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Abstract

Given a simple connected graph Γ and a subset of its vertices C, the pseudo-
distance-regularity around C generalizes, for not necessarily regular graphs, the
notion of completely regular code. We then say that C is a completely pseudo-
regular code. Up to now, most of the characterizations of pseudo-distance-regularity
has been derived from a combinatorial definition. In this paper we propose an
algebraic (Terwilliger-like) approach to this notion, showing its equivalence with
the combinatorial one. This allows us to give new proofs of known results, and also
to obtain new characterizations which do not depend on the so-called C-spectrum
of Γ, but only on the positive eigenvector of its adjacency matrix. Along the way,
we also obtain some new results relating the local spectra of a vertex set and its
antipodal. As a consequence of our study, we obtain a new characterization of a
completely regular code C, in terms of the number of walks in Γ with an endvertex
in C.

1 Preliminaries

Pseudo-distance-regularity is a natural generalization of distance-regularity which extends
this notion to not necessarily regular graphs. The key point of this generalization relays
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on defining an adequate weight for each vertex in such a way that we obtain a “regu-
larized” graph. Since its introduction in [7], the study of pseudo-distance-regularity pro-
duced several interesting results, specially in the area of quasi-spectral characterizations
of distance-regularity [4, 7] and completely regular codes [5, 6]. This study was based on
the combinatorial definition of pseudo-distance-regularity around a vertex, which comes
up naturally from the notion of distance-regularity around a vertex. Among the variety
of techniques used in these works, two concepts stand out: the local spectrum (of a single
vertex or a subset of vertices) and certain families of orthogonal polynomials.

Our work in this paper is motivated by the connection existing between pseudo-
distance-regularity and the study developed by Terwilliger [11] in the context of asso-
ciation schemes. In his work, he introduced the subconstituent algebra (also known as
Terwilliger algebra) with respect to a vertex of a graph and defined the notion of thin
module in this algebra. As commented by the third and fourth authors in [3, 5], the
concept of pseudo-distance-regularity around a vertex i is equivalent to the thin character
of the minimum module containing its characteristic vector ei. The aim of this paper is
to extend this parallelism from a single vertex to a set of vertices.

The plan of the paper is as follows. In the rest of this section we first give some notation
on graphs and their spectra. In Section 2 we introduce the local spectrum of a vertex set,
discussing some of its properties. Special attention is paid to the relation between the local
spectra of two antipodal subsets of vertices. Section 3 is devoted to explain the concept of
pseudo-distance-regularity around a vertex set, in combinatorial sense, and to review some
of its known quasi-spectral characterizations. In the case of regular graphs, this concept
coincides with that of a completely regular code. According to this fact, we say that a set
of vertices satisfying this property is a completely pseudo-regular code. Our main results
are in Section 4, where we extend the (algebraic) definition of Terwilliger to a set of vertices
in any graph, and prove its equivalence with the combinatorial approach. This allows us
to give new proofs of known results, and also to obtain new characterizations which do
not depend on the so-called C-local spectrum, but only on the positive eigenvector of the
adjacency matrix. As a consequence, we obtain a new characterization of a completely
regular code C, in terms of the number of walks having an endvertex in C.

Throughout this paper Γ = (V, E) stands for a simple connected graph with vertex set
V = {1, 2, . . . , n} and V denotes the space of the formal linear combinations of its vertices.
The adjacencies in Γ, say {i, j} ∈ E, are denoted by i ∼ j and Γk(i) = {j | ∂(i, j) = k}
represents the set of vertices at distance k from i, where ∂(·, ·) is the distance function in
Γ. For simplicity we will write Γ(i) instead of Γ1(i). Every vertex i is associated to the
i-th unitary (or characteristic) vector ei ∈ R

n and, consequently, V is identified with R
n.

With this identification in mind, the adjacency matrix A of Γ can be seen as the matrix
of an endomorphism in V with respect to the basis {ei}i∈V .

The set of different eigenvalues of A is denoted by evΓ := {λ0, λ1, . . . , λd}, where
λ0 > λ1 > · · · > λd, and the spectrum of Γ is defined by

spΓ := spA = {λ
m(λ0)
0 , λ

m(λ1)
1 , · · · , λ

m(λd)
d },

where m(λl) stands for the multiplicity of the eigenvalue λl. From the Perron-Frobenius
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theorem for nonnegative matrices, we have that λ0 > |λd| and equality is attained if and
only if Γ is a bipartite graph; see e.g. [1]. Moreover, m(λ0) = 1 and every non-null
vector of Ker(A − λ0I) has all its components either positive or negative. We denote
by ν ∈ Ker(A − λ0I) the unique positive eigenvector with minimum component equal
to one. Let us remark that in the case of δ-regular graphs we have that λ0 = δ and the
vector ν turns out to be the all-1 vector j.

Note that V is a module over the quotient ring R[x]/I, where I is the ideal generated
by the polynomial Z =

∏d

l=0(x − λl), which vanishes in A, with product defined by

pu := p(A)u for every p ∈ R[x]/I and u ∈ V.

Recall that, for every 0 6 l 6 d, the orthogonal projection El of V onto the eigenspace
El = Ker(A − λlI) can be written as

Elu = Zlu, u ∈ V,

where Zl = (−1)l

πl

∏

06h6d(h 6=l)(x − λl) and πl :=
∏

06h6d(h 6=l) |λh − λl|.

2 The local spectrum of a vertex set and its antipodal

Given a nonempty set C of vertices of Γ, we consider the map ρ : P(V ) → V defined
by ρ∅ = 0 and ρC =

∑

i∈C νiei for C 6= ∅ and denote by eC the normalized vector
ρC/‖ρC‖. If eC = zC(λ0) + zC(λ1) + · · · + zC(λd) is the spectral decomposition of eC;
that is zC(λl) = EleC ∈ El, 0 6 l 6 d, the C-multiplicity (or C-local multiplicity) of the
eigenvalue λl is defined by mC(λl) = ‖zC(λl)‖

2. Note that, since

zC(λ0) = E0eC =
1

‖ρC‖

〈ρC, ν〉

‖ν‖2
ν =

1

‖ρC‖

∑

i∈C

νi

νi

‖ν‖2
ν =

‖ρC‖

‖ν‖2
ν,

we get mC(λ0) =
‖ρC‖2

‖ν‖2 . Then, if µ0(= λ0), µ1, . . . , µdC
are the eigenvalues with non-zero

C-multiplicity, the C-spectrum (or C-local spectrum) is defined by

spC Γ := {µ
mC(µ0)
0 , µ

mC(µ1)
1 , . . . , µ

mC(µdC
)

dC
},

with µ0 > µ1 > · · · > µdC
, and the set of different eigenvalues of C is denoted by

evC Γ := {µ0, µ1, . . . , µdC
}. Note that, since eC is unitary, we have

∑dC

l=0 mC(λl) = 1 or,
equivalently, the vector

mC = (‖zC(µ0)‖, ‖zC(µ1)‖, . . . , ‖zC(µdC
)‖) ∈ R

dC+1,

is also unitary. As we have done for the spectrum of Γ, in order to simplify notation we
introduce the moment-like parameters

πl(C) :=
∏

06h6dC(h 6=l)

|µh − µl| (0 6 l 6 dC).
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The set Γk(C) = {v ∈ V | ∂(v, C) = k} of vertices at distance k from C is denoted
by Ck. Thus, if C has eccentricity εC, C0(= C), C1, . . . , CεC

is a partition of V . We
denote by C the set CεC

of vertices at maximum distance from C, and we refer to it as
its antipodal set. If there is no possible confusion, we will write D = C.

The polynomial ZC =
∏dC

l=0(x − µl) is the monic polynomial with minimum degree
such that ZCeC = 0, and the polynomial

HC =
‖ν‖2

π0(C)‖ρC‖2

dC
∏

l=1

(x − µl) (1)

satisfies HCν = HC(λ0)ν = ‖ν‖2

‖ρC‖2 ν. What is more, HC is the unique polynomial of degree

at most dC satisfying

HCρC =
‖ρC‖2

‖ν‖2
HCν = ν (2)

and so, inspired by Hoffman [8], it is named the C-local Hoffman polynomial. This allows
us to conclude that the eccentricity of C and the number of C-local eigenvalues are related
by εC 6 dC; see [5]. In case of equality, εC = dC, we say that C is extremal.

Proposition 2.1 Let C be an extremal set and let D be its antipodal set. Then, evC Γ ⊂
evD Γ and the C-multiplicities and D-multiplicities satisfy

mC(µl)mD(µl) >
π2

0(C)

π2
l (C)

‖ρC‖2‖ρD‖2

‖ν‖4
for all µl ∈ evC Γ,

where equality is equivalent to the linear dependence of the vectors zC(µl) and zD(µl).

Proof. Consider the interpolating polynomials associated with the local spectrum of C:

ZC

l =
(−1)l

πl(C)

∏

06h6dC (h 6=l)

(x − µh) (0 6 l 6 dC), (3)

verifying ZC

l (µh) = δlh. Since both ZC

l and HC have degree dC and their leading coefficients

are, respectively, (−1)l

πl(C)
and ‖ν‖2

π0(C)‖ρC‖2 , the polynomial

T = π0(C)
‖ρC‖2

‖ν‖2
HC − (−1)lπl(C)ZC

l

has degree less than dC. The extremal character of C gives

〈ρC, ZC

l ρD〉 = 〈ZC

l ρC, ρD〉 =
(−1)l

πl(C)
〈xdCρC, ρD〉 6= 0.

In particular, ZC

l ρD 6= 0. Moreover, if µl ∈ evC Γ,

〈ρC, ZC

l ρD〉 =
〈

ρC,
∑d

h=0 ZC

l (λh)EhρD
〉

=
〈

ρC, ZC

l (µl)ElρD +
∑

λh 6∈evC Γ ZC

l (λh)EhρD
〉

= 〈ρC, ElρD〉 = ‖ρD‖〈ρC, zD(µl)〉,
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and evC Γ ⊂ evD Γ.
Since T has degree less than dC = εC, the vectors TeC and eD are orthogonal, giving:

0 = 〈TeC, eD〉 = π0(C)
‖ρC‖2

‖ν‖2
〈HCeC, eD〉 − (−1)lπl(C)〈ZC

l eC, eD〉

= π0(C)
‖ρC‖

‖ρD‖ ‖ν‖2
〈HCρC, ρD〉 − (−1)lπl(C)〈zC(µl), eD〉

= π0(C)
‖ρC‖

‖ρD‖ ‖ν‖2
〈ν, ρD〉 − (−1)lπl(C)〈zC(µl), zD(µl)〉

= π0(C)
‖ρC‖ ‖ρD‖

‖ν‖2
− (−1)lπl(C)‖zC(µl)‖ ‖zD(µl)‖ cosα

(C,D)
l ,

where α
(C,D)
l is the angle between the vectors zC(µl), zD(µl). Therefore,

〈zC(µl), zD(µl)〉 = (−1)l π0(C)

πl(C)

‖ρC‖ ‖ρD‖

‖ν‖2
, (4)

and also:

π2
0(C)

π2
l (C)

‖ρC‖2‖ρD‖2

‖ν‖4
= mC(µl)mD(µl) cos2 α

(C,D)
l 6 mC(µl)mD(µl),

where the equality occurs if and only if α
(C,D)
l is 0 or π. 2

Proposition 2.2 Let C be an extremal set, εC = dC, and let D be its antipodal set. Then,
the following statements are equivalent:

(a) For every µl ∈ evC Γ, we have

mC(µl)mD(µl) =
π2

0(C)

π2
l (C)

‖ρC‖2‖ρD‖2

‖ν‖4
.

(b) The projection of the vector m̃D = (‖zD(µ0)‖, ‖zD(µ1)‖, . . . , ‖zD(µεC
)‖) over the

vector mC = (‖zC(µ0)‖, ‖zC(µ1)‖, . . . , ‖zC(µεC
)‖) is

‖ρC‖ ‖ρD‖

‖ν‖2

εC
∑

l=0

π0(C)

πl(C)
,

or, equivalently,

(

εC
∑

l=0

mD(µl)

)

cos2 α(C,D) =

(

εC
∑

l=0

π0(C)

πl(C)

)2

‖ρC‖2 ‖ρD‖2

‖ν‖4
,

where α(C,D) is the angle between the two vectors.
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(c) There exists a polynomial p ∈ RεC
[x] such that

ρD = pρC + z, where z ∈
⊕

λl∈evD Γ\evC Γ El.

(d) For every µl ∈ evC Γ, we have

‖ρD‖2

∑εC

l=0 mD(µl)
= ‖ν‖2

(

εC
∑

l=0

mC(µ0)π
2
0(C)

mC(µl)π2
l (C)

)−1

.

Proof. By adding up for l = 0, 1, . . . , εC the inequalities given in Proposition 2.1 we
obtain:

〈mC, m̃D〉 = ‖m̃D‖ cos α(C,D) =

εC
∑

l=0

‖zC(µl)‖ ‖zD(µl)‖ >
‖ρC‖ ‖ρD‖

‖ν‖2

εC
∑

l=0

π0(C)

πl(C)
,

giving the equivalence between (a) and (b).
Suppose that (a) holds. Then, given µl ∈ evC Γ, the vectors zD(µl), zC(µl) are propor-

tional. More precisely, by (4), there exist ξl > 0 such that zD(µl) = (−1)lξlzC(µl). Let p

be the unique polynomial in RεC
[x] such that p(µl) = (−1)l ‖ρD‖

‖ρC‖
ξl for all µl ∈ evC Γ. We

have

ElρD = ‖ρD‖zD(µl) = (−1)l‖ρD‖ξlzC(µl)

= (−1)l ‖ρD‖

‖ρC‖
ξlElρC = p(µl)ElρC = ElpρC.

Thus the vector z = ρD − pρC ∈
⊕

λl∈evD Γ\evC Γ El and (c) is obtained. Conversely,

assuming that (c) holds, by projecting onto the eigenspace of µl (µl ∈ evC Γ) we obtain
‖ρD‖zD(µl) = p(µl)‖ρC‖zC(µl) and Proposition 2.1 gives (a).

Finally we prove the equivalence between (c) and (d). The existence of the polynomial
p in (c) is equivalent to the linear dependence of the vectors zD(µl) and zC(µl) for all
µl ∈ evC Γ, and Proposition 2.1 ensures us that

mC(µl)mD(µl) =
π2

0(C)

π2
l (C)

‖ρC‖2 ‖ρD‖2

‖ν‖4
(0 6 l 6 dC).

Hence, in this case,

εC
∑

l=0

mD(µl) =
‖ρC‖2‖ρD‖2

‖ν‖4

εC
∑

l=0

π2
0(C)

mC(µl)π
2
l (C)

=
‖ρD‖2

‖ν‖2

εC
∑

l=0

mC(µ0)π
2
0(C)

mC(µl)π
2
l (C)

, (5)

and the proof is concluded. 2

Corollary 2.3 The polynomial p described in Proposition 2.2(c) satisfies the following
properties:
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(a) The polynomial p ∈ RεC
[x] is unique, has degree εC and all its roots are real, differ-

ent, and interlace the eigenvalues µ0, µ1, . . . , µεC
.

(b) The value of p at µ0 is:

p(µ0) =
‖ρD‖2

‖ρC‖2
=

‖ν‖2

‖ρC‖2

(

εC
∑

l=0

mD(µl)

) (

εC
∑

l=0

mC(µ0)π
2
0(C)

mC(µl)π2
l (C)

)−1

.

(c) Given q ∈ RεC−1[x], we have:

εC
∑

l=0

mC(µl)p(µl)q(µl) = 0 and

εC
∑

l=0

mC(µl)p
2(µl) =

(

εC
∑

l=0

mD(µl)

)

p(µ0) .

Proof. (a) Using (4), the computation

(−1)l π0(C)

πl(C)

‖ρC‖ ‖ρD‖

‖ν‖2
= 〈zC(µl), zD(µl)〉 = 〈eC, EleD〉

=
1

‖ρC‖ ‖ρD‖
〈ρC, ElρD〉

=
1

‖ρC‖ ‖ρD‖
〈ρC, ElpρC〉

=
1

‖ρC‖ ‖ρD‖
p(µl)〈ρC, ElρC〉

=
‖ρC‖

‖ρD‖
p(µl)〈zC(µl), zC(µl)〉 = mC(µl)

‖ρC‖

‖ρD‖
p(µl),

gives

p(µl) = (−1)l π0(C)

mC(µl)πl(C)

‖ρD‖2

‖ν‖2
for all µl ∈ ev C, (6)

thus, the polynomial p ∈ RεC
[x] is unique and the alternation of the sign over evC Γ

guaranties that their roots interlace its elements.
(b) From Proposition 2.2(c) we get

‖ρD‖2 = 〈pρC, ν〉 = 〈ρC, pν〉 = p(µ0)〈ρC, ν〉 = p(µ0)‖ρC‖2.

This, together with Proposition 2.2(d), gives the equalities.
(c) Using (b) and (6),

εC
∑

l=0

mC(µl)p
2(µl) =

εC
∑

l=0

mC(µl)
π2

0(C)

m2
C
(µl)π2

l (C)

‖ρD‖4

‖ν‖4

=
‖ρD‖4

‖ρC‖4

εC
∑

l=0

m2
C
(µ0)π

2
0(C)

mC(µl)π2
l (C)

=
‖ρD‖2

‖ρC‖2

εC
∑

l=0

mD(µl) =

(

εC
∑

l=0

mD(µl)

)

p(µ0) .
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The polynomials ZC

l defined in (3) allow us to write every polynomial q ∈ RεC
[x] as

q =
∑εC

l=0 q(µl)Z
C

l . In particular,
∑εC

l=0 µk
l Z

C

l = xk, 0 6 k 6 εC. Equating the coefficients
of degree εC we obtain

εC
∑

l=0

(−1)l µk
l

πl(C)
= δkεC

(0 6 k 6 εC).

Then,
εC
∑

l=0

(−1)l q(µl)

πl(C)
= 0 for all q ∈ RεC−1[x], (7)

and
εC
∑

l=0

mC(µl)p(µl)q(µl) = π0(C)
‖ρD‖2

‖ν‖2

εC
∑

l=0

(−1)l q(µl)

πl(C)
= 0. 2

Corollary 2.4 Let C ⊂ V be an extremal set with spC Γ = {µ0, µ1, . . . , µdC
} and let D

be its antipodal set. If the statements of Proposition 2.2 hold, then the angle between the
vectors mC = (‖zC(µ0)‖, ‖zC(µ1)‖, . . . , ‖zC(µdC

)‖) and m̃D = (‖zD(µ0)‖, ‖zD(µ1)‖, . . . ,
‖zD(µdC

)‖) satisfies

cos α(C,D) =

∑εC

l=0
1

πl(C)
√

∑εC

l=0
1

mC(µl)π
2
l
(C)

.

3 Completely pseudo-regular codes in combinatorial

sense

The notion of pseudo-distance-regularity was first introduced in [7] as a generalization
for non-regular graphs of the distance-regularity. More precisely, in this section we are
interested in C-local pseudo-distance-regularity, which, when restricted to regular graphs,
is equivalent to the fact that C is a completely regular code. For a more exhaustive
study of this property see [5], where the authors obtain several characterizations which,
in particular, yield new characterizations for completely regular codes.

Given a set C of vertices of a graph Γ, with eccentricity εC, we associate to it the
functions a, b, c : V −→ [0, λ0] defined for i ∈ Ck by

c(i) =











0 (k = 0);
1

νi

∑

j∈Γ(i)∩Ck−1

νj (1 6 k 6 εC).

a(i) =
1

νi

∑

j∈Γ(i)∩Ck

νj (0 6 k 6 εC).
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b(i) =











1

νi

∑

j∈Γ(i)∩Ck+1

νj (0 6 k 6 εC − 1);

0 (k = εC).

Since ν is an eigenvector of eigenvalue λ0,

c(i) + a(i) + b(i) =
1

νi

∑

j∈Γ(i)

νj = λ0 for all i ∈ V,

that is, the sum over the three functions a, b, c, is constant and their images are all in
[0, λ0]. In other words, by assigning weight νi to each vertex i, the average weighted
degree becomes constant and the graph becomes “regularized”. Note that, since every
vertex in Ck must be adjacent to a vertex of Ck−1, the function c is strictly positive over
V \ C0. We say that C is a flowing set when the associated function b is strictly positive
over V \ CεC

.

Lemma 3.1 Let C ∈ V be a set of vertices with eccentricity εC and let D be its antipodal
set. Then, C is a flowing set if and only if εC = εD = ε and the corresponding distance
partitions, C0(= C), C1, . . . , Cε and D0(= D), D1, . . . , Dε, satisfy Dk = Cε−k, 0 6 k 6 ε.

Proof. The condition suffices to guaranty that C is a flowing set since it implies that
the function b corresponding to C coincides with the function c corresponding to D.
Conversely, if C is a flowing set, every vertex in Ck is at distance εC − k from D and then
Ck ⊂ DεC−k, 0 6 k 6 εC. From this we get

V = C0 ∪ C1 ∪ · · · ∪ CεC
⊂ DεC

∪ DεC−1 ∪ · · · ∪ D0 ⊂ V

and, since Ck (respectively, Dk), 1 6 k 6 εC, do not intersect each other, εC = εD = ε
and Dk = Cε−k, 0 6 k 6 ε. 2

Note that, by symmetry, the previous lemma establishes that C is a flowing set if and
only if D is.

Definition 3.2 A graph Γ is C-local pseudo-distance-regular (or pseudo-distance-regular
around C ) in combinatorial sense when the functions c, a and b associated to C are
constant over every Ck, 0 6 k 6 εC. In this case we say that C is a completely pseudo-
regular code.

In the sequel we will refer to this property by C-local pseudo-distance regularity when
we want to emphasize the regularity of the graph, and we will use completely pseudo-
regular code when we focus our attention on the set of vertices C.

This definition generalizes, for any graph, the concept of completely regular code in
a regular (or distance-regular) graph, where the above conditions on the fuctions c, a, b
imply that C0, C1, . . . , CεC

is a regular partition of V .
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Its clear that if C is a completely pseudo-regular code in combinatorial sense, then
C is a flowing set. In this case, from Lemma 3.1 we have that D = C and the distance
partitions associated to C and D coincide. Therefore, D is also a completely pseudo-
regular code with the roles of the functions b and c interchanged.

For a completely pseudo-regular code C, we indicate by ck, ak and bk the (constant)
values of c, a and b, respectively, over every vertex of Ck, and we refer to them as the
pseudo-intersection numbers of C. Note that when Γ is a regular graph and C consists of
a single vertex, the above numbers become the usual intersection numbers.

3.1 Some characterizations of completely pseudo-regular codes

In [5], several quasi-spectral characterizations of C-local pseudo-distance-regularity are
given. The authors obtain their results through a sequence of orthogonal polynomials
constructed from the C-local spectrum. In order to introduce these polynomials, let us
first define, in the quotient ring R[x]/(ZC), the following C-local scalar product:

〈p, q〉C := 〈peC, qeC〉 =

dC
∑

l=0

mC(µl)p(µl)q(µl).

A family of polynomials r0, r1, . . . , rdC
is an orthogonal system with respect to the C-local

scalar product when deg rk = k and 〈rk, rh〉C = δkh, 0 6 k, h 6 dC. Then, the family of
C-local predistance polynomials, {pC

k}06k6dC
is the unique orthogonal system with respect

to the C-local scalar product such that ‖pC

k ‖
2
C

= pC

k (λ0), 0 6 k 6 dC; see [2].
As mentioned, several characterizations of C-local pseudo-distance-regularity can be

obtained in terms of these polynomials which, in this case, are called the C-local distance
polynomials; see [5].

Theorem 3.3 A graph Γ = (V, E) is C-local pseudo-distance-regular around a set C ⊂ V ,
with eccentricity εC, if and only if there exist a sequence of polynomials r0, r1, . . . , rεC

,
with deg rk = k, such that ρCk = rkρC for any 0 6 k 6 εC. Moreover, in this case,
εC = dC and the polynomials {rk}06k6dC

are the C-local (pre)distance polynomials. 2

Furthermore, for an extremal set C, the C-local pseudo-distance-regularity can be
characterized in terms of only the highest degree C-local predistance polynomial.

Theorem 3.4 Let Γ = (V, E) be a graph containing an extremal set C ⊂ V , εC = dC,
with antipodal set C. Then Γ is C-local pseudo-distance-regular in combinatorial sense if
and only if any of the two following conditions holds:

(a) pC

εC
ρC = ρC.

(b) pC

dC
(λ0) =

‖ρC‖2

‖ρC‖2 . 2

In the next section, new proofs of the above two theorems will be provided by using
an algebraic (or Terwilliger-like) approach to completely pseudo-regular codes.
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4 Completely pseudo-regular codes in algebraic sense

Let C ⊂ V be a set of vertices of a simple connected graph Γ = (V, E). For each
0 6 k 6 εC, let E⋆

k be the vector space having {ei}i∈Ck
as a basis. Denote by E∗

k the
projection V → E⋆

k , so that E⋆
k = E∗

kV and ρCk = E∗
kν, 0 6 k 6 εC. As a generalization of

the subconstituent algebras defined in [11], also known as Terwilliger algebras, we consider
the algebra TC generated by the linear operators A, E∗

0, E
∗
1, . . . , E

∗
εC

. A TC-module W is
a subspace of V which is invariant under the action of TC, that is, TCW = W .

In the context of association schemes, Terwilliger [11] defined a thin module as a TC-
module W satisfying dim E∗

kW 6 1 for every k. As commented in [3, 5], if we consider a
single vertex i, the notion of {i}-local pseudo-distance-regularity is equivalent to the thin
character of the primary T{i}-module, that is, the unique irreducible module containing
ρ{i} = νiei. With the aim of generalizing this definition to any subset of vertices, let us
consider a vector wC ∈ E⋆

0 and WC := TCwC ⊂ V, the minimum TC-module containing wC.
The definition of completely pseudo-regular code (or C-local pseudo-distance-regularity)
in algebraic sense will require the subspaces E∗

kWC, 0 6 k 6 dC, to be one-dimensional.
Let us first study some conditions that wC must satisfy. Let wC =

∑

i∈C ξiei. Since

Ek = (−1)k

πk

∏

06l6d (l 6=k)(A − λlI) ∈ TC for each 0 6 k 6 dC, we have

E∗
kE0wC =

∑

i∈C

ξiE
∗
kE0

(

νi

‖ν‖2
ν + zi(λ1) + · · ·+ zi(λd)

)

=
∑

i∈C

ξiνi

‖ν‖2
E∗

kν =

(

∑

i∈C

ξiνi

‖ν‖2

)

ρCk .

Thus if dim E∗
kWC = 1, the vector ρCk will constitute a basis of E∗

kWC. In particular,
wC = E∗

0wC is linearly dependent with ρC0. Thus, the generalization for a set of vertices
of the definition of Terwilliger for a single vertex must be:

Definition 4.1 A set of vertices C ⊂ V of a graph Γ is a completely pseudo-regular code
in algebraic sense when dim E∗

kWC = 1 for every 0 6 k 6 εC, where WC is the TC-module
WC := TCρC = TCE∗

kν.

This definition generalizes also, for any graph, the one given in [10] for a set of vertices
in a distance-regular graph.

From the previous comments, if C is a completely pseudo-regular code in algebraic
sense, then E∗

kTρC ∈ span{ρCk} for every T ∈ TC and 0 6 k 6 εC. The following
result gives a characterization of completely pseudo-regular codes in algebraic sense, which
coincides with the one of Theorem 3.3. This proves the equivalence between combinatorial
and algebraic approaches to completely pseudo-regular codes. So, once proved, we speak
indistinctly of one or another concept.

Theorem 4.2 A set of vertices C ⊂ V of a graph Γ is a completely pseudo-regular code
in algebraic sense if and only if there exist polynomials p0, p1, . . . , pεC

in RεC
[x] such that

pkρC = ρCk, 0 6 k 6 εC.
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Proof. Suppose that C is a completely pseudo-regular code in algebraic sense. Given
r ∈ RεC

[x] and 0 6 k 6 εC, consider ξk(r) ∈ R such that E∗
krρC = ξk(r)ρCk. We have

that the map

RεC
[x]

Θ
−→ R

εC+1 defined by Θr := (ξ0(r), ξ1(r), . . . , ξεC
(r)) (8)

is linear. If r ∈ RεC
[x] satisfies Θr = 0 then E∗

krρC = 0 for every k and rρC =
(
∑εC

k=0 E∗
k

)

rρC = 0. Consequently, r will vanish over all the dC + 1 elements of evC Γ,
and, since deg r 6 εC 6 dC, we conclude that r = 0. This proves that Θ is an isomorphism,
and by considering the polynomial pk ∈ RεC

[x] such that

Θpk = (0, . . . ,
(k)

1 , . . . , 0),

we have that pkρC = ρCk, 0 6 k 6 εC.
Conversely, let us now show that the existence of such polynomials implies that C is

a completely pseudo-regular code. With this aim, consider the polynomial q = p0 + p1 +

· · · + pεC
∈ RεC

[x] satisfying qρC =
∑εC

k=0 ρCk = ν. Thus, q(µ0) = ‖ν‖2

‖ρC‖2 and q(µl) = 0,

l = 1, . . . , dC, giving dC 6 deg q 6 εC 6 dC, so that C is extremal (εC = dC). Moreover,

q = ‖ν‖2

π0(C)‖ρC‖2 (x−µ1) · · · (x−µεC
) is the C-local Hoffman polynomial HC defined in (1).

The hypothesis guaranties that the polynomials pk, 0 6 k 6 εC, constitute a basis of
RεC

[x], identified with R[x]/(ZC). Define γl
hk ∈ R by

phpk =

εC
∑

l=0

γl
hkpl (0 6 h, k 6 εC).

Every element of E∗
kTCρC can be seen as a linear combination of vectors TrTr−1 · · ·T1ρC,

where Tl = E∗
tl
psl

, 1 6 l 6 r and tr = k. We can suppose that s1 = t1 (since, otherwise,
we get the zero vector). Then,

T1ρC = E∗
t1
ps1

ρC = E∗
t1
ρCs1

= ρCs1
= ps1

ρC,

T2T1ρC = E∗
t2
ps2

ps1
ρC = E∗

t2

(

εC
∑

l=0

γl
s2s1

pl

)

ρC = E∗
t2

εC
∑

l=0

γl
s2s1

ρCl = γt2
t1s2

ρCt2

= γt2
t1s2

pt2ρC

and, iterating, we get

Tr · · ·T1ρC = γt2
t1s2

· · · γtr
tr−1sr

ptrρC = γt2
t1s2

· · · γtr
tr−1sr

ρCk .

Hence, dim E∗
kWC = 1, 0 6 k 6 εC, and C is a completely pseudo-regular code in algebraic

sense. 2

In particular, notice that we have shown that the condition of being extremal, εC = dC,
is necessary for being a completely pseudo-regular code. Moreover, the polynomials of
Theorem 4.2 satisfy the following properties:
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Corollary 4.3 Let Γ = (V, E) be a graph and C ⊂ V a completely pseudo-regular code.
For every 0 6 k 6 εC(= dC), the polynomial pk ∈ RεC

[x] satisfying pkρC = ρCk is unique,
it has degree k, and coincides with the C-local predistance polynomial, pk = pC

k .

Proof. The unicity is provided by the fact that the map Θ defined in (8) is an isomor-
phism. In particular, this gives that p0 = 1. Now, consider 1 6 k 6 dC, if deg pk < k a
contradiction arises: ‖ρCk‖

2 = 〈pkρC, ρCk〉 = 0. Let s, 1 6 s 6 εC − 1, be the maximum
integer such that deg ps > s. There exist ξs+1, . . . , ξεC

∈ R such that the polynomial
q = ps + ξs+1ps+1 + · · ·+ ξεC

pεC
has degree at most s. Consider l > s+1 such that ξl 6= 0.

Then,

〈qρC, ρCl〉 = 〈psρC, ρCl〉 +

εC
∑

h=s+1

ξh〈phρC, ρCl〉

= 〈ρCs, ρCl〉 +

εC
∑

h=s+1

ξh〈ρCh, ρCl〉 = ξl‖ρCl‖
2 6= 0 .

On the other hand, since deg q 6 s < s+1 6 l, we get 〈qρC, ρCl〉 = 0, which is impossible.
So it does not exists such an index s and deg pk = k for every 0 6 k 6 εC. Finally, the
polynomials {pk}06k6εC

are orthogonal:

〈pk, ph〉C = 〈pkeC, pheC〉 =
1

‖ρC‖2
〈ρCk, ρCh〉 = 0 for k 6= h,

and they have norm:

‖pk‖
2
C

=
1

‖ρC‖2
〈pkρC, pkρC〉 =

1

‖ρC‖2
〈ρCk, ρCk〉

=
1

‖ρC‖2
〈ν, pkρC〉 =

1

‖ρC‖2
〈pkν, ρC〉 =

pk(µ0)

‖ρC‖2
〈ν, ρC〉 = pk(µ0).

Consequently, they are the C-local predistance polynomials {pC

k}06k6dC
, as claimed. 2

The following result gives another characterization of completely pseudo-regular codes,
which is proved by using the algebraic approach.

Theorem 4.4 Let Γ = (V, E) be a connected graph with vertex subset C ⊂ V having ec-
centricity εC and local eigenvalues evC Γ = {µ0, µ1, . . . , µdC

}. Let us consider the distance
partition V = C0 ∪C1 ∪ · · · ∪CεC

given by the distance to C, and the spectral decomposi-
tion ρC = ẑC(µ0) + ẑC(µ1) + · · ·+ ẑC(µdC

). Then, C is a completely pseudo-regular code
if and only if the subspaces R, S ⊂ V generated respectively by ρC0, ρC1, . . . , ρCεC

and
ẑC(µ0), ẑC(µ1), . . . , ẑC(µdC

) coincide. That is, with Terwilliger’s notation ([11, 12]),

R = span{E∗
0ν, E∗

1ν, . . . , E∗
εC

ν} = S = span{E0E
∗
0ν, E1E

∗
0ν, . . . , EdC

E∗
0ν}.
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Proof. First, notice that, since the involved vectors are linearly independent we have
dim R = εC and dim S = dC. Suppose that C is a completely pseudo-regular code.
Then, Theorem 4.2 guaranties that C is extremal, dC = εC, and there exist polynomials
p0, p1, . . . , pεC

in RεC
[x] such that pkρC = ρCk, 0 6 k 6 εC. Given h, 0 6 h 6 εC, we

have

ẑC(µh) = EhρC =

(

εC
∑

k=0

E∗
k

)

EhρC =

εC
∑

k=0

E∗
kEhρC =

εC
∑

k=0

ahkρCk, (9)

where ahk ∈ R, thus ẑC(µh) ∈ S and R = S.
Suppose now that R = S. In particular, εC = dC and C is extremal. For every

0 6 k 6 εC, there are bkh ∈ R, 0 6 h 6 εC, satisfying

ρCk =

εC
∑

h=0

bkhẑC(µh).

Define pk ∈ RεC
[x] as the unique polynomial such that pk(µh) = bkh for every 0 6 h 6 εC.

Then

ρCk =

εC
∑

h=0

bkhẑC(µh) =

εC
∑

h=0

pk(µh)ẑC(µh) = pk

εC
∑

h=0

ẑC(µh) = pkρC0, (10)

and C is a completely pseudo-regular code. 2

Consider the vector space VC := {qρC : ