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Abstract

In this article we look at the well-studied upper bounds for |A|, where A ⊂ N

is a Bh sequence, and generalise these to the case where A ⊂ Nd. In particular we

give d-dimensional analogues to results of Chen, Jia, Graham and Green.

1 Introduction

1.1 Infinite Bh sequences

Let h, d ∈ N with h > 2. A d-dimensional set A ⊂ Nd is called a d-dimensional Bh

sequence if all sums a1 + a2 + · · · + ah, where a1, a2, . . . , ah ∈ A, are different up to
rearrangement of summands.

We denote A(n) as number of elements of A in a box [1, n]d. If A is a d-dimensional
Bh sequence, then

(
A(n)

h

)
6 (hn)d which implies

A(n) = O(nd/h). (1)

Erdős improved this inequality for one-dimensional B2 sequences showing that

lim inf
n→∞

A(n)

√
log n

n
< ∞.

This result was generalised for d-dimensional B2 sequences by J. Cilleruelo:
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Theorem 1.1. [1] If A ⊂ Nd is a B2 sequence, then

lim inf
n→∞

A(n)

√
log n

nd
< ∞.

and for one dimensional B2k sequences by S. Chen:

Theorem 1.2. [2] If A ⊂ N is a B2k sequence, then

lim inf
n→∞

A(n)
2k

√
log n

n
< ∞.

As noted in [2], no results of this type are known for h odd.

1.2 Finite Bh sequences

Erdős and Turán gave the first upper bound for finite B2 sequences, showing that if
A ⊆ [1, N ] is a B2 sequence then

|A| 6 N
1
2 + O

(
N

1
4

)
.

Lindström [7] improved the method of this paper to obtain

|A| 6 N
1
2 + N

1
4 + 1.

If A ⊆ [1, N ] is a Bh sequence a simple counting argument gives

|A| 6 (hh!N)
1
h .

Lindström [8] improved this for A ⊆ [1, N ] a B4 sequence, proving

|A| 6 8
1
4 N

1
4 + O

(
N

1
8

)
.

Jia generalised this argument for even h to obtain:

Theorem 1.3 ([6], see also [5]). If A ⊆ [1, N ] is a B2k sequence, then

|A| 6 k
1
2k (k!)

1
k N

1
2k + O

(
N

1
4k

)
.

For the case h is odd, the best known upper bound was given by Chen and Graham:

Theorem 1.4 ([5],[3]). If A ⊆ [1, N ] is a B2k−1, then

|A| 6 (k!)
2

2k−1 N
1

2k−1 + O
(
N

1
4k−2

)
.

Finally, Green used the techniques of Fourier analysis to improve above theorems in
three special cases:
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Theorem 1.5. [4] If A ⊆ [1, N ] is a B3 sequence, then

|A| 6
(

7
2

) 1
3 N

1
3 + o

(
N

1
3

)
.

Theorem 1.6. [4] If A ⊆ [1, N ] is a B4 sequence, then

|A| 6 (7)
1
4 N

1
4 + o

(
N

1
4

)
.

Theorem 1.7. [4] For sufficiently large k:

(i) If A ⊆ [1, N ] is a B2k sequence, then

|A| 6 π
1
4k k

1
4k (k!)

1
k (1 + ǫ(k))N

1
2k + O

(
N

1
4k

)
.

(ii) If A ⊆ [1, N ] is a B2k−1 sequence, then

|A| 6 π
1

2(2k−1) k
−1

2(2k−1) (k!)
2

2k−1 (1 + ǫ(k))N
1

2k−1 + O
(
N

1
2(2k−1)

)
.

2 Preliminaries

We denote

rA = {x = x1 + ... + xr : xs ∈ A, 1 6 s 6 r},

r ∗ A = {x = x1 + ... + xr : xs ∈ A, xi 6= xj , 1 6 i < j 6 r }.

For any x = x1 + · · ·+ xr ∈ rA, we let x be the set {x1, . . . , xr} (counting multiplicities).
For a Bh-sequence A ⊆ [1, N ]d we define

Dj(z; r) = {(x, y) : x − y = z, x, y ∈ jA, |x ∩ y| = r},

and write dj(z; r) for its cardinality.

