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Abstract

This work is part of a project on weight bases for the irreducible representations
of semisimple Lie algebras with respect to which the representation matrices of
the Chevalley generators are given by explicit formulas. In the case of sln, the
celebrated Gelfand-Tsetlin basis is the only such basis known. Using the setup
of supporting graphs developed by Donnelly, we present a new interpretation and
a simple combinatorial proof of the Gelfand-Tsetlin formulas based on a rational
function identity (all the known proofs use more sophisticated algebraic tools). A
constructive approach to the Gelfand-Tsetlin formulas is then given, based on a
simple algorithm for solving certain equations on the lattice of semistandard Young
tableaux. This algorithm also implies certain extremal properties of the Gelfand-
Tsetlin basis.

1 Introduction

This work is related to combinatorial constructions of weight bases for the irreducible
representations of semisimple Lie algebras on which the action of the Chevalley generators

1Partially supported by National Science Foundation grants DMS-0500638, DMS-0757935, and DMS-
1002636.

2Partially supported by National Science Foundation grants DMS-0403029 and DMS-0701044.
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is made explicit. We will use the setup introduced by Donnelly [3, 5, 6]. The main idea is
to encode a weight basis into an edge-colored ranked poset (called a supporting graph),
whose Hasse diagram has its edges labeled with two complex coefficients. This structure
is known as a representation diagram, and it explicitly gives the action of the Chevalley
generators of the Lie algebra on the weight basis. Verifying that an assignment of labels
to an edge-colored poset is a representation diagram amounts to checking that the labels
satisfy some simple relations. Thus, constructing a basis of a representation amounts to
solving a system of equations associated to a poset.

The goal in the basis construction is finding supporting graphs with a small number
of edges, possibly edge-minimal ones (with respect to inclusion); this amounts to finding
a basis for which the action of the Chevalley generators is expressed by a formula with a
small number of terms. It is often the case that the labels of an edge-minimal supporting
graph are essentially the unique solution of the corresponding system of equations. This
property is known as the solitary property of the associated basis. Another interesting
property of many supporting graphs constructed so far is that Kashiwara’s crystal graphs
of the corresponding representations [13, 14] are subgraphs. Thus, the theory of sup-
porting graphs can be viewed as an extension of the theory of crystal graphs, which has
attracted considerable interest in the combinatorics community in recent years. Finally,
many supporting graphs are better behaved as posets than the corresponding crystal
graphs/posets, being lattices, modular lattices, or even distributive lattices.

In the case of irreducible representations of sln, the celebrated Gelfand-Tsetlin basis is
the only known basis with respect to which the representation matrices of the Chevalley
generators are given by explicit formulas. It turns out that the supporting graph of the
Gelfand-Tsetlin basis is edge-minimal, solitary, and a distributive lattice [6]; it is known
as the Gelfand-Tsetlin lattice. One of the first connections between the Gelfand-Tsetlin
basis and the Gelfand-Tsetlin lattice was made by R. Proctor in [25]. The main result of
this paper was a proof that the Gelfand-Tsetlin lattices have the strong Sperner property.
This conclusion followed Proctor’s observation that the lattices were in some sense repre-
sentation diagrams for the Gelfand-Tsetlin bases (although the notion of “representation
diagram” had not yet been formalized).

Donnelly constructed solitary, edge-minimal, and modular lattice supporting graphs
for certain special representations, most notably: the fundamental representations of sp2n

and so2n+1 [3, 4, 5], the “one-rowed” representations of so2n+1 [8], and the adjoint repre-
sentations of all simple Lie algebras [7]. Molev constructed bases of Gelfand-Tsetlin type
(i.e., which are compatible with restriction to the Lie subalgebras of lower rank) for all
irreducible representations of the symplectic and orthogonal Lie algebras [19, 20, 21]. The
corresponding representation diagrams (i.e., the action of a system of Chevalley genera-
tors on the basis) are not explicitly given, but they can be derived from Molev’s formulas
for the action of certain elements spanning the Lie algebra. As posets, these supporting
graphs are not lattices in general, and there are indications that they are not edge-minimal
in general, either.

Our ultimate goal is finding edge-minimal supporting graphs for symplectic and or-
thogonal representations, as well as studying their combinatorics. As a first step, in
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this paper we revisit the Gelfand-Tsetlin basis for sln, by studying it in Donnelly’s com-
binatorial setup. Based on a new combinatorial interpretation of the Gelfand-Tsetlin
formulas, which sheds new light on them, we show that the corresponding construction
relies on nothing more than a simple rational function identity. Moreover, the solitary
and edge-minimal properties, which were derived via theoretical considerations in [6],
are proved here in a very explicit way, by a simple algorithm for solving equations on
the Gelfand-Tsetlin lattice. This algorithm provides a new constructive approach to the
Gelfand-Tsetlin basis. We envision that such algorithms and rational function identities
will play a crucial role in our future work.

We believe that our combinatorial approach is valuable due to its simplicity compared
to all previous proofs, and due to its potential for being extended to other Lie types,
where much less is known. Let us note that the proofs of the Gelfand-Tsetlin formulas
that appeared since the original paper [10] by Gelfand and Tsetlin in the nineteen-fifties
(which contained no proof) use more sophisticated algebraic methods. These were based
on: lowering operators [23, 26, 27], boson-calculus techniques [1], polynomial expressions
for Wigner coefficients [11], the theory of the Mickelsson algebras [28], and the quantum
algebras called Yangians [18, 22]. In turn, Molev’s constructions [19, 20, 21] of his bases
for orthogonal and symplectic representations are based on complex calculations related
to Yangians. In terms of applications of the Gelfand-Tsetlin basis, let us note that its
construction has been connected with problems in mathematical physics [16].

In terms of the combinatorial model for describing the supporting graph, we use semi-
standard Young tableaux rather than Gelfand-Tsetlin patterns. By analogy, we expect
to use Kashiwara-Nakashima or De Concini tableaux [2, 15] for the representations of the
symplectic and orthogonal algebras. Note that these tableaux were already used in Don-
nelly’s work mentioned above, whereas Molev’s work is based on Gelfand-Tsetlin patterns
of type B − D.

Acknowledgement. We are grateful to Robert Donnelly for explaining to us his
work on supporting graphs for representations of semisimple Lie algebras.

2 Background

2.1 Supporting graphs

We follow [6, 9] in describing the setup of supporting graphs/representation diagrams.
We consider finite ranked posets, and we identify a poset with its Hasse diagram, thus
viewing it as a directed graph with edges s → t for each covering relation s ⋖ t. These

edges will be colored by a set I, and we write s
i
→ t to indicate that the corresponding

edge has color i ∈ I. The connected components of the subgraph with edges colored i are
called i-components. Besides a given color, each edge s → t is labeled with two complex
coefficients, which are not both 0, and which are denoted by ct,s and ds,t. Given the poset
P , let V [P ] be the complex vector space with basis {vs}s∈P . We define operators Xi and
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Yi on V [P ] for i in I, as follows:

Xi vs :=
∑

t : s
i
→t

ct,svt , Yi vt :=
∑

s : s
i
→t

ds,tvs . (1)

For each vertex s of P , we also define a set of integers {mi(s)}i∈I by mi(s) := 2ρi(s)−li(s),
where li(s) is the rank of the i-component containing s, and ρi(s) is the rank of s within
that component.

Let g be a semisimple Lie algebra with Chevalley generators {Xi, Yi, Hi}i∈I . Let
{ωi}i∈I and {αi}i∈I denote the fundamental weights and simple roots of the corresponding
root system, respectively. Consider an edge-colored and edge-labeled ranked poset P , as
described above. Let us assign a weight to each vertex by wt(s) :=

∑

i∈I mi(s)ωi. We say
that the edge-colored poset P satisfies the structure condition for g if wt(s) + αi = wt(t)

whenever s
i
→ t.

We now define two conditions on the pairs of edge labels (ct,s, ds,t). We call πs,t :=
ct,s ds,t an edge product. The edge-labeled poset P satisfies the crossing condition if for
any vertex s and any color i we have

∑

r : r
i
→s

πr,s −
∑

t : s
i
→t

πs,t = mi(s) . (2)

A relation of the above form is called a crossing relation. The edge-labeled poset P
satisfies the diamond condition if for any pair of vertices (s, t) of the same rank and any
pair of colors (i, j), possibly i = j, we have

∑

u : s
j
→u and t

i
→u

cu,s dt,u =
∑

r : r
i
→s and r

j
→t

dr,s ct,r , (3)

where an empty sum is zero. If for given pairs (s, t) and (i, j) there is a unique vertex u

such that s
j
→ u and t

i
→ u, as well as a unique vertex r such that r

i
→ s and r

j
→ t, then

the relation (3) for these pairs and for the reverse pairs (t, s) and (j, i) reduce to

cu,s dt,u = dr,s ct,r , cu,t ds,u = dr,t cs,r ; (4)

these relations imply
πs,u πt,u = πr,s πr,t . (5)

