=A+ Y dlla(0)/n —ia(t/n)].

d,j<0(d)
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By Condition 1, we have |2m(n)/n — A\| 2 0. To complete the proof, it suffices to prove

Y dla(t)/n—iay(t/n)] 2 0.

d,j<0(d)

By Lemma 11, for each d and j < 6(d), we have |I,;(t)/n — i4,(t/n)] 2 0. Hence, the
same holds for any finite partial sum, which is for each K € N, we have

Y dlas(t)/n—iay(t/n)| 2 0.

d<K,j<0(d)

Finally, let ¢ > 0. By Condition 1, ) ,dps — A € (0,00). Then, there exist a constant
K, such that > ik dpa < €. Let N(d) denote the number of vertices with degree d at
time 0. By Lemma 12,

iay(r) = pall — a(d)) (j) VI~ Y < pa

Again, by Condition 1,

> dN(d)/n— > dpq.
d d

Also
Z dN(d)/n — Z dpg < €.

d>K d>K

Therefore, if n is large enough, >, dN(d)/n < ¢, and
Yo dlla®)/n—iat/n)| <Y d(La(t)/n+iat/n))
d>K, j<0(d) d>K, j<0(d)

< > d(N(d)/n+pa) <2

A=K, j<0(d)
This completes the proof. O
We now return to the proof of Theorem 4. By Lemma 12, we have
0 = %t ala)(§)s -

d,j<0(d)

= E[1—-a(D))1(Bin(D,1—-y)<0(D))], and

a(r) = A—2r=> Y (d—5)i"(7)

d j<6(d)
= NP2 —yE[(1-a(D)D1(Bin(D —1,1-y) < 6(D))]
= fa,@(y)a
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where y = (1 — 27/A\)"/2 and D is a random variable with distribution P(D = r) = p,.
There are two cases:

First assume f,4(y) > 0 for all y € (0,1], i.e., y* = 0. Then we have

A=2r— > (d—j)ig; >0
d,j<6(d)
in Q(e). So the boundary reached is determined by 7 = ’\(IT_EQ) which is y = e. Then by
8(d) < d, i(7) = O(e) and Lemma 13 implies |A;| = n — O(ne). This proves the first part

of the theorem.

Now consider the case y* > 0, and further y* is not a local minimum point of f,(y).
Then by definition of y* and by using the fact that f, (1) > 0, we have f,4(y) < 0 for

some interval (y* — €,y*). Then the first constraint is violated at time 7 = 1_23,*2. We

apply Corollary 10 with Q) the domain Q)(€) defined above, and the domain €2 replaced by
(Y (€), which is the same as € except that the constraint a > 0 is omitted:

/ . b(n)+1 . >‘(1 — 62)
Y(e) = { (7, {ia;}j<o@) ERMT 1 —e<ig; <\, —e<T< T}
This gives us the convergence in equations (5) upto the point where the solution leaves
Y (€) or when A(t) > 0 is violated. Since a(7) begins to go negative after 7, from equation
(9) it follows that A(¢) > 0 must be violated a.a.s., and it becomes zero at some Ty ~ 7n.
Hence by equation (8), we conclude

[Afl =n = I(Ty) =n —nE[(1 - a(D))1 (Bin(D,1 - y*) < 0(D))] + 0p(n),

which completes the proof for CM(n,D). Now it suffices to use Corollary 3 to transfer
the result from C'M(n, D,,) to G(n, D,,).

3.2 Proof of Theorem 5

For each node i, let C; denote the final set of active nodes when in the starting state of
the procedure the node ¢ is the only active node. Clearly if j € Cj, then C; C C;. Let

a(d) = a for each d € N. We define yy(D) := E[D(D_I?[IIE]O(D):U].

We first prove that if v5(D) > 1, then there exists a single node which can activate
a positive fraction of the population. To do this, we use a theorem of Janson [14] about
the existence of a giant component in the percolated graph. (The term giant component
is used for the existence of a component in a graph containing at least a fraction ¢ of
all vertices for some positive constant ¢ > 0 which does not depend on n. The question
of existence of a giant component in G(n,D) was answered by Molloy and Reed [21],
who showed that a giant component exists w.h.p. if and only if (in the notation above)
E[D(D —2)] > 0.)
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Given any graph G and a probability 7 : N — [0, 1], we denote by G, the random
graph obtained by randomly deleting every vertex v € G with probability 1 — 7(d,).
Thus for each node v, 7(d,) denotes the probability to be kept in the percolation model.
Fountoulakis [12] and Janson[14] show that for this percolation model on G(n,D), if we
condition the resulting random graph on its degree sequence D, and let 7 be the number
of its vertices, then the graph has the distribution of G(fz,]f)), the random graph with
this degree sequence. They calculate then the distributions of the degree sequence D and
finally apply known results to G(72, D).

To conclude the proof of our Theorem 5, we will use the following theorem.

Theorem 14 (Janson [14]). Let D be a given degree sequence satisfying Condition 1
and let G(n,D) be a (simple) random graph with degree sequence D. Consider the site
percolation model G(n,D),. Suppose further that there exists d > 1 such that pg > 0 and
mw(d) < 1. Then w.h.p. there is a giant component if and only if

> d(d—1)m(d)ps > \.

d

o)
=0

Now consider mp(d) = 1(6(d) =1). Thus G(n,D),, is the random graph obtained by
deleting all the nodes of G(n, D) for which the threshold is greater than 1. Hence G(n, D),
is a subgraph of G(n,D) and we have

v e G(n,D),, ifand only if v e G(n,D) & 6(d,) = 1.