Lemma 2.1.1. Let A ⊆ [1, N ]d.

(i) If A is a B2k sequence, for 1 6 j 6 k,

dj(z; 0) 6 1;

(ii) If A is B2k sequence, for 1 6 r 6 k,

∑

z∈Zd

dk(z; r) 6 |A|2k−r.
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Proof.

(i) If (x, y), (x′, y′) ∈ Dj(z; 0) then we have x + y′ = x′ + y. Since A is a Bh sequence,
the two representations correspond to different permutations of the same h elements
and as x ∩ y = x′ ∩ y′ = ∅, then x = x′ and y = y′.

(ii) There are at most |A|r possible values for x∩y (where the intersection is taken with
multiplicities), so

dk(z; r) 6 |A|rdk−r(z; 0).

Then

∑

z∈Zd

dk(z; r) 6 |A|r
∑

z∈Zd

dk−r(z; 0)

6 |A|r|(k − r)A|2 (using (i))

6 |A|2k−r.

Similarly for a Bh-sequence A ⊆ [1, N ]d we define

D∗
j (z; r) = {(x, y) : x − y = z, x, y ∈ j ∗ A, |x ∩ y| = r},

D∗
j (z; r; a) = {(x, y) ∈ D∗

j (z, r) : a ∈ x}

and write d∗
j(z; r) and d∗

j(z; r; a) for their respective cardinalities.

Lemma 2.1.2. Let A ⊆ [1, N ]d.

(i) If A is a B2k−1 sequence, for 1 6 j 6 k − 1,

d∗
j (z; 0) 6 1;

(ii) If A is a B2k−1 sequence,

d∗
k(z; 0) 6

|A|

k
.

(iii) If A is a B2k−1 sequence, for 1 6 r 6 k,

∑

z∈Zd

d∗
k(z; r) 6 |A|2k−r.

Proof.

(i) We may use the same proof as in (i) previous lemma.
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(ii) We show that d∗
k(z; 0; a) 6 1. Assume not. Then there exists x = x1 + . . .+xk, x

′ =
x′

1 + . . .+x′
k, y = y1 + . . .+yk, y

′ = y′
1 + . . .+y′

k ∈ k ∗A such that x−y = x′−y′ = z.
In addition, without loss of generality, we may assume xk = x′

k = a. Hence we have

x1 + . . . + xk−1 + y′
1 + . . . y′

k = x′
1 + . . . + x′

k−1 + y1 + . . . yk.

Once again, since A is a B2k−1 sequence, the two representations correspond to
different permutations of the same 2k − 1 elements and as x ∩ y = x ∩ y = ∅ we
must have x = x′ and y = y′, giving a contradiction.

Notice that ∑

a∈A

d∗
k(z; 0; a) = kd∗

k(z; 0)

and the statement of the lemma follows.

(iii) We may use the same proof as in (ii) in previous lemma.

3 Infinite d-dimensional B2k sequences

In this section we prove the following amalgamation of Theorems 1.1 and 1.2:

Theorem 3.1. If A ⊂ Nd is a B2k sequence, then

lim inf
n→∞

A(n)
2k

√
log n

nd
< ∞

We fix a large enough positive integer n and set u = ⌊n1/(2k−1)⌋. For any d-dimensional
vector ~i use the L∞ norm defined as follows:

|~i|∞ = |(i1, i2, ..., id)|∞ = max
16k6d

{|ik|}.

For any d-dimensional set B denote

B~i = B ∩
d⊗

j=1

((ij − 1)kn, ijkn].

We set

A′ = A ∩ [1, un]d,

C = kA′,

c~i = |C~i|,

∆j =
∑

|~i|∞=j

c~i,

τ(n) = min
n6m6un

A(m)

md/2k
.
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Lemma 3.1.1.

τ(n)2knd log n = O


 ∑

~i∈[1,u]d

c2
~i


 .

Proof. Note that


 ∑

~i∈[1,u]d

c~i

|~i|∞
d/2




2

6


 ∑

~i∈[1,u]d

1

|~i|∞
d




 ∑

~i∈[1,u]d

c2
~i




6

(
u∑

i=1

did−1

id

)
 ∑

~i∈[1,u]d

c2
~i




6 O


log n

∑

~i∈[1,u]d

c2
~i


 . (2)

On the other hand, for any positive i (1 6 i 6 u),

C(ikn) > cA(in)k,

where c > 0 is an absolute constant depending only on k, and

A(in)k =

(
A(in)

(in)d/2k

)k

(in)d/2

> τ(n)k(in)d/2.