A relation of the form (3), (4), or (5) is called a diamond relation.
We want to define a representation of g on V [P ] by letting the Chevalley generators

Xi and Yi act as in (1), and by setting

Hi vs := mi(s) vs . (6)

The following proposition gives a necessary and sufficient condition on the edge labels.
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Proposition 2.1 [9, Lemma 3.1][6, Proposition 3.4] Given an edge-colored and edge-
labeled ranked poset P , the actions (1) and (6) define a representation of g on V [P ] if and
only if P satisfies the diamond, crossing, and structure conditions.

If the given conditions hold, the set {vs}s∈P is a weight basis of the given representa-
tion, the edge-colored poset P is called a supporting graph of the representation, and P
together with its edge-labels is called a representation diagram. Some general properties
of supporting graphs were derived in [Section 3][6].

Many supporting graphs constructed so far have special properties, which we mention
below. A supporting graph is called edge-minimal if by removing edges we cannot obtain a
supporting graph for a weight basis of the same representation. Two weight bases related
by a diagonal transition matrix are called diagonally equivalent. The supporting graph
for a weight basis is called solitary if the diagonally equivalent bases are the only ones
with the same supporting graph. Hence, up to diagonal equivalence, a solitary weight
basis is uniquely determined by its supporting graph. Two representation diagrams are
called edge product similar if there is a poset isomorphism between them which preserves
the edge colors and the edge products. The following lemma highlights the importance of
edge products.

Lemma 2.2 [9, Lemma 4.2] Let L be a representation diagram with nonzero edge prod-
ucts for a weight basis B of V . Assume that L is connected (as a graph) and modular (as
a poset). A representation diagram K which is edge product similar to L is the represen-
tation diagram of a diagonally equivalent basis to B.

2.2 The Gelfand-Tsetlin basis

Let Eij , i, j = 1, . . . , n denote the standard basis of the general linear Lie algebra gln over
the field of complex numbers.

Consider a partition λ with at most n rows, that is a weakly decreasing sequence
of integers (λ1 > λ2 > . . . > λn > 0). Let V (λ) be the finite-dimensional irreducible
representation of gln with highest weight λ. A basis of V (λ) is parametrized by Gelfand–
Tsetlin patterns Λ associated with λ; these are arrays of integer row vectors

λn1 λn2 . . . . . . λnn

λn−1,1 . . . . . . λn−1,n−1

. . . . . . . . .
λ21 λ22

λ11

(7)

such that the upper row coincides with λ and the following conditions hold:

λki > λk−1,i , λk−1,i > λk,i+1 , i = 1, . . . , k − 1 (8)

for each k = 2, . . . , n. Let us set lki = λki − i + 1.
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Theorem 2.3 [10] There exists a basis {ξΛ} of V (λ) parametrized by the corresponding
patterns Λ such that the action of generators of gln is given by the following formulas:

Ekk ξΛ =

(

k
∑

i=1

λki −

k−1
∑

i=1

λk−1,i

)

ξΛ , (9)

Ek,k+1 ξΛ = −
k
∑

i=1

(lki − lk+1,1) · · · (lki − lk+1,k+1)

(lki − lk1) · · · ∧ · · · (lki − lkk)
ξΛ+δki

, (10)

Ek+1,k ξΛ =

k
∑

i=1

(lki − lk−1,1) · · · (lki − lk−1,k−1)

(lki − lk1) · · · ∧ · · · (lki − lkk)
ξΛ−δki

. (11)

The arrays Λ ± δki are obtained from Λ by replacing λki by λki ± 1. It is supposed that
ξΛ = 0 if the array Λ is not a pattern; the symbol ∧ indicates that the zero factor in the
denominator is skipped.

3 The representation diagram of the Gelfand-Tsetlin

basis

We restrict ourselves to sln, for which we have the standard choice of Chevalley generators
Hk := Ek,k−Ek+1,k+1, Xk := Ek,k+1, and Yk := Ek+1,k, for k in I := [n−1] = {1, . . . , n−1}.