It is clear that to prove the existence of a node v which can trigger a global cascade in
G(n,D) w.h.p., it suffices to prove that w.h.p. there is a giant component in the random
percolated graph G(n,D),,. Indeed the threshold of every node in the giant component
of G(n,D),, is equal to one and then each node in the giant component can activate the
whole component. By Theorem 14, there is w.h.p. a giant component in G(n,D),, if and
only if

A< id(d—l)ﬂ'e(d)pd

= > d(d—1)1(6(d) = 1) pa

— E[D(D-1)1(6(D) = 1)].

We now prove that if v9(D) < 1, then a single active node cannot activate a positive
fraction of the population. We will actually prove that if v4(D) < 1, w.h.p. we will have
lim,—o ®(, 8) = 0 which implies the claim. Define

foly) = lim fas(y)
= My’ —yE[D1(Bin(D — 1,1 —y) <6(D))].
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Clearly we have fp(1) > 0. We claim that if (D) < 1, then fy(1 —€) < 0 for sufficiently
small € > 0. Indeed, we have

fo(l—e) = Ml—€)?—(1—-¢E [D]L(Bin(D—l €) <6(D))]
= Ml—€’—(1-¢(A—E [D1(Bin(D — 1 e) 0(D ))D
= Ml—-2¢)—(1—¢eA—E[DD-1)1(A(D) =1)]e) +
= (-A+E[D(D - 1)1(0(D) = )])e+o<>

which is negative for v4(D) < 1. We infer that w.h.p. lim,_oy* = 1. And this in turn
implies, by Theorem 4, that w.h.p. lim,_o ®(«, 8) = 0. This completes the proof.

4 Conclusion and Future Work

We have studied diffusion and bootstrap percolation in a random graph with a given
degree sequence. Our main result is a theorem which enables to find the final proportion
of the active vertices in the asymptotic case, i.e., when n — oo. It would be interesting to
obtain quantitative versions of our results, such as large deviation estimates and central
limit theorems. But this seems to be more involved due to the generality of our model.
(See for example [17] for some related work on the particular problem of k-core). These
and some other related issues are left to a future work.
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Appendix

Proof of Theorem 9. The solution is unique from a standard result in the theory
of first order differential equations (see Hurewicz[13], Chapter 2, Theorem 11). We now
present the proof of part (b). We will use the following supermartingale inequality. The
proof follows from exactly the same proof as Azuma’s inequality (see [28], Lemma 4.2).

Lemma 15. Let {X;}._, be a supermartingale with Xo =0 and X; — X;_1 < ¢; fori>1

and some constants c¢;. Then for all a > 0,

2
P(X; > a) <exp <—ﬁ) .

Let us define w = [nA/G], @ = nA3/3 and let 0 < t < on. If w < n?/3 then B/ > n'/?
and then the probability in the conclusion is not restricted and there is nothing to prove.

Lemma 16. For some constant B with probability 1 — O(e~?), we have
|I(t +w) — L(t) — wfi(t/n, L(t)/n, .., [(t)/n)| < BwA.
Proof. For 0 < k < w, we have kG/n = O()) and by the Trend and Lipschitz hypotheses

E[L(t+k+1) — Lt + k) [ Hiy] = fl(tj;k, Il(tn+ 5. [l(tn* ) o)
= filt/n,L(t)/n,....L;(t)/n) + O(\).
Hence there exists a function g(n) = O(\) such that conditional on Fj,
f(k) :=Lt+k)—L(t) = kfi(t/n, L(t)/n, ..., L(t)/n) — kg(n)

is a supermartingale with respect to the sequence o-fields generated by Fi, ..., Fi,,. By
the boundedness hypothesis

[f(k+1) = f(B)] < B+ 001) <kf
for some constant x > 0. Therefore, by Lemma 15,
P (|L(t+w) — L(t) — wfi(t/n, () /n, ... L(t)/n)] > wg(n) + kBvVwalF,) < 2e7,
and so the lemma follows. O
Let i = |no/w], and let hy(k) = |I;(kw) — ni;(kw/n)| for 0 < k < i. We have
hi(k+1) < hy(k) 4 [Ag] 4 [As| + | As]

where

A = L((k+1Dw) — Li(kw) — wfi(kw/n, I (kw)/n, ..., [(kw) /n),
Ay = wij(kw/n)+ i(kw/n)n — i ((k + 1)w/n)n,
Az = wfi(kw/n, L(kw)/n, ..., L(kw)/n) — wij(kw/n).
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By Lemma 16, we have for a suitable universal constant B’, |A;| < B'wA with probability
1—0(e™®) (This is the point where the assumption, the scaled variables not approaching
within distance C'A of the boundary of €2, is justified). Since f; satisfies the Lipschitz
hypothesis, we have

w2 ", 2
1Ay = O(n (—) ) < B"w?/n
n
for a suitable constant B”. Finally using the same arguments as above we obtain

B"w
n

|As| <

ha(k).

Set B = max{B’, B”"}. By induction on k, we infer that

P (hi(k) = By, for some k < i,1 <1 <b) =0(bie”™®), (10)
where
k n
By = Bw (A +w/n) ((1+ Bw/n)* —1) By
w

We have By, = O(n\+w) = O(nA) since [ is bounded below. This proves the theorem in
the case t = kw. Assume t < no. From time [t/w|w to t the change in [ and i is at most
wf = O(nA) and the theorem follows.
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