Hence, for absolute constants c1, c2, c3 depending on d and k,

∑

~i∈[1,u]d

c~i

|~i|∞
d/2

=
u∑

i=1

∆i

id/2

=

u∑

i=1

(
1

id/2
−

1

(i + 1)d/2

) i∑

j=1

∆j +
1

(u + 1)d/2

u∑

j=1

∆j

> c1

u∑

i=1

C(ikn)

id/2+1

> c2

u∑

i=1

τ(n)k(in)d/2

id/2+1

= c2τ(n)knd/2
u∑

i=1

1

i

> c3τ(n)knd/2 log n. (3)

Combining inequalities (2) and (3), Lemma 3.1.1 follows.
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Lemma 3.1.2. ∑

~i∈[1,u]d

c2
~i

= O(nd).

Proof. We have

∑

~i∈[1,u]d

c2
~i

6

k∑

r=0

∑

|z|∞6kn

dk(z; r)

=
∑

|z|∞6kn

dk(z; 0) +
k∑

r=1

∑

|z|∞6kn

dk(z; r)

6
∑

|z|∞6kn

1 +

k∑

r=1

|A′|2k−r (using Lemma 2.1.1 (i) and (iv))

= (2kn)d + O
(
(un)d(1−1/(2k))

)
(using equation (1))

= O(nd).

We are now able to prove Theorem 3.1:

Proof of Theorem 3.1. From Lemmas 3.1.1 and 3.1.2 we have τ(n)2k log n = O(1). Hence,

lim inf
n→∞

A(n)
2k

√
log n

nd
= lim

n→∞
inf

n6m6un
A(m)

2k

√
log m

md

6 lim
n→∞

inf
n6m6un

A(m)

md/2k
2k
√

log un

6 2 lim
n→∞

τ(n) 2k
√

log n < ∞.

4 Finite d-dimensional Bh-sequences

4.1 Preliminaries

The following lemma will be our main tool for the subsequent two sections:

Lemma 4.1.1. Let G be an additive group and A1, A2, X ⊂ G such that A1 + A2 = X.
Write

dAi
(g) = #{(a, a′) : a, a′ ∈ Ai, a − a′ = g}, i = 1, 2,

rA1+A2(g) = #{(a, a′) : a ∈ A1, a
′ ∈ A2, a + a′ = g}.
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Then ∑

g∈G

dA1(g)dA2(g) −
|A1|

2|A2|
2

|X|
=
∑

g∈X

(
rA1+A2(g) −

|A1||A2|

|X|

)2

.

In particular, we have
∑

g∈G

dA1(g)dA2(g) −
|A1|

2|A2|
2

|X|
> 0. (4)

Proof. Note that

∑

g∈X

rA1+A2(g)2 = #{(a1, a2, a3, a4) : a1, a3 ∈ A1, a2, a4 ∈ A2, a1 + a2 = a3 + a4}

= #{(a1, a2, a3, a4) : a1, a3 ∈ A1, a2, a4 ∈ A2, a1 − a3 = a2 − a4}

=
∑

g∈G

dA1(g)dA2(g).

Therefore

∑

g∈X

(
rA1+A2(g) −

|A1||A2|

|X|

)2

=
∑

g∈X

rA1+A2(g)2 − 2
|A1||A2|

|X|

∑

g∈X

rA1+A2(g) +
∑

g∈X

|A1|
2|A2|

2

|X|2

=
∑

g∈G

dA1(g)dA2(g) − 2
|A1||A2|

|X|
|A1||A2| +

|A1|
2|A2|

2

|X|2
|X|

=
∑

g∈G

dA1(g)dA2(g) −
|A1|

2|A2|
2

|X|
.

4.2 Finite d-dimensional B2k sequences

In this section we show the multidimensional analogue of Theorem 1.3:

Theorem 4.1. If A ⊆ [1, N ]d is a B2k sequence, then

|A| 6 N
d
2k k

d
2k (k!)