We identify partitions with Young diagrams, so we refer to the cells (i, j) of a partition
λ. There is a natural bijection between the Gelfand-Tsetlin patterns associated with λ
and semistandard Young tableaux (SSYT) of shape λ with entries in [n], see e.g. [17]. A
pattern Λ can be viewed as a sequence of partitions

λ(1) ⊆ λ(2) ⊆ · · · ⊆ λ(n) = λ, (12)

with λ(k) = (λk1, . . . , λkk). We let λ(0) be the empty partition. Conditions (8) mean that
the skew diagram λ(k)/λ(k−1) is a horizontal strip. The SSYT T associated with Λ is then
obtained by filling the cells in λ(k)/λ(k−1) with the entry k, for each k = 1, . . . , n.

We now define a representation diagram for sln with edge colors I on the SSYT of

shape λ with entries in [n]. We have an edge S
k
→ T whenever the tableau T is obtained

from S by changing a single entry k +1 into k; necessarily, this is the leftmost entry k +1
in a row. The corresponding poset, which is known to be a distributive lattice, will be
called the Gelfand-Tsetlin lattice, and will be denoted by GT (λ).

To define the edge labels on GT (λ), fix a SSYT T in this lattice, and let the correspond-
ing Gelfand-Tsetlin pattern Λ be denoted as in (7). The labels on the incoming/outgoing
edges to/from T which are colored k will only depend on the corresponding partitions
λ(k−1), λ(k), and λ(k+1). The outer rim R of λ(k) consists of all cells (i, j) not in λ(k) such
that at least one of the cells (i, j − 1), (i− 1, j), (i− 1, j − 1) belongs to λ(k). A cell (i, j)
of R is called an outer corner if (i, j−1) and (i−1, j) belong to R, and an inner corner if
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neither (i, j − 1) nor (i− 1, j) belongs to R. The inner and outer corners are interleaved,
and the number of the former exceeds by 1 the number of the latter. Number the cells
of R from northeast to southwest starting from 1. Let a1 < . . . < ap be the numbers
attached to the inner corners, and a′

1 < . . . < a′
p−1 the numbers attached to the outer

corners. Furthermore, if r1 = 1 < r2 < . . . < rp are the rows of the inner corners, we
denote by bi the length (which might be 0) of the component of λ(k+1)/λ(k) in row ri, for
i = 1, . . . , p; similarly, we denote by b′i the length of the component of λ(k)/λ(k−1) in row
ri+1 − 1, for i = 1, . . . , p − 1. Note that row ri of T contains both k and k + 1 precisely
when ri+1−1 = ri, bi > 0, and b′i > 0. The notation introduced above is illustrated in the
figure below; the Young diagram with a bold boundary is that of λ(k), while the indicated
cells are those in λ(k+1)/λ(k) and λ(k)/λ(k−1).

’

i+

1_
1i+r a

a

r

r

b

b
i

i

i

i

i

’

1

Assume that we have T
k
→ U , and that the entry k + 1 in T changed into k is in

some row ri for 1 6 i 6 p (this is always the case). Thus, the Gelfand-Tsetlin pattern
corresponding to U is Λ + δkri

. Then let

cU,T := bi

i−1
∏

j=1

(

1 +
bj

ai − aj

) p
∏

j=i+1

(

1 −
bj

aj − ai

)

. (13)

Similarly, assume that we have S
k
→ T , and that the entry k in T changed into k +1 is in

some row ri+1 − 1 for 1 6 i 6 p − 1 (this is always the case). Thus, the Gelfand-Tsetlin
pattern corresponding to S is Λ − δk,ri+1−1. Then let

dS,T := b′i

i−1
∏

j=1

(

1 −
b′j

a′
i − a′

j

) p−1
∏

j=i+1

(

1 +
b′j

a′
j − a′

i

)

. (14)

The horizontal strip conditions on λ(k+1)/λ(k) and λ(k)/λ(k−1) guarantee that cU,T and dS,T

are nonnegative rational numbers which only become 0 when bi = 0, respectively b′i = 0.
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It is not hard to calculate the edge products using (13) and (14). For instance, we
have

πT,U = bi

i−1
∏

j=1

(

1 −
bj

aj − ai

) p
∏

j=i+1

(

1 −
bj

aj − ai

) i−1
∏

j=1

(

1 +
b′j

a′
j − ai

) p−1
∏

j=i

(

1 +
b′j

a′
j − ai

)

,

(15)
and a similar formula for πS,T .

Proposition 3.1 The edge-colored and edge-labeled poset defined above is edge product
similar, as a representation diagram, to that of the Gelfand-Tsetlin basis.

Proof. Observe first that, if j < i and λ
(p)
j > λ

(m)
i , then the difference lpj − lmi is the

length of the hook with rightmost cell (j, λ
(p)
j ) and bottom cell (i, λ

(m)
i +1). Still assuming

i > j, this means that lkrj
− lkri

= ai − aj and lk+1,rj
− lkri

= ai − aj + bj ; thus, by pairing
these two factors, we obtain

lkri
− lk+1,rj

lkri
− lkrj

= 1 +
bj

ai − aj

.

The other three types of brackets in (13) and (14) are obtained in a similar way from the
Gelfand-Tsetlin formulas (10) and (11). However, there are exceptions when rp = k+1 (see
below), namely the bracket corresponding to j = p in (13), and the bracket corresponding
to j = p − 1 in (14). Finally, note that the quotient in (10) corresponding to the rows
different from rj is 1; a similar statement holds for (11).

Let us now discuss the exception mentioned above. Assume that rp = k + 1. The
coefficient cU,T differs from the corresponding coefficient in (10) by a factor 1/(ap − ai).
Similarly, the coefficient dS,T differs from the corresponding coefficient in (11) by a factor

a′
p−1 − a′

i + b′p−1 = ap − a′
i. The last equality holds because the first λ

(k)
k entries in row k

of T are equal to k.
It is clear from (15) and the discussion related to the slight discrepancy between (10)-

(11) and (13)-(14) that the representation diagram of the Gelfand-Tsetlin basis is edge
product similar to the one described in this section. �

4 A proof of the Gelfand-Tsetlin formulas

Based on Proposition 2.1, the proof of the Gelfand-Tsetlin formulas amounts to the first
statement in the theorem below.

Theorem 4.1 The edge-colored and edge-labeled poset defined in Section 3 satisfies the
diamond, crossing, and structure conditions. Hence, it is a representation diagram of the
irreducible representation of sln with highest weight λ.
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Proof. We use the notation in Section 3 related to the SSYT T , as well as the notation
in Section 2.1. Let µk := b′1 + . . . + b′p−1 be the number of entries k in T . Observe
that ρk(T ) = µk and lk(T ) = µk + µk+1, hence mk(T ) = 2ρk(T ) − lk(T ) = µk − µk+1.
Furthermore, wt(T ) = µ1ε1 + . . . + µnεn since, by definition, 〈wt(T ), αk〉 = mk(T ) (recall
that αk = εk−εk+1 is the dual basis element to ωk under the scalar product 〈εi, εj〉 = δij).

Hence, given T
k
→ U , the structure condition wt(T ) + αk = wt(U) is verified.

We now address the crossing condition. We have mk(T ) = b′1 + . . .+b′p−1−b1− . . .−bp.
In order to simplify formulas, we make the substitution x2i−1 := ai, y2i−1 = −bi for
i = 1, . . . , p, and x2i := a′

i, y2i := b′i for i = 1, . . . , p − 1. Based on (15), the crossing
relation (2) for vertex T and color k can be written as follows:

N
∑

i=1

yi

∏

16j6N

j 6=i

(

1 +
yj

xj − xi

)

=
N
∑

i=1

yi , (16)

where N := 2p−1. Note that we can take the above sum over all i from 1 to 2p−1 because
when we attempt an illegal change of a k + 1 into k or viceversa, the corresponding term
is 0. Indeed, assume for instance that we intend to change a k + 1 in row ri, but this is
illegal because we have a k immediately above it. This means that ai − a′

i−1 = b′i−1, and
therefore the right-hand side of (15) cancels.

Now let us prove the rational function identity (16). It is not hard to see that its
left-hand side is invariant under the diagonal action of the symmetric group SN on the
variables x1, . . . , xN and y1, . . . , yN . Let us expand and extract the coefficient of y1y2 . . . yk.
For k = 1 it is clearly 1. For 2 6 k 6 N , it is the following symmetric rational function
in x1, . . . , xk:

k
∑

i=1

∏

16j6k

j 6=i

1

xj − xi

.

The common denominator is the Vandermonde determinant in x1, . . . , xk. Thus the nu-

merator is an antisymmetric polynomial in the same variables, but its degree is

(

k
2

)

−

(k − 1) =

(

k − 1
2

)

, so it has to be 0. This concludes the proof of (16) by the symmetry

of its left-hand side under the diagonal action of SN .
Since the Gelfand-Tsetlin lattice GT (λ) is a distributive lattice, the diamond relations

take the simpler form (4). Assume that we have T
k
→ U , S

l
→ U , R

l
→ T , and R

k
→ S.

We use the same parameters ai, bi, a
′
i, ri for the SSYT T as in Section 3. We need to show

that cU,T dS,U = dR,T cS,R. This is trivial except for l = k and l = k + 1, because then
cU,T = cS,R and dS,U = dR,T .

Now consider the case l = k. Let ri be the row containing the changed k + 1 in T and
R (for obtaining S), and let rj+1 − 1 be the row containing the changed l = k in U (for
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obtaining S) and T . Assume that j > i, the other case being completely similar. Then,
by (13) and (14), we have

dS,U

dR,T

= 1 −
1

a′
j − ai

=
cS,R

cU,T

.

Finally, consider the case l = k + 1. Let ri be the row containing the changed k + 1
in T (for obtaining U) and R, and let rj be the row containing the changed l = k + 1 in
U and T (for obtaining R). Assume that j > i, the other case being completely similar.
Then, by (13) and (14), we have

cU,T

cS,R

=

(

1 −
bj

aj − ai

)(

1 −
bj − 1

aj − ai

)−1

,

dR,T

dS,U

=

(

1 −
bi

aj − bj − ai + bi

)(

1 −
bi − 1

aj − bj − ai + bi

)−1

.

A simple calculation shows that the two quotients are equal.
By Proposition 2.1, the edge-colored and edge-labeled poset defined in Section 3 en-

codes a representation of sln. Consider the basis vector corresponding to the maximum of
the poset GT (λ), namely to the SSYT of shape λ with all entries in row i equal to i. This
is clearly a highest weight vector, and relation (6) shows that this highest weight vector
has weight λ. Now the number of SSYT of shape λ and with entries from [n] is well-known
to be the dimension of the irreducible representation of sln with highest weight λ. Then
GT (λ) is a representation diagram for this representation. �

Remark 4.2 A consequence of Theorem 4.1 is that the Gelfand-Tsetlin lattices are rank
symmetric, rank unimodal, and strongly Sperner. (See [6, Proposition 3.11], which re-
quires the main result of [24].) Another consequence is that the rank generating function
for each Gelfand-Tsetlin lattice factors nicely as a quotient of products, cf. [12, Proposi-
tion 2.4].

5 Edge-minimality and the solitary property

In this section, we give an algorithm for determining the edge products in a Gelfand-
Tsetlin lattice from the vertex weights {mi(s)}. The idea is to show first how the edge
products of color 1 are forced by the vertex weights; then as an inductive step, we show
that after edge products have been determined for all edges colored 1, 2, . . . , k − 1, then
there is an algorithm forcing the edge products for all of the edges colored k.

Remark 5.1 If the edge products for three of the four covering relations comprising a
diamond are known, then the diamond relation (5) will determine the fourth.

We begin by describing the algorithm for the edges colored 1. Notice that the 1-
components are chains, or in other words for each poset element T there is at most one
U covering T such that the covering relation T ≺ U is colored 1 and likewise there is
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also at most one R covered by T such that the covering relation R ≺ T is colored 1.
This is immediate from the fact that the value 1 may only appear in the first row of a
semistandard Young tableau, so that any semistandard Young tableau has at most one
copy of the value 1 which may be incremented to a 2 still yielding a semistandard Young
tableau, since the only candidate is the rightmost 1 in the first row.

For any minimal or maximal element T in a 1-component, the crossing condition forces
the edge product for the unique covering involving T . We may keep repeating this idea,
i.e. at each step using the crossing condition to force one additional edge product, namely
one at a poset element S such that all other edge products for covering relations involving
S that are colored 1 have already had their values forced. In this manner, we determine
all edge products for covering relations colored 1.

Before turning to the inductive step, we make a few observations about semistandard
Young tableaux that will be used in our upcoming algorithm for determining edge products
of color k once the edge products are known for colors 1, 2, . . . , k − 1. We now think of
an element T of the Gelfand-Tsetlin lattice as a semistandard Young tableau, using the
earlier description of covering relations T ≺ U as pairs of SSYT in which U is obtained
from T by incrementing an entry from i to i+1. Recall that this covering relation T ≺ U
is then said to have color i.

Remark 5.2 The value k may only appear within the first k rows of a SSYT, since
the column immediately above any occurance of the value k must consist of a strictly
increasing sequence of positive integers. Consequently, there are at most k upward edges
and at most k downward edges colored k originating at any specified element T in the
Gelfand-Tsetlin lattice, since only the rightmost k in a row may yield an upward covering
relation colored k and only the leftmost k may yield a downward one.

Let us call a value k + 1 in a SSYT decrementable if it may be replaced by k with the
result still being a SSYT. Similarly, call a value k in a SSYT incrementable if it may be
replaced by the value k + 1 to yield a SSYT.

Remark 5.3 Let d(k) be the number of rows in a SSYT which contain a decrementable
copy of the value k+1. Then d(k) is at most one more than the number of rows containing
a value strictly smaller than k which is incrementable. This is because each decrementable
k + 1 which is not in the first row has a value i < k immediately above it; this i may be
incremented to obtain a SSYT unless it has another i to its immediate right, but in that
case the rightmost i in its row must be incrementable (since the entry immediately below
it in the SSYT, if any, will be at least as large as k + 1).

In discussing any particular SSYT below, let rj be the j-th row in this SSYT which
contains a decrementable copy of k + 1.

Remark 5.4 Consider a row rj of a SSYT such that there is also a row rj+1 in the same
SSYT, i.e. a row containing a decrementable k + 1 which is not the lowest such row. Let
i < k be the entry immediately above the leftmost copy of k + 1 in row rj+1. Then we

the electronic journal of combinatorics 17 (2010), #R33 11



may decrement the leftmost k +1 in row rj and increment the rightmost i in row rj+1 − 1
at the same time to obtain a SSYT. This is because i + 1 6 k, so that we preserve the
property of rows weakly increasing from left to right even in the case that rj = rj+1 − 1;
preservation of column strictness is clear.

We will use these pairs of covering relations colored k and i to provide diamond
relations to be used in the algorithm below.

Now we are ready to complete the description of the algorithm. The idea for handling
color k is to proceed from top to bottom through the poset, considering only poset elements
with covering relations proceeding downward from them colored k. More precisely, we
repeatedly choose a maximal such element S in the remaining part of the poset and
determine the edge products for all edges originating at S whose edge products have not
yet been determined; these must necessarily all proceed downward from S. At each stage,
i.e. at each poset element S encountered, we first force the edge products for all but one of
its downward edges colored k; essentially, we use the diamond condition for the diamond
involving a downward covering relation R ≺ S which is colored k and an upward covering
relation S ≺ U which is colored i for some i < k, as follows. Assume that the covering
relation R ≺ S corresponds to decrementing the leftmost k + 1 in a row rj of S which
is not the lowest such row. Now letting i be the entry immediately above the leftmost
copy of k + 1 in row rj+1 of S, like in Remark 5.4, obtain U from S by incrementing the
rightmost i in row rj+1 − 1. Obtain the fourth poset element T comprising the diamond
by taking U and decrementing the leftmost k + 1 in row rj, cf. Remark 5.4. Notice that
three of the four edge products in this diamond will have already been determined, by
virtue of either being colored i for some i < k or else involving a poset element T ′ which is
strictly greater than U in the k-component of the Gelfand-Tsetlin lattice; thus, (5) forces
the last edge product (cf. Remark 5.1). This leaves exactly one edge product yet to be
determined among the downward edges colored k which originate at S; it is the product
for the edge that corresponds to decrementing the rightmost k + 1 in the lowest row rj .
But this edge product is determined by the crossing condition.

Theorem 5.5 The above algorithm shows explicitly how to determine all the edge prod-
ucts of the Gelfand-Tsetlin lattice, and thus implies that this lattice has the solitary prop-
erty. It also has the edge minimality property.

Proof. Uniqueness of edge products is proven above within the description of the
algorithm. The point is that we show how each edge product in turn is forced by earlier
ones. By Theorem 4.1, these edge products must coincide with the edge products of (15).
In particular, all edge products are nonzero. It now follows from Lemma 2.2 that the
Gelfand-Tsetlin basis has the solitary property. Edge minimality then follows from the
fact that none of the resulting edge products are zero. �

The fact that the Gelfand-Tsetlin lattice has the solitary and edge minimality proper-
ties was previously proven in [6, Theorem 4.4], but not in a constructive manner, so not
in a way which provides an algorithm to determine all of the edge products. It would be
interesting now to relate the algorithm we have just given to the known edge labels.
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