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Abstract

A quadrilateral cylinder of length m and breadth n is the Cartesian product of a
m-cycle(with m vertices) and a n-path(with n vertices). Write the vertices of the two
cycles on the boundary of the quadrilateral cylinder as x1, x2, · · · , xm and y1, y2, · · · , ym,
respectively, where xi corresponds to yi(i = 1, 2, . . . , m). We denote by Qm,n,r, the graph
obtained from quadrilateral cylinder of length m and breadth n by adding edges xiyi+r (r
is a integer, 0 6 r < m and i+r is modulo m). Kasteleyn had derived explicit expressions
of the number of perfect matchings for Qm,n,0 [P.W. Kasteleyn, The statistics of dimers on
a lattice I: The number of dimer arrangements on a quadratic lattice, Physica 27(1961),
1209–1225]. In this paper, we generalize the result of Kasteleyn, and obtain expressions
of the number of perfect matchings for Qm,n,r by enumerating Pfaffians.
Keywords: Pfaffian; Perfect matching; Quadratic lattice; Torus.

1 Introduction

The graphs considered in this paper have no loops or multiple edges. A perfect match-
ing of a graph G is a set of independent edges of G covering all vertices of G. Problems
involving enumeration of perfect matchings of a graph were first examined by chemists
and physicists in the 1930s (for history see [1,17]), for two different (and unrelated) pur-
poses: the study of aromatic hydrocarbons and the attempt to create a theory of the liquid
state. Many mathematicians, physicists and chemists have given most of their attention
to counting perfect matchings of graphs. See for example papers [5,6,12−15,21−23].
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Figure 1: A quadrilateral cylinder circuit of length m and breadth n.

r 0 1 2 3
wQ6,6,r

90176 63558 88040 64152

Table 1: The number of perfect matchings of Q6,6,r.

How many perfect matching does a given graph have? In general graphs, it is NP-hard.
But for some special classes of graph, it can be solved exactly, especial to lattices(maybe
infinite), such as the quadratic lattice, hexagonal lattice, triangular lattice, kagome lattice
and etc[3,7,13,22]. For graph on torus, D. J. Klein[9] had considered finite-sized elemental
benzenoid graphs corresponding to hexagonal. A quadrilateral cylinder of length m and
breadth n is the Cartesian product of a m-cycle(with m vertices) and a n-path(with
n vertices). Write the vertices of the two cycles on the boundary of the quadrilateral
cylinder as x1, x2, · · · , xm and y1, y2, · · · , ym, respectively, where xi corresponds to yi(i =
1, 2, . . . , m)(as indicated in Figure 1). We denote by Qm,n,r, the graph obtained from
quadrilateral cylinder of length m and breadth n by adding edges xiyi+r (i = 1, 2, . . . , m,
r is a integer, 0 6 r < m and i + r is modulo m). Then the 4-regular graph Qm,n,r has
natural embeddings on the torus[20].

If both m and n are odd, obviously, Qm,n,r does not have perfect matching. So, we
suppose that at least one of m and n is even. Denote by wQm,n,r

, the number of perfect
matchings of Qm,n,r. Generally speaking, wQm,n,r

is influenced by the value of r (see Table
1).

Kasteleyn had discussed Qm,n,0, the quadratic lattice on torus(with periodic boundary
conditions) in [7], and deduced an explicit expressions:

wQm,n,0
=

1

2

n/2
∏

k=1

m∏

l=1

(4sin2 2kπ

n
+ 4sin22l − 1

m
π)

1

2 +
1

2

n/2
∏

k=1

m∏

l=1

(4sin2 2k − 1

n
π + 4sin2 2l

m
π)

1

2

+
1

2

n/2
∏

k=1

m∏

l=1

(4sin22k − 1

n
π + 4sin22l − 1

m
π)

1

2 . (1)

He also stated that perfect matchings in a graph embedding on a surface of genus g could
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be enumerated as a linear combination of 4g Pfaffians of modified adjacency matrices of
the graph, which was proved by Galluccio and loebl[4], Tesler[19], independently.

