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Abstract

Let H and G be two graphs on fixed number of vertices. An edge coloring of a
complete graph is called (H, G)-good if there is no monochromatic copy of G and no
rainbow (totally multicolored) copy of H in this coloring. As shown by Jamison and
West, an (H, G)-good coloring of an arbitrarily large complete graph exists unless
either G is a star or H is a forest. The largest number of colors in an (H, G)-good
coloring of K, is denoted maxR(n,G, H). For graphs H which can not be vertex-
partitioned into at most two induced forests, maxR(n,G, H) has been determined
asymptotically. Determining maxR(n; G, H) is challenging for other graphs H, in
particular for bipartite graphs or even for cycles. This manuscript treats the case
when H is a cycle. The value of mazR(n,G,Cy) is determined for all graphs G
whose edges do not induce a star.

1 Introduction and main results

For two graphs G and H, an edge coloring of a complete graph is called (H, G)-good if
there is no monochromatic copy of G and no rainbow (totally multicolored) copy of H in
this coloring. The mized anti-Ramsey numbers, maxR(n; G, H), minR(n; G, H) are the
maximum, minimum number of colors in an (H, G)-good coloring of K,,, respectively. The
number mazR(n; G, H) is closely related to the classical anti-Ramsey number AR(n, H),
the largest number of colors in an edge-coloring of K,, with no rainbow copy of H intro-
duced by Erdés, Simonovits and S6s [9]. The number minR(n; G, H) is closely related to
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the classical multicolor Ramsey number Ry (G), the largest n such that there is a color-
ing of edges of K, with k colors and no monochromatic copy of G. The mixed Ramsey
number minR(n; G, H) has been investigated in [3, 13, 11].

This manuscript addresses mazR(n; G, H). As shown by Jamison and West [14], an
(H, G)-good coloring of an arbitrarily large complete graph exists unless either G is a star
or H is a forest. Let a(H) be the smallest number of induced forests vertex-partitioning
the graph H. This parameter is called a vertex arboricity. Axenovich and Iverson [3]
proved the following.

Theorem 1. Let G be a graph whose edges do not induce a star and H be a graph with
a(H) = 3. Then mazR(n; G, H) = ”72 (1 — a(H—l)_1> (14 o0(1)).

When a(H) = 2, the problem is challenging and only few isolated results are known
[3]. Even in the case when H is a cycle, the problem is nontrivial. This manuscript
addresses this case. Since (Cy, G)-good colorings do not contain rainbow Cj, it follows
that

mazR(n; G, Cy) < AR(n,Cy) = n(% + ﬁ) +O(1), (1)
where the equality is proven by Montellano-Ballesteros and Neumann-Lara [16]. We show
that mazR(n; G, Cy) = AR(n; Cy) when G is either bipartite with large enough parts, or
a graph with chromatic number at least 3. In case when G is bipartite with a “small” part,
mazxR(n; G, Cy) depends mostly on GG, namely, on the size of the “small” part. Below is
the exact formulation of the main result.

If a graph G is bipartite, we let s(G) = min{s : G C K,,, s < r for some r} and
t(G) = |[V(G)|—s(G). Le., s(GQ) is the sum of the sizes of smaller parts over all components
of G.

Theorem 2. Let k > 3 be an integer and G be a graph whose edges do not induce a
star. Let s = s(G) and t = t(G) if G is bipartite. There are constants ng = ny(G, k) and
g = g(G, k) such that for all n > ng

n(524+ ) +0(1), if (x(G)=2and s 2 k) or (x(G) = 3)

marR(n; G,Cy) =
(n 2 {n(%z + ﬁ) + 9, otherwise

Here g = g(G, k) = ER? (S—I—t, 3sk+t+1, k:), where the number ER denotes the Erd&s-
Rado number stated in section 2. Note that it is sufficient to take g(G, k) = 9c?logl \yhere
(=3sk+t+1.

We give the definitions and some observations in section 2, the proof of the main
theorem in section 3 and some more accurate bounds for the case when H = C} in the
last section of the manuscript.

2 Definitions and preliminary results

First we shall define a few special edge colorings of a complete graph: lexical, weakly
lexical, k-anticyclic, ¢* and ¢**.
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Let ¢ : E(K,) — N be an edge coloring of a complete graph on n vertices for some
fixed n.

We say that c is a weakly lexical coloring if the vertices can be ordered vy, ..., v,, and
the colors can be renamed such that there is a function A : V(K,) — N, and c(v;v;) =
A(Uminfijy), for 1 < 4,57 < n. In particular, if A is one to one, then c is called a leical
coloring.

We say that c is a k-anticyclic coloring if there is no rainbow copy of C}, and there
is a partition of V(K,,) into sets Vo, Vi,...,V,,, with 0 < |[Vo| < k—1and |[V}| = -+ =
|Vin| = k — 1, where m = [ %5, such that for 4, j with 0 < i < j < m, all edges between
Vi and V; have the same color, and the edges spanned by each V;,7 =0, ..., m have new
distinct colors using pairwise disjoint sets of colors.

We denote a fixed coloring from the set of k-anticyclic colorings of K, such that the
color of any edges between V; and V; is min{i, j} by c*.

*

Finally, we need one more coloring, ¢**, of K,,. Let ¢™* be a fixed coloring from the
set of the following colorings of E(K,); let the vertex set V(K,) be a disjoint union of

Vo, Viso o, Vi with 0 < Vo < s—1, |Vi| =+ =|Vo1| =s—1, and |V,,| = k — 1, where
m—1=|2=EH | Let the color of each edge between V; and V; for 0 < i < j < m be .
Color the edges spanned by each V;,i = 0, ..., m with new distinct colors using pairwise

disjoint sets of colors.

For a coloring ¢, let the number of colors used by ¢ be denoted by |c|. Observe that ¢*
is a blow-up of a lexical coloring with parts inducing rainbow complete subgraphs. Any
monochromatic bipartite subgraph in ¢* and ¢** is a subgraph of Kj_;, and K,_,, for
some t, respectively. Also we easily see that if ¢ is k-anticyclic, then

k—2 1

< lel=n (1524 1) o @)

\c**\:n<S;2+SL) +O(1). (3)

Let K = K,,. For disjoint sets X,Y C V, let K[X] be the subgraph of K induced by
X, and let K[X,Y] be the bipartite subgraph of K induced by X and Y. Let ¢(X) and
c(X,Y) denote the sets of colors used in K[X] and K[X, Y], respectively by a coloring c.

Next, we state a canonical Ramsey theorem which is essential for our proofs.

Theorem 3 (Deuber [7], Erdés-Rado [8]). For any integers m,l,r, there is a smallest in-
tegern = ER(m,l, ), such that any edge-coloring of K,, contains either a monochromatic
copy of K,,, a lexically colored copy of K, or a rainbow copy of K,.

The number ER is typically referred to as Erdés-Rado number, with best bound in
the symmetric case provided by Lefmann and Ré6dl [15], in the following form: 2018
ER((,0,0) < 2e2t108 o1 some constants ¢y, co.
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3 Proof of Theorem 2

If G is a graph with chromatic number at least 3, then mazR(n; G, Cy) = n(k—;z + ﬁ) +
O(1) as was proven in [3].

For the rest of the proof we shall assume that G is a bipartite graph, not a star, with
s=s(G), t =t(G), and G C K,,;. Note that 2 < s <t. Let K = K,,. If s > k, then the
lower bound on maxR(n; G, Cy) is given by ¢*, a special k-anticyclic coloring. The upper
bound follows from (1).

Suppose s < k. The lower bound is provided by a coloring ¢**. Since maxR(n; G, C}) <
mazR(n; K4, Cy), in order to provide an upper bound on mazR(n; G, Cy), we shall be
giving an upper bound on mazR(n; Ky, Cy).

The idea of the proof is as follows. We consider an edge coloring ¢ of K = (V, E)
with no monochromatic K, and no rainbow C}, and estimate the number of colors in
this coloring by analyzing specific vertex subsets: L, A, B, where L is the vertex set of the
largest weakly lexically colored complete subgraph, A is the set of vertices in V'\ L which
“disagrees” with coloring of L on some edges incident to the initial part of L, and B is
the set of vertices in V' \ L which “disagrees” with coloring of L on some edges incident
to the terminal part of L. Let V' = V \ L. We are counting the colors in the following
order: first colors induced by V' which are not used on any edges incident to L or any
edges induced by L, then colors used on edges between V' and L which are not induced
by L, finally colors induced by L.

Now, we provide a formal proof. Assume that n is sufficiently large such that n >
ER(s +t,3sk +t+ 1,k). Let ¢ be a coloring of E(K) with no monochromatic copy
of Ks; and no rainbow copy of Cj, ¢ : E(K) — N. Then there is a lexically colored
copy of Ksgi¢r1 by the canonical Ramsey theorem. Let L be a vertex set of a largest
weakly lexically colored K,, ¢ > 3sk +t+ 1, say L = {x1,...,z,} and c(z;z;) = A(z;)
for 1 < i < j < g, for some function A : L — N. If X = {x;,...,2;,} € L and
Axy) = -+ = AMay,) = j for some j, then we denote A\(X) = j. We write, for ¢ < j,
xiLx; = {x;, 241, ..., 2;}, and for ¢ > j, x;Lx; = {x;,x;-1,...,2;}. We say that z;
precedes z; if i < j.

Let Ty, Tspvt, Toskre, and Tsg1¢ be the tails of L of size t, sk +t, 2sk +t, and 3sk + ¢
respectively, i.e.,

Ti = {Zgot41,Tg-t42,- - Tg s
Tsk+t = {xq—sk—t—l—lv Lg—sk—t+2y - - - 7Iq}7
T25k+t = {xq—st‘—t-i-la Lg—2sk—t4+25 « - - axq}a
T35k+t = {xq—3sk—t+1a Lg—3sk—t4+25 - - - axq}a

see Figure 1.
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L Tt Tosket skt

Figure 1 irta Tsk+t> T28k+t> and T3sk+t

We shall use these tails to count the number of colors: the common difference, sk, of
sizes of tails is from observations below(Claims 0.1-0.3). The first tail 7} is used in Claims
0.1 - 0.3 and to find monochromatic copy of K,;. The third tail 7544, is the main tool
used in Part 1, 2 of the proof, it helps finding rainbow copy of Cj. The other tails Tz,
and T34, are for technical reasons used in Claim 2.1 and Claim 1.3, respectively. Note
that the size of the fourth tail is used in the second parameter of Erdés-Rado number
bounding n.

We start by splitting the vertices in V'\ L according to “agreement” or “disagreement”
of a corresponding colors used in L\ Thsy¢ and in edges between L and V' \ L. Formally,
let V=V \ L, and

A:={veV'| there exists y € L\ Ty such that c(vy) # A(y)},
Bi:={veV' |c(vz)=Ax), x € L\ Tagr,
and there exists y € Thspi+ \ {24} such that c¢(vy) # A(y)}.

Note that V' — A — B ={v e V' | ¢(vz) = A(z), € L\ {z,}} = 0 since otherwise L
is not the largest weakly colored complete subgraph. Thus

V=LUAUB.

Let ¢o := ¢(L)Uc(V’, L). In the first part of the proof we bound ‘(C(B) Uc(B, A)) \Co’ +
le(B, L)\ ¢(L)|, in the second part we bound |c¢(A) \ co| + [c(A, L)\ ¢(L)| + |e(L)].

Claim 0.1 Let x € L\T;. Then {y € L\ T | Mz) =Ay)} <s—1<s.
If this claim does not hold, the corresponding y’s and 7} induce a monochromatic K ;.

Claim 0.2 Let y,y" € L\ T; such that |yLy'| > (s — 1) + 1 for some ¢ > 0. Then
lc(yLy')| = €+ 1.
It follows from Claim 0.1.

Claim 0.3 Let v,v' € V' and y,y’ € L\ T, such that y precedes 3. Let P be a rainbow
path from v to v" in V' with 1 < |V(P)| < k — 2 and colors not from cy. If c(vy) # A(y),
c(v'y’) € {c(vy), \(y)}, and |yLy'| > (s — 1)(k — |V (P)|) + 1, then there is a rainbow Cj
induced by V(P)UyLy'.

Indeed, by Claim 0.2, |c(yLy')| = k — |V (P)|+ 1. Hence |c(yLy’) \ {c(vy),c(v'y’)}| >
k—|V(P)|—1. So we can find a rainbow path on k— |V (P)| vertices in L with endpoints y
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Figure 2: A rainbow C} in Claim 1.3

and y’ of colors from c(yLy’) \ {c(vy), c(v'y') }, which together with V' (P) induce a rainbow
C}. since colors of P are not from cg.

PART 1

We shall show that )(C(B) Uc(B, A)) \Co‘ + |e(B, L) \ ¢(L)| < const = const(k, s, t).

Claim 1.1 |B| < ER(s+t,2sk+t+ 1,k).

Suppose |B| > ER(s +t,2sk +t + 1,k). Then there is a lexically colored copy of a
complete subgraph on a vertex set Y C B of size 2sk +t+ 1. Then (LUY) \ Togyy is
weakly lexical, which contradicts the maximality of L.

Claim 1.2 |e¢(B, L)\ ¢(L)| < (2sk +t)|B].
le(B, L)\ ¢(L)| < |e(B, Task+t)| < (2sk + t)|B| by the definition of B.

Claim 1.3 |(e(B) U (B, A)) \ co| < (PACtEk+10),

Let A= A'UA?, where A' := {v € A | there exists y € L\ Tss1+ with c(vy) # Ay)},
and A% := A\ Al

First, we show that c¢(B, A') C ¢y. Assume that c(v'v) € ¢ for some v € A! and
v" € B with c(vy) # A(y) for some y € L\ Tasp1¢ and c(v'x) = A(z) for any x € L\ Toggs.-
From Claim 0.1, we can find ¢/, one of the last 2s — 1 elements in T34 \ Tosprs such that
A(y') is neither c(vy) nor A(y). Since A(y') = ¢(v'y’), we have that c(v'y’) & {c(vy), A(y)}.
Moreover we have |yLy'| > (s—1)(k—2)+1. By Claim 0.3, there is a rainbow C}, induced
by {v,v'} UyLy', see Figure 2.

Second, we shall observe that |A%> U B| < FR(s +t,3sk +t + 1,k) by the argument
similar to one used in Claim 1.1. We see that otherwise A2U B contains a lexically colored
complete subgraph on 3sk + ¢ 4+ 1 vertices, which together with L — T, gives a larger
than L weakly lexically colored complete subgraph.
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Figure 3: G and G,

PART 2

We shall show that [c(A) \ co| + [¢(A, L) \ ¢(L)| + |c(L)] < n(552 + 55).

In order to count the number of colors in A and (A, L), we consider a representing
graph of these colors as follows. First, consider a set £’ of edges from K[A] having exactly
one edge of each color from ¢(A)\ ¢g. Second, consider a set of edges E” from the bipartite
graph KA, L] having exactly one edge of each color from ¢(A, L)\ ¢(L). Let G be a graph
with edge-set ' U E” spanning A. Then |c(A) \ co| + |c¢(A, L)\ ¢(L)| = |E(G)].

We need to estimate the number of edges in G. Let A;,..., A, be sets of vertices of
the connected components of G[A]. Let Ly,..., L, be sets of the neighbors of Ay,..., A,
in L respectively, i.e., for 1 <i<p, L;:={x € L |[{z,y} € E(G) for some y € A;}. Let

Gy = U G[Aj],
i |E(G[A;,Li])|<1

i1 |B(G[As,Li])|>2

Let G, ..., G}, be the connected components of Gy, and let G7, ..., G}, be the connected
components of G5. See Figure 3 for an example of GG; and Gs.

Claim 2.1 We may assume that V(G) N L C L\ Tysgis.

For a fixed v € A, let w be a color in ¢(v,L) \ ¢(L), if such exists. Let L(w) :=
{z € L| c¢(vr) = w}. Suppose L(w) C T4t Since v € A, there exists y € L \ Tospi+
such that c(vy) # A(y). Let v € L(w) C Teye- Then c(vy’) € {c(vy), AM(y)}. Since
lyLy'| > (s —1)k+1> (s —1)(k— 1) + 1, there is a rainbow C} induced by {v} UyLy’
by Claim 0.3, see figure 4. Therefore L(w) N (L \ Tsry¢) # 0. Hence we can choose edges
for the edge set E” of G only from K[A, L\ Tsgi4).

Claim 2.2 For every i, 1 <i < p, K[A;, T;] is monochromatic; for every j, 1 < j < po,
K[V (GY),Ti] is monochromatic. In particular, for every h, 1 < h < p1, K[V (G}), T3] is
monochromatic.

1. Fix i, 1 < ¢ < p. We show that K[A;, T3] is monochromatic. Let v € A; and
y € L\ Togkry with c(vy) # Ay).
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(1)

(2)
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1
T25k+t sk+t

(Y

Figure 4: A rainbow C} in Claim 2.1 and Claim 2.2-1.(1)

Tsk+t t

0

Figure 5: A rainbow Cj in Claim 2.2-1.(2)

For any ¢/ € Ty, c(vy') is either c¢(vy) or A(y). Indeed if c¢(vy’) & {c(vy), A(y)},
then there is a rainbow C} induced by {v} UyLy’ by Claim 0.3, see Figure 4.

le(v,Ty)| = 1. Indeed, let LY = {x € Tyt \ T | M) # c(vy) and M(x) # A(y)}.
Then by Claim 0.1, |LY| > |Teese \ T3] —2(s — 1) +1 > (s — 1)(k — 3) + 1. Hence
le(LY)| > k—2 by Claim 0.2. Let z be the vertex in LY preceding every other vertex
in LY. Suppose there is x € T; such that c(vx) # c(vz). Since ¢(LY) C c(zLx),
there exists a rainbow path from z to x on k — 1 vertices in Ty, of colors disjoint
from {c(vy), A(y)}. So there is a rainbow Cj induced by {v} U zLzx, see Figure 5.
Therefore for any = € Ty, c(vz) = c(vz) € {c(vy), A(y)}.

For any neighbor v' of v in G[4;], if such exists, c(v',T;) = ¢(v,T3). Indeed, we
see that for any ¢ € Ty, c(v'y') € {c(vy), A\(y)}, otherwise there is a rainbow
Cx induced by {v,v'} U yLy by Claim 0.3. Also we see that for any = € Tj,
c(v'x) = c(vz) € {c(vy), AM(y)}, where z is defined above; otherwise there is a rainbow
C induced by {v,v'} U zLz, see Figure 6. Therefore c(v',T;) = c(v,T).

Since G[4;] is connected, K[A;, T;] is monochromatic of color ¢(vz).

Note that to avoid a monochromatic K, we must have that |A4;] <s—1<k—2 for
1 <2< p.

2. Fix j, 1 < j < p2. We show that K[V(GY),T;] is monochromatic.
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E—

Figure 7: Rainbow C}’s in Claim 2.2-2.(1): red when |P| = k —2, green when |P| < k—2.

(1)

K[V(GY) N L,T;] is monochromatic. Indeed, since G, a connected component of
G, is a union of G[A; U L;]’s satisfying |E(G[A;, L;])| > 2, by the connectivity, it is
enough to show that A(x) = A(2') for any z,2’ € L; for L; in G}, where x precedes
«’. From Claim 2.1, we may assume that =, 2" are in L\ Tg4+. Suppose A(z) # ().
Let v,v" € A; such that {v,z} and {v/, 2’} are edges of G (possibly v = v’). Let P
denote a set of vertices on a path from v to v’ in G[4;]. Then 1 < |P| < k — 2 since
|A;| < k—2. If |P| =k —2, then PU {x,2'} induces a rainbow C}, otherwise so
does P U {z} U2’ Lz, from Claim 0.3, see Figure 7. Therefore A(x) = A(2').

K[V(GY),Ti] is monochromatic. To prove this, consider i such that G[A;, L;] C G7.
Observe first that K[A;,T;] and K|[L;,T;] are monochromatic by 1.(4) and 2.(1).
Next, we shall show that ¢(A;,T;) = A(L;). Suppose c¢(A4;,T;) # A(L;) for some i
such that G[A;UL;] C GY. Let v,v" € A; and x, 2" € L; such that {v, 2} and {v', 2"}
are edges of G (possibly either v = v’ or x = 2'). Since |E(G[A;, Li])| > 2, we
can find such vertices. So c¢(vz) # c(v'2’) and {c(vz),c(v'2’)} Ne(L) = 0. We may
assume that x, 2" € L\ Ty by Claim 2.1. Since c¢(A4;, T3) # ML), c(vx) = c(v'x’) =
c(A;, T;), otherwise there is a rainbow C induced by {v} UzLz, or {v'} Uz'Lx, by
Claim 0.3, see Figure 8. Then it contradicts the fact that c(vz) # c(v'z’).

We have that for any i such that G[A;, L;] € G, ¢(A;, T;) = A(L;). This implies that
K[A; U L;, T;] is monochromatic of color A\(L;). Since G7 is connected and A;s are
disjoint, we have that for any 4,4’ such that G[A;, L], G[Ay, Ly] € G, Ly N Ly # 0,
80 A(L;j) = A(Ly) = A, for some A. Therefore K[V(GY),T;] is monochromatic of
color .
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Figure 8: Rainbow C}’s for Claim 2.2-2.(2).

Claim 2.8 For1 <i<p; and1 < j < pp, 1 < |V(G))| < s—land 1 < |V(GY)| < s—1.

This claim now follows from the previous instantly.

The following claim deals with a small quadratic optimization problem we shall need.
Claim 2.4 Let n,s € N. Suppose n is sufficiently large and s > 2. Let &,...,&, € N,

1<&<s—1and Y " & < n. Then

> (4 ) ()

i=1

n —

The equality holds if and only if m = *z and §; =---=§,, =s— 1.
See the appendix A for the proof.

Claim 2.5 |c(A) \ co| +|c(A, L) \ e(L)| + |e(L)| = |E(G)] + |¢(L)| < n(552 + 5).
We have that

[B(G)| < (IE(G1)[ +p1) +|E(Go)| = Y IE(G)] +p1+ ) |E(G])].

i=1 i=1

Moreover each component GY of G contributes at most 1 to |¢(L)| by Claim 2.2, and
G and G4 are vertex disjoint. So

(L) < n—[V(Gh)| = [V(Ga)| +p2 =1 =Y V(G =D V(G +ps

=1 i=1

10
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Hence we have
lc(A)\eo| + [e(A, L) \ e(L)] + |e(L)| = [E(G)] + [e(L)]
<SIEG)+p+ Y IEG] +n =Y IV(E = V(G + e

p2

=2 IB(GI+ 3 IBG] = 3 (VG =1) = 3 (VG| = 1) +n

< (S (M) -3 v - > V(G -1
3 (V- 1)_+p22 (v - Vi _

For 1 <1 < p1 + po, let

g = [V(GY), if1<i<y
AL IVGE)]L Epi+1<i<pitp

=p1

Then > P72 ¢, <nand 1 < & <s—1for 1 <4 < p; + pp by Claim 2.3.
From Claim 2.4, we get

|e(A) \ eo| + |e(A, L) \ e(L)] + [e(L)]
\plzfz(f’_l)wz (S;2+Si1).

This concludes Part 2 of the proof.

Combining Parts 1 and 2, we see that the total number of colors is at most

(B Ue(B, A) \eo| + le(B, L) \e(D)] + [e(A) \ eol + (4, L)\ e(L)] + [e(L)

_ (ER(s+t, 3sk+t+1,k)
2

<+ 8_2+ 1
~ n )
g 2 -1

where g = g(s,t, k) = ER2(S +t,3sk+t+ l,k‘).

s—2 1
) (2sk +t)ER(s +t,2sk +t+ 1, k:)+n< 5 +s—1)
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4 More precise results for (4

For a coloring ¢ of F(K,) and a vertex v, let N.(v) be the set of colors between v and
V(K,) \ {v}, not used on edges spanned by V(K,) \ {v}. Let n.(v) = |N.(v)|. Note that
c(uv) € N.(u) N N.(v) if and only if the color c¢(uwv) is used only on the edge uv in the
coloring ¢. We call this color a unique color in c¢. For a path P = vyvs - - - v}, we say that
the path P is good if c(v;viyq) € Ne(v;) fori=1,... k — 1.

Lemma 1. Let ¢ be an edge-coloring of K,, with no rainbow Cy. If for all v € V(K,),
n.(v) =k —2, then (k —1) | n and c is k-anticyclic.

Proof. Let ¢ be an edge-coloring of K,, with no rainbow C}. Suppose for all v € V(K,,),
n.(v) = k—2. Then for any v € V| we can find a good path of length k —2 starting at v by
a greedy algorithm. Let this path be vjvg - - - vx_1, and let ¢(v;v;,41) =i fori=1,... k—2.
Let VE] = {’Ul, cey Uk—l}-

Claim 1 For any u € V' \ Vo, c(uvy) =1 or c¢(uvy) &€ N.(vy).
Assume that c(uvy) € N.(vq). If ¢(uvy) # 1 then c(uvk_1) must be the same as c¢(uvy),
otherwise vy - - - vp_juv; is a rainbow C. Thus, if c(uvy) # 1 then c(uvy) & No(v1).

Claim 2 {c(vv;) | i =2,...,k—1} is a set of distinct colors from N.(v;) and n.(v;) =
k—2.

From Claim 1 we see that the colors from N.(v;) not equal to 1 appear only on edges
viv; for i = 2,... k — 1. Since n.(v1) = k — 2, all these edges have distinct colors from
Ne(v1) and ng(v1) =k — 2.

Claim 8 For any u € V' \ Vi, c(uvg_1) & Ne(vk_1)-
Assume otherwise, then vovs - - - vp_qu is a good path. Then viv3vy - - - vp_juv9vy is a
rainbow C}, from Claim 2.

Claim 4 {c(vivg—1) | i =1,...,k — 2} is a set of distinct colors from N.(vg_;) and
nc(vk_l) =k—2.

By Claim 3, we see that all edges of colors from N_.(vg_1) must occur on edges from
{vivk_y 1 =1,...,k —2}. Since n.(vxg_1) = k — 2, edges v;ux_1, i = 1,...,k — 2 have
distinct colors from N.(vg_1) and n.(vg_1) = k — 2.

Claim 5 Vj induces a rainbow complete subgraph with all colors unique in ¢. Moreover,
for each v; and each u & Vg, ¢(uv;) is not unique in c.

This follows from the above claims since for i = 1,..., k—1, v;0;41 - - - Vp_101V2 - - - V;_1
is a good path, and n.(v;) = k — 2.

Consider v ¢ Vy and a good path of length k& — 2 starting at u. Let the vertex set
of this path be V;. If V and Vj share a vertex, say v;, then v;u has a unique color, a
contradiction to Claim 5. Thus the graph is vertex-partitioned into copies of Kj_; each
rainbow colored with unique colors. To avoid a rainbow CY, any edges between two fixed
parts must have the same color. Therefore (kK — 1) | n and ¢ is k-anticyclic. O
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By induction on n and the above lemma with & = 4, we have the following results.
Corollary 4. AR(n,Cy) = |c¢*| =4/3n+ O(1).

Proof. We need to show that for any edge-coloring ¢ of K, with no rainbow Cy, |c| <
|c*| =4/3n+ O(1).

We use induction on n. The statement trivially holds for n = 3. Let ¢ be a coloring
of E[K,| with no rainbow Cy, n > 4. If for all v € V(K,,), n.(v) > 2, then by Lemma
1, ¢ is 4-anticyclic. So |c¢| < |c¢*|. Suppose there is a v € V(K,,) with n.(v) < 1. Let
G = K, —v. Let ¢ be the coloring of E(G) induced by c¢. Then by induction hypothesis,
|l <4/3(n—1)+O(1). Hence |¢| < || +1<4/3n+ O(1). 0O

Theorem 5. Letn > 3. Let G be a graph whose edges do not induce a star. Let s = s(G)
and t = t(G) if G is bipartite.

maw k(s G, Cy) = {§n+ o(1), if (X(q) — 2 and s(G) = 4) or (x(G) > 3)

n, otherwise
Proof. Suppose (x(G) =2 and s(G) = 4) or (x(G) = 3). For the lower bound, consider
the 4-anticyclic coloring ¢*. Each color class of c¢* is either K ,,, Ko, or Ks,, for some
m > 1, thus ¢* contains no monochromatic copy of G. The upper bound follows from
Corollary 4.

Suppose G is bipartite and s(G) < 3. We use induction on n. The statement trivially
holds for n = 3. Let ¢ be a coloring of F(K,,) with no monochromatic G and no rainbow
Cy. If n.(v) =2 for all v € V, by Lemma 1 there is a color class of ¢ that induces a K3 3,
for some m > 1, which contains G. Hence we can find a v € V with n.(v) < 1. Then
by the induction hypothesis, mazR(n; G, Cy) < n. The lower bound is obtained from the
coloring ¢** with s = s(G) and k = 4. Each color class of ¢** is K, if s(G) = 2, either
Ky, or Ky, if s(G) = 3 for some m > 1, thus ¢** contains no monochromatic copy of G.
The total number of colors in either cases is n. O
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A  Proof of Claim 2.4

Claim 2.4 Let n,s € N. Suppose n is sufficiently large and s > 2. Let &,...,§, € N,
1<&<s—1and Y " & < n. Then

S () e )

The equality holds if and only if m = 5 and §; =+ =§,, =s — 1.

We use induction on m. If m =1, then

€-DE-2) _(s=2)(s-3)
2 = 2

<8—4 1

<
s a —

), forany n > s—1,

where the first inequality becomes equality iff £ = s — 1, and the second does iff n = s — 1.
Suppose m > 2, > " & <n,and 1 <& < s—1for 1 <i<m. Since 22’;1& <n—§&,,
by induction,

m—1
T 1 4 1
(5 ) —fm)( + 1), forany n > (m —1)(s — 1) 4+ &,
S —
i=1
where the equality holds iff m — 1 = "S%fl” and § = -+ = {1 = s — 1. Hence it
is enough to show that (n — &) (%4 + sTl1> + (5"‘2_1) < (— + ﬁ) or equivalently

En(552+ 25) = (957) > 0, and the equality holds iff &, = s — 1. 1t &, = 1, that is

obvious. Assume &, > 1, then

£<8—4+ 1 )—<§m2_1)—£m($_2)( —3)  (Em—1)(Em—2)

-1 20s—1) 2

%( (s-1+- 2 Yen - ):5(—5m+8_i1)(£m—<s—1>)>0,

since 2 < &, <s— 1.
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