1
k + O

(
N

d2

2k(d+1)
)
.

We first prove the following lemma:

Lemma 4.2.1. For I = [0, u − 1]d,

∑

z∈Zd

dkA(z)dI(z) 6 u2d + O(ud|A|2k−1).
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Proof.

∑

z∈Zd

dkA(z)dI(z) =
∑

z∈Zd

dI(z)

k∑

r=0

dk(z; r)

=
∑

z∈Zd

dI(z)dk(z; 0) +
k∑

r=1

∑

z∈Zd

dI(z)dk(z; r)

6 u2d + O(ud|A|2k−1). (using Lemma 2.1.1 (i) and (ii))

Proof of Theorem 4.1. We will use Lemma 4.1.1 with G = Zd, A1 = kA, A2 = I =
[0, u − 1]d (where the positive integer u will be chosen later) and X = kA + I.

|kA| >
1

k!
|A|k,

|I| = ud,

|X| 6 (kN + u)d.

Thus, using Lemma 4.2.1 and equation (4), we have (after simplification)

|A|2kud

k!2(kN + u)d
6 ud + O

(
|A|2k−1

)
,

or

|A|2k
6 k!2(kN + u)d + O

((
kN

u
+ 1

)d

|A|2k−1

)

6 k!2(kN + u)d + O

((
kN

u
+ 1

)d

N
(2k−1)d

2k

)
. (using equation (1))

To minimise the error term we need
(

N
u

)d
N

(2k−1)d
2k = uNd−1, so we take u = N1− d

(d+1)2k

giving

|A|2k
6 k!2kdNd + O

(
N

d− d
(d+1)2k

)

6 k!2kdNd
(
1 + O(N

− d
(d+1)2k )

)
.

Taking 2kth roots ends the proof.

4.3 Finite d-dimensional B2k−1 sequences

In this section we show the multidimensional analogue of Theorem 1.4.
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Theorem 4.2. If A ⊂ [1, N ]d is a B2k−1 sequence, then

|A| 6 (k!)
2

2k−1 k
d−1
2k−1 N

d
2k−1 + O

(
N

d2

(d+1)(2k−1)
)
.

Lemma 4.3.1. For I = [0, u − 1]d,

∑

z∈Zd

dk∗A(z)dI(z) 6
|A|

k
u2d + O

(
ud|A|2k−1

)
.

Proof. The proof follows the same course as that of Lemma 4.2.1 except using Lemma
2.1.2 (i), (ii) and (iii) in the final step.

Proof of Theorem 4.2. As before we make use of Lemma 4.1.1, taking G = Zd, A1 = k ∗
A, A2 = I = [0, u−1]d (where the positive integer u will be chosen later) and X = A1+A2.

We have

|k ∗ A| >
1

k!
|A|k(1 −

c

|A|
),

where constant c depends on k, which with Lemma 4.3.1 and equation (4) gives:

(1 − c
|A|

)2|A|2ku2d

(k!)2(kN + u)d
6 u2d |A|

k
+ O(|A|2k−1ud),

or
|A|2ku2d

(k!)2(kN + u)d
6 u2d |A|

k
+ O(|A|2k−1ud)

thus

|A|2k−1
6

(k!)2(kN + u)d

k
+ O

((
kN

u
+ 1

)d

|A|2k−2

)

6
(k!)2(kN + u)d

k
+ O

((
kN

u
+ 1

)d

Nd 2k−2
2k−1

)
.

To minimise the error term we need Nd−1u = NdNd(2k−2)/(2k−1) so we take u =
N1− d

(d+1)(2k−1) which gives

|A|2k−1
6 (k!)2Ndkd−1 + O(Nd− d

(d+1)(2k−1) )

6 (k!)2Ndkd−1
(
1 + O(N

− d
(d+1)(2k−1) )

)
.

Taking 2k − 1th roots gives the result.
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4.4 Finite Bh sequences for large h

4.4.1 Fourier Analysis Prerequisites

We use the notation of Green [4].

Let f : Zd
N → C be any function. We define the dot product of two vectors a =

(a1, a2, . . . , ad) and b = (b1, b2, . . . , bd) from an orthonormal vector space as

a · b =
d∑

i=1

aibi.

For r ∈ Zd
N , we define the Fourier transform

f̂(r) =
∑

x∈Z
d
N

f(x)e
2πir·x

N .

If f, g : G → C are two functions on an abelian group G, we define the convolution

(f ∗ g)(x) =
∑

y∈G

f(y)g(y − x).

We adopt the convention that

f1 ∗ f2 ∗ · · · ∗ fk = f1 ∗ (f2 ∗ · · · ∗ (fk−1 ∗ fk)).

We shall denote A∗2k(x) = (A ∗ A ∗ · · · ∗ A︸ ︷︷ ︸
2k times

)(x). Notice that A∗2k(x) is the number of

ordered representations of x = a1 + · · ·+ ak − ak+1 − · · · − a2k for a1, a2, . . . , a2k ∈ A. We
shall use the following two well-known identities:

Lemma 4.4.1 (Parseval’s Identity). If f, g : Zd
N → C are two functions then

Nd
∑

x∈Zd
N

f(x)g(x) =
∑

r∈Zd
N

f̂(r)ĝ(r).

Lemma 4.4.2. If f, g : Zd
N → C are two functions then

(̂f ∗ g)(r) = f̂(r)ĝ(r).

From now on we will let A(x) be the characteristic function of the set, i.e.

A(x) =

{
1 if x ∈ A;

0 otherwise.

the electronic journal of combinatorics 17 (2010), #R35 11



4.4.2 Bh sequences for large h

In this section we show the multidimensional analogue of Theorem 1.7.

Theorem 4.3. For k sufficiently large and A ⊆ [1, N ]d

(i) If A is a B2k sequence

|A| 6 (πd)
d
4k (1 + ǫ(k))k

d
4k (k!)

1
k N

d
2k + O

(
N

d2

2k(d+1)
)
.

(ii) If A is a B2k−1 sequence

|A| 6 (πd)
d

2(2k−1) (1 + ǫ(k))k
d−2

2(2k−1) (k!)
2

2k−1 N
d

2k−1 + O
(
N

d2

(2k−1)(d+1)
)
.

Proof.

(i) We regard A as a subset of Zd
kN+v where v ≪ N so that A∗2k(x) remains the same

for x ∈ [−v, v]d as it was when we regarded A as a subset of Zd.
Let I = [0, u − 1]d where u ≪ v.
Notice that, for all x ∈ [−v, v]d, A∗2k(x) 6 (k!)2dkA(x) and I ∗ I(x) = dI(x).
Hence, arguing as in the proof of Lemma 4.2.1, we obtain

∑

x∈Z
d
kN+v

A∗2k(x)(I ∗ I)(x) =
∑

x∈[−u+1,u−1]d

A∗2k(x)(I ∗ I)(x)

6 (k!)2u2d + O
(
|A|2k−1ud

)
. (5)

Parseval’s identity (Lemma 4.4.1) and Lemma 4.4.2 give

∑

x∈Z
d
kN+v

A∗2k(x)(I ∗ I)(x) =
1

(kN + v)d

∑

r∈Z
d
kN+v

Â∗2k(x)Î ∗ I(x)

=
1

(kN + v)d

∑

r∈Z
d
kN+v

|Â(r)|2k|Î(r)|2

>
1

(kN + v)d

∑

|r1|+···+|rd|6k/2

|Â(r)|2k|Î(r)|2. (6)

Claim 1. |Î(r)| > ud − 2π|r1+r2+···+rd|u
d+1

kN
.
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|ud − Î(r)| 6
∑

x∈[0,u−1]d

∣∣∣1 − e
2πir·x
kN+v

∣∣∣

=
∑

x∈[0,u−1]d

∣∣∣∣1 − cos

(
2πr · x

kN + v

)
− i sin

(
2πr · x

kN + v

)∣∣∣∣

6 ud

(
2π(|r1| + |r2| + · · · + |rd|)(u − 1)

kN + v

)

6
2π(|r1| + |r2| + · · ·+ |rd|)u

d+1

kN
,

proving Claim 1.

Claim 2.
∑

|r1|+···+|rd|6k/2

|Â(r)|2k
> |A|2k

(
k

πd

) d
2

(1 − ǫ(k)).

Note that the set

{x1r1 + · · ·+ xdrd : |r1| + · · ·+ |rd| 6 k/2, x ∈ [1, N ]d}

is contained in an interval of length k
2
N . Therefore for such r, vectors in the

complex plane corresponding to elements of A in Fourier transform will not cancel
each other. Furthermore, we can expect elements of A to be more-or-less
distributed in the whole of [1, N ]d, thus rotating by N/2 in each dimension should
almost align the sum of the these vectors with the real axis.

|Â(r)|2k =

∣∣∣∣∣∣
∑

x∈Z
d
kN+v

A(x)e2πi
x1r1+···+xdrd

kN+v

∣∣∣∣∣∣

2k

=

∣∣∣∣∣∣
∑

x∈Z
d
kN+v

A(x)e2πi
(x1−N/2)r1+···+(xd−N/2)rd

kN+v

∣∣∣∣∣∣

2k

>

∣∣∣∣∣∣
∑

x∈Zd
kN+v

A(x) cos

(
π(r1 + · · ·+ rd)

k

)∣∣∣∣∣∣

2k

.

Since |r1| + · · · + |rd| 6 k/2, this is greater or equal than

|A|2k

∣∣∣∣1 −
π2(r1 + · · ·+ rd)

2

2k2

∣∣∣∣
2k

.
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Now we can give a bound for the sum:

∑

|r1|+···+|rd|6k/2

|Â(r)|2k
> |A|2k

∑

|r1|+···+|rd|6k/2

∣∣∣∣1 −
π2(r1 + · · ·+ rd)

2

2k2

∣∣∣∣
2k

> |A|2k
∑

|r1|+···+|rd|6k5/8

∣∣∣∣1 −
π2(r1 + · · ·+ rd)

2

2k2

∣∣∣∣
2k

.

Since k is large, this is greater or equal than

|A|2k
∑

|r1|+···+|rd|6k5/8

∣∣∣∣1 −
π4(r1 + · · · + rd)

4

4k4

∣∣∣∣
2k

e
−π2(r1+···+rd)2

k .

In the last step we used inequality 1 − s > e−s(1 − s2), which is true for s 6 1.
Note that, under restrictions |r1| + · · · + |rd| 6 k5/8, we have

∣∣∣∣1 −
π4(r1 + · · · + rd)

4

4k4

∣∣∣∣
2k

→ 1

as k → ∞. The remaining sum can be rearranged using the Cauchy-Schwarz
inequality:

∑

|r1|+···+|rd|6k5/8

e
−π2(r1+···+rd)2

k >
∑

|ri|6
k5/8

d

e
−dπ2(r2

1+···+r2
d)

k

=

d∏

i=1

∑

|ri|6
k5/8

d

e
−π2dr2

i
k .

Now the claim follows from the fact

∑

|ri|6
k5/8

d

e
−π2dr2

i
k →

∫ ∞

−∞

e
−π2dt2

k dt =

(
k

πd

)1/2

.

Combining equations (5) and (6) with Claims 1 and 2, we obtain

(k!)2u2d + O
(
|A|2k−1ud

)
>

u2d

(kN + v)d

(
1 −

πud

N

)2 ∑

|r1|+|r2|+···+|rd|6
k
2

|Â(r)|2k

>
u2d

(kN + v)d

(
1 −

πud

N

)2

|A|2k

(
k

πd

) d
2

(1 − ǫ(k)).

So, using equation (1),

|A|2k
6

(k!)2(kN + v)d + O
(
Nd(2− 1

2k
)u−d

)

ud

(kN+v)d

(
1 − πud

N

) (
k
πd

) d
2 (1 − ǫ(k))

.
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We can minimise the error term by choosing u = v = N1− d
2k(d+1) which, using

Taylor’s expansions, gives

|A|2k
6 (πd)

d
2 (1 + ǫ(k))k

d
2 (k!)2Nd

(
1 + O

(
N− d

2k(d+1)
))

.

Taking 2kth roots gives the result.

(ii) This uses essentially the same proof except arguing as in Lemma 4.3.1 to obtain
the equivalent of equation (5):

∑

x∈Z
d
kN+v

A∗2k(x)(I ∗ I)(x) 6 |A|k!(k − 1)! u2d + O
(
|A|2k−1ud

)
.
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