In this article, we generalize the result of Kasteleyn, and obtain expressions of wQm,n,r
,

by enumerating Pfaffians. In section 2, we introduce the method of Tesler, and orient
Qm,n,r by the crossing orientation rule. In section 3, we enumerate the number of perfect
matchings of Qm,n,r, by applying Tesler’s method.

2 Tesler’s method and A crossing orientation of Qm,n,r

The Pfaffian method enumerating the number of different perfect matchings was inde-
pendently discovered by Fisher[3], Kasteleyn[7], and Temperley [14]. See [11] for further
details.

Given an undirected graph G = (V (G), E(G)) with vertex set V (G) = {1, 2, . . . , 2p},
we allow each edge {i, j} to have a weight w{i,j}. To unweighted graphs, set weight to 1
for all edges. Let Ge be an arbitrary orientation of G. Denote the arc of Ge by (i, j) if
the direction of it is from i to j. The skew adjacency matrix of Ge, denoted by A(Ge), is
defined as follows:

A(Ge) = (aij)2p×2p,

where

aij =







w{i,j} if (i, j) is an arc of Ge,
−w{i,j} if (j, i) is an arc of Ge,

0 otherwise.

Let PM = {{i1, i′1}, . . . , {ip, i′p}} range over the partitions of 1, . . . , 2p into p sets of
size 2, and define the signed weight of PM as

wPM = sign

(
1 2 · · · 2p − 1 2p
i1 i′1 · · · ip i′p

)

· ai1i′
1
· · ·aipi′p ,

(where the sign is of the permutation expressed in 2-line notation). The Pfaffian of A is
defined as

PfA =
∑

PM

wPM .

Theorem 1 (The Cayley’s Theorem, [11]). Let A = (aij)2p×2p be a skew symmetric
matrix of order of 2p. Then the determinant of A, det(A) = (PfA)2.

When PM is a partition that is not a perfect matching, wPM = 0, so the nonzero
terms of PfA correspond to the perfect matchings of G. We call wPM the signed weight
of the perfect matching PM and define the sign of PM to be the sign of wPM . If the signs
of all the perfect matching of G are the same, we say the orientation is Pfaffian orienta-
tion. A graph is Pfaffian if it has a Pfaffian orientation. Unfortunately, no polynomial
algorithm is known for checking whether or not a given orientation of a graph G is Pfaffian.
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Any compact boundaryless 2-dimensional surface S can be represented in the plane by
a plane model[19]. Draw a 2l sided polygon P , and form l pairs of sides pj, p

′
j, j = 1, . . . , l.

Paste together pj and p′j . Any S can be represented by a suitable polygon and pastings.
Introduce symbols a1, . . . , al. If pj and p′j are pasted together by traversing P clockwise
along both, then place the label aj along both pj and p′j, and say that S is j-nonoriented. If
they are pasted by traversing P clockwise along one and counterclockwise along the other,
label the clockwise one aj , the counterclockwise one a−1

j , and say that S is j-oriented.
Form a word σ from these 2l symbols by starting at any side and read off the labels as P

is traversed clockwise. If the occurrences of aj or a−1
j are interleaved with the occurrences

of ak or a−1
k , such as in σ = . . . aj . . . a−1

k . . . aj . . . ak . . . , we say that σ is j, k-alternating;
otherwise it is j, k-nonalternating. Now take an embedding of a graph G on this surface,
and draw it within this plane model of the surface. Edges wholly contained inside the
polygon P do not cross, and are called 0-edges. The edges that go through sides pj , p

′
j

of P are called j-edges. We say a face of a planar graph is clockwise odd when it has an
odd number of edges pointing along its boundary when traversed clockwise.

Introduce new variables x1, . . . , xl. Multiply the weights of all j-edges by xj(j 6= 0),
and let B(x1, . . . , xl) be the x−adjacency matrix, with buv = auv when (u, v) is a 0-edge,
while buv = auvxj when (u, v) is a j-edge(j 6= 0), where aij is the entry of the A(Ge), the
skew adjacency matrix of Ge.

Let
f(ω1, . . . , ωl) =

∑

06r1,r2,...,rl63

αr1,...,rl
ωr1

1 . . . ω
rl

l ,

all exponents of ωi are to be reduced modulo 4 to one of 0, 1, 2, 3. We consider any
perfect matching PM in G. The f -weight of the perfect matching PM is

wPM(f) = f(iNPM (1), . . . , iNPM (l))wPM ,

where NPM(j) be the number of j-edges in PM , i =
√
−1. The f -weight of G is

wG(f) =
∑

r1,r2,...,rl

αr1,r2,...,rl
PfB(ir1 , . . . , irl)

=
∑

r1,r2,...,rl

αr1,r2,...,rl

∑

PM

wPM · ir1NPM (1) · · · · · irlNPM (l) =
∑

PM

wPM(f). (2)

Theorem 2 [19]. The total unsigned weight of all perfect matchings in G is

ε0wG(
∏

16j6k6l

Ljk).

Where ε0 = ±1, Ljj =

{
1−i
2

ωj + 1+i
2

ω−1
j if σ is j-nonoriented;

1 otherwise.

Ljk =

{
1
2
(1 + ω2

j + ω2
k − ω2

j ω
2
k) if σ is j, k-alternating;

1 otherwise.
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Consider the graph G embedded on torus. Letting B(x1, x2) be its x-adjacency matrix,
with the 0-edges having weight 1 and the j-edges having weight xj(j = 1, 2),

f =
∏

16j6k62

Ljk = L11L12L22 = L12 =
1

2
(1 + ω2

1 + ω2
2 − ω2

1ω
2
2).

Thus, by Equation(2), the number of perfect matchings of G is given by

±wG(f) =
1

2
[PfB(1, 1) + PfB(−1, 1) + PfB(1,−1) − PfB(−1,−1)].

The graph Qm,n,r can be embedded on the torus, so we draw its planar subgraph con-
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Figure 2: The subgraph of 0-edges of Qm,n,r.

taining all vertices in a 4-polygon which is 1,2-alternating and label mn vertices of Qm,n,r

by 1, 2, · · · , mn shown in Figure 2. Thus 0-edges set E0, 1-edges set E1 and 2-edges set
E2 of Qm,n,r, respectively, are
E0 = {{kn + t, (k + 1)n + t}|k = 0, . . . , m − 2, t = 1, . . . , n} ∪ {{kn + t, kn + t + 1}|k =

0, . . . , m − 1, t = 2, . . . , n − 1} ∪ {{n(r + k) + 1, kn + 2}|k = 0, . . . , m − 1 − r},
E1 = {{kn, (k − 1)n + 1}|k = 1, . . . , m},
E2 = {{t, n(m − 1) + t}|t = 1, . . . , n} ∪ {{kn + 1, n(m − r + k) + 2}|k = 0, . . . , r − 1}.

(a) (b)

Figure 3: the orientation of Qm,n,r when n is odd.
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(a) (b)

Figure 4: the orientation of Qm,n,r when n is odd.

Crossing orientation rule [19]: Orient the subgraph of 0-edges so that all its faces are
clockwise odd. Orient each j-edge e (j > 0) as follows. Ignoring all other non 0-edges,
there is a face formed by e and certain 0-edges along the boundary of the subgraph of
0-edges. Orient e so that this face is clockwise odd.

When n is even, for an edge e = {k, l} of Qm,n,r, without loss of generality, suppose
k < l. If e ∈ E0, orient it from k to l when both k and l are even or k + 1 = l, otherwise
from l to k, referring to Figure 3(a). If e ∈ E1, let the direction of it be from k to l. If
e ∈ E2, orient it from k to l when both k and l are even, otherwise from l to k, for even
m. Reversing the direction of e when m is odd(as in Figure 3(b)).

If n is odd, r is even, we orient the graph as Figure 4 shown. Figure 4(a) shows the
direction of 1-edges when r ≡ 2 (mod 4), reversing the direction of all the 1-edges when
r ≡ 0 (mod 4). When m ≡ 2 (mod 4), the direction of 2-edges are shown in Figure 4(b),
reversing when m ≡ 0 (mod 4).
Lemma 3 Suppose Qe

m,n,r is the orientation of Qm,n,r as above, then it is a crossing
orientation.
Proof: It is easy to check that all the faces of the subgraph of 0-edges are clockwise odd.
For 2-edges{kn + 1, n(m − r + k) + 2}|k = 0, . . . , r − 1} when m is even, the vertices of
the cycle formed by one of them and certain 0-edges along the boundary of the subgraph
of 0-edges are [n(m − r + k) + 2], [n(m − r − 1) + 2], [n(m − 1) + 1], · · · , (n + 1), 1, (n +
1), · · · , (kn + 1). The number of edges pointing along it from vertex n(m− r + k) + 2 to
kn + 1 traversed clockwise always is odd, so does this cycle. Similar discussion solves the
other case, and the lemma follows. �

Theorem 4 [19]. (a)A graph may be oriented so that every perfect matching PM has
sign ǫPM = ǫ0(−1)κ(PM), where ǫ0 = ±1 is constant; ǫ0 may be interpreted as the sign of a
perfect matching with no crossing edges when such exists; κ(PM) be the number of times
edges in it cross.
(b) An orientation of a graph satisfies (a) if, and only if, it is a crossing orientation.
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3 Enumeration of perfect matchings of Qm,n,r

3.1 The sign of pfB(x1, x2)

In order to decide the sign of pfaffians of B(x1, x2)(x1, x2 = ±1), we distinguish the
perfect matchings of Qm,n,r into four classes. The perfect matchings belonging to class
1 are those that have odd number of 1-edges and odd number of 2-edges; The perfect
matchings in class 2 have odd number of 1-edges and even number of 2-edges; The perfect
matchings in class 3 have even number of 1-edges and odd number of 2-edges and the
ones have even number of 1-edges and even number of 2-edges in class 4. So except the
perfect matching PM in class 1, the number of times edges in it cross κ(PM) are always
even.

Consider the case when x1 = 1 and x2 = 1 firstly. If n is even, then obviously, the edges
set PM1 = {{1, n}, {2, 3}, {4, 5}, · · · , {n−2, n−1}, {n+1, 2n}, {n+2, n+3}, {n+4, n+
5}, · · · , {2n−2, 2n−1}, · · · , {(m−1)n+1, mn}, {(m−1)n+2, (m−1)n+3}, {(m−1)n+
4, (m−1)n+5}, · · · , {mn−2, mn−1}} is a perfect matching in class 2 or class 4 according
to the parity of m. Note that n is even and x1 = 1, x2 = 1, so a1na23 · · ·a(mn−2)(mn−1) = 1
and

sign

(
1 2 3 4 · · · mn − 1 mn

1 n 2 3 · · · mn − 2 mn − 1

)

= (−1)m(n−2) = 1.

Then the sign of PM1 is positive.
If n is odd. Let PM2 = {{1, n + 1}, {2n + 1, 3n + 1}, · · · , {(m − 2)n + 1, (m −

1)n + 1}, {2, n + 2}, {2n + 2, 3n + 2}, · · · , {(m − 2)n + 2, (m − 1)n + 2}, · · · , {n, 2n},
{3n, 4n}, · · · , {(m − 1)n, mn}}, then PM2 is a perfect matching of Qm,n,r which belongs
to class 4. Moreover,

a1(n+1)a(2n+1)(3n+1) · · ·a(mn−n)mn = (−1)mn/2,

sign

(
1 2 3 4 · · · mn − 1 mn

1 n + 1 2n + 1 3n + 1 · · · mn − n mn

)

= (−1)
Pm−1

j=1

Pn−1

i=1
ij .

Note that (−1)
Pm−1

j=1

Pn−1

i=1
ij equals to 1 when m ≡ 0 (mod 4), equals to −1 when m ≡ 2

(mod 4), so the sign of PM2 also is positive. Then, by Theorem 4, the sign of perfect
matchings in class 2, class 3 and class 4 is positive, except perfect matchings in class 1.

If x1 = −1, note that the number of 1-edges in class 2 is odd and the number of times
edges in class 2 cross always is even, by Theorem 4, the sign of the perfect matching in
this class is negative. Similar discussion to the other cases, the signs of perfect matchings
can be decided, as shown in Table 2.
Lemma 5. If PfB(−1, 1) or PfB(−1,−1) equals to zero, then PfB(−1,−1) 6 0,
PfB(1, 1) > 0, PfB(−1, 1) > 0, PfB(1,−1) > 0.
Proof: Denote the number of perfect matchings belonging to class i(i = 1, 2, 3, 4) by wi.
If PfB(−1, 1) = 0 then by Table 2, that means w2 = w1 +w3 +w4, so w1 +w2 +w3 > w4.
Notice that a perfect matching in class i(i = 1, 2, 3) contributes −1 to PfB(−1,−1), so
PfB(−1,−1) 6 0. Similar discussion completes the other cases of the Lemma. �

the electronic journal of combinatorics 17 (2010), #R36 7



sign of corresponding perfect matchings
class x1 = 1, x2 = 1 x1 = −1, x2 = 1 x1 = 1, x2 = −1 x1 = −1, x2 = −1

1 − + + −
2 + − + −
3 + + − −
4 + + + +

Table 2: The signs of the perfect matchings

3.2 Enumerate the perfect matchings of Qe

m,n,r

Recalled that Qe
m,n,r is a crossing orientation of Qm,n,r, the x-adjacency matrix of

Qe
m,n,r, denoted by B(x1, x2). Then the elements of B(x1, x2) can be read off from Figure

3 or Figure 4, has the following form:

B(x1, x2) = (Bij(x1, x2)),

where Bij(x1, x2) is the n × n matrix. If n is even, when j > i,

Bij =







A(x1) if i = j, i = 1, . . . , m;
B(−1) if j = i + 1, i = 1, . . . , m − 1;
C(−1)T if j = i + r, i = 1, . . . , m − r;
(−1)m+1C(x2) if j = i + m − r, i = 1, . . . , r;
(−1)m+1B(x2) if i = 1, j = m;
0n otherwise.

When j < i, Bij = −BT
ji(B

T
ij is the transpose of Bij). If n is odd and r is even,

Bij =







ǫA(−(−1)r/2x1) if i = j, i = 1, . . . , m;
ǫB′(−1) if j = i + 1, i = 1, . . . , m − 1;
ǫC(−1)T if j = i + r, i = 1, . . . , m − r;
ǫ(−1)m/2C(−x2) if j = i + m − r, i = 1, . . . , r;
ǫ(−1)m/2B′(x2) if i = 1, j = m;
0n otherwise.

When j < i, Bij = −BT
ji(B

T
ij is the transpose of Bij), if i is even, ǫ = −1, else ǫ = 1.

Where

A(x) =












0 0 0 0 · · · x

0 0 1 0 · · · 0
0 −1 0 1 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · −1 0 1
−x 0 0 · · · −1 0












, C(x) =








0 x 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .








,
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B(x) =










x

−x
. . .

x

−x










, B′(x) =










x

x
. . .

x

x










,

0n is a n × n matrix and all its entries are zero.
In order to calculate the determinant of B(x1, x2), we introduce the following lemma.

Firstly, denote the block circulant matrix








V0 V1 · · · Vm−1

Vm−1 V0 · · · Vm−2
...

...
. . .

...
V1 V2 · · · V0








by circ(V0, V1, · · · , Vm−1), and denote the skew block circulant matrix










V0 V1 V2 · · · Vm−1

−Vm−1 V0 V1 · · · Vm−2

−Vm−2 −Vn−1 V0 · · · Vm−3
...

...
. . .

. . .
...

−V1 −V2 · · · −Vm−1 V0










by scirc(V0, V1, · · · , Vm−1).
Lemma 6 ([2]). Let V = circ(V0, V1, · · · , Vm−1) or V = scirc(V0, V1, · · · , Vm−1) be a
block circulant matrix or a skew block circulant matrix over the complex number field,
where all Vt are n × n matrices, t = 0, 1, . . . , m − 1. Then

detV =
m−1∏

t=0

det(Jt),

where Jt = V0 + V1ωt + V2ω2t + · · · + Vm−1ω(m−1)t,

ωt =

{
cos2tπ

m
+ isin2tπ

m
(if V is a block circulant matrix )

cos
(2t+1)π

m
+ isin

(2t+1)π
m

(if V is a skew block circulant matrix )
.

We consider the case when n is even firstly. In fact, if m is odd, x2 = 1 or m is even,
x2 = −1, then

r−2
︷ ︸︸ ︷

r−2
︷ ︸︸ ︷

B(x1, x2) = circ(A(x1), B(−1), 0n, · · ·, 0n, C(−1)T , 0n, · · ·, 0n, C(x2), 0n, · · ·, 0n,−B(−1)).
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If m is odd, x2 = −1 or m is even, x2 = 1, then
r−2

︷ ︸︸ ︷
r−2

︷ ︸︸ ︷

B(x1, x2) = scirc(A(x1), B(−1), 0n, · · ·, 0n, C(−1)T , 0n, · · ·, 0n,−C(x2), 0n, · · ·, 0n, B(−1)).
So by Lemma 6, we always have that

det(B(x1, x2)) =

m−1∏

t=0

det(Ft), (3)

where
Ft = A(x1) + ωtB(−1) − ω−1

t B(−1) + ω−1
r C(−1)T + ωrC(x2)

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

β ω−1
r x1

−ωr −β 1
−1 β 1

. . .
. . .

. . .

−1 β 1
−x1 −1 −β

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(β = −ωt + ω−1
t , t = 0, 1, . . . , m − 1),

ωt =

{
cos2tπ

m
+ isin2tπ

m
( m is odd, x2 = 1 or m is even, x2 = −1)

cos
(2t+1)π

m
+ isin

(2t+1)π
m

( m is odd, x2 = −1 or m is even, x2 = 1)
.

Furthermore, det(Ft) can be simplify as: if n ≡ 0 (mod 4),

det(Ft) = (−ωt + ω−1
t )Tn−1 − 2Tn−2 + x1(ω

r
t + ω−r

t ),

if n ≡ 2 (mod 4),

det(Ft) = (ωt − ω−1
t )Tn−1 + 2Tn−2 + x1(ω

r
t + ω−r

t ),

Where

Tn =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

β 1
1 β 1

. . .
. . .

. . .

1 β 1
1 β

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

n∏

k=1

((−ωt + ω−1
t ) + 2cos

kπ

n + 1
)

=
((ω−1

t − ωt) +
√

(ω−1
t − ωt)2 − 4)n+1 − ((ω−1

t − ωt) −
√

(ω−1
t − ωt)2 − 4)n+1

2n+1
√

(−ωt + ω−1
t )2 − 4

.

When m is odd, x2 = 1 or m is even, x2 = −1,

−ωt + ω−1
t = −2isin

2tπ

m
, ωr

t + ω−r
t = 2cos

2rtπ

m
.

Noticing that
n∏

k=1

(2cos
kπ

n + 1
) = (i)n, when n is even.
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Therefore, det(F0) = 2 + 2x1. That is, when x1 = −1, det(F0) = 0. By Theo-
rem 1 and Equation (3), when m is odd, (PfB(−1, 1))2 = det(A1(−1, 1) = 0, when
m is even, (PfB(−1,−1))2 = det(A1(−1,−1) = 0. By Lemma 5, PfB(−1,−1) =
−det(A1(−1,−1))1/2, PfB(1, 1) = det(A1(1, 1))1/2, PfB(1,−1) = det(A1(1,−1))1/2,
PfB(−1, 1) = det(A1(−1, 1))1/2. So, if n ≡ 0 (mod 4), the number of perfect match-
ings of Qm,n,r :

wQ =
1

2

[
m−1∏

t=0

(−2iT 0
n−1sin

2tπ

m
− 2T 0

n−2 + 2cos
2trπ

m
)1/2

+

m−1∏

t=0

(−2iT 1
n−1sin

(2t + 1)π

m
− 2T 1

n−2 + 2cos
(2t + 1)rπ

m
)1/2

+

m−1∏

t=0

(−2iT 1
n−1sin

(2t + 1)π

m
− 2T 1

n−2 − 2cos
(2t + 1)rπ

m
)1/2

]
;

If n ≡ 2 (mod 4),

wQ =
1

2

[
m−1∏

t=0

(2iT 0
n−1sin

2tπ

m
+ 2T 0

n−2 + 2cos
2trπ

m
)1/2

+

m−1∏

t=0

(2iT 1
n−1sin

(2t + 1)π

m
+ 2T 1

n−2 + 2cos
(2t + 1)rπ

m
)1/2

+
m−1∏

t=0

(2iT 1
n−1sin

(2t + 1)π

m
+ 2T 1

n−2 − 2cos
(2t + 1)rπ

m
)1/2

]
,

where T 0
n =

∏n
k=1(−2isin2tπ

m
+2cos kπ

n+1
), T 1

n =
∏n

k=1(−2isin (2t+1)π
m

+2cos kπ
n+1

). So we have

Theorem 7 If n is even, then the number of perfect matchings of Qm,n,r,

wQ =
1

2

{
m−1∏

t=0

[H1(
2tπ

m
)]

1

2 +

m−1∏

t=0

[H1(
2t + 1

m
π)]

1

2 +

m−1∏

t=0

[H2(
2t + 1

m
π)]

1

2

}

.

Where
H1(θ) = (

√
1 + sin2θ − sinθ)n + (

√
1 + sin2θ + sinθ)n + 2cosrθ,

H2(θ) = (
√

1 + sin2θ − sinθ)n + (
√

1 + sin2θ + sinθ)n − 2cosrθ.

If n is odd and m, r is even, multiplying Bij(x1, x2) by −1 when i is even, a block
circulant matrix or a skew block circulant matrix can be gotten. With the same discussion
as above to the case, we have:
Theorem 8 If n is odd and m, r is even, then the number of perfect matchings of Qm,n,r,

wQ =







1
2

√
∏m−1

t=0 [G1(
2t+1

m
π) + 1

2

√
∏m−1

t=0 [G2(
2t+1

m
π) ( if m ≡ 0 (mod 4)),

1
2

√

−
∏m−1

t=0 G1(
2t
m

π) + 1
2

√

−
∏m−1

t=0 G2(
2t
m

π) ( if m ≡ 2 (mod 4)).
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Where
G1(θ) = (

√
1 + cos2θ − cosθ)n − (

√
1 + cos2θ + cosθ)n + 2isinrθ,

G2(θ) = (
√

1 + cos2θ − cosθ)n − (
√

1 + cos2θ + cosθ)n − 2isinrθ.

4 Concluding remarks

1. As a special case, when r = 0, with the aid of the following identity, valid for even
n:

{

[u + (1 + u2)
1

2 ]n + [−u + (1 + u2)
1

2 ]n + 2
} 1

2

=

n
2
−1

∏

k=0

2

(

u2 + sin22k + 1

n
π

) 1

2

,

{

[u + (1 + u2)
1

2 ]n + [−u + (1 + u2)
1

2 ]n − 2
} 1

2

=

n
2
−1

∏

k=0

2

(

u2 + sin2 2k

n
π

) 1

2

,

Equation (1) can be gotten from Theorem 7.
2. When n is odd, it can be seen that the first term of the right hand of Equation (1)

is equal to zero, and the second term equals the last term. If r = 0, to the number of
perfect matchings of a graph, the result in Theorem 8 must be the same as Equation (1),
so we have following identity: if m ≡ 0 (mod 4),

m−1∏

t=0

{
[
− cos

2t + 1

m
π + (1 + cos2 2t + 1

m
π)

1

2

]n −
[
cos

2t + 1

m
π + (1 + cos22t + 1

m
π)

1

2

]n
} 1

2

=

n/2
∏

k=1

m∏

l=1

2
(
sin2 2k − 1

n
π + sin2 2l − 1

m
π
) 1

2 .

If m ≡ 2 (mod 4),

{

−
m−1∏

t=0

[
(−cos

2t

m
π + (1 + cos2 2t

m
π)

1

2 )n − (cos
2t

m
π + (1 + cos2 2t

m
π)

1

2 )n
]

} 1

2

=

n/2
∏

k=1

m∏

l=1

2
(
sin2 2k − 1

n
π + sin2 2l − 1

m
π
) 1

2 .

3. Turning to the case when n and r are odd, obviously m is even, we find that the
determinant of the skew symmetric matrix of the corresponding directed graph is not easy
to calculate, hence we pose naturally the problem: how to enumerate perfect matchings
of Qm,n,r, when n and r are odd. As a continuance, we will consider the lattice on Klein
bottle.

4. We still do not known whether graphs Qm,n,r are Pfaffian or not, thought we have
enumerated the perfect matchings of it by Pfaffians, it is an interesting problem to be
study.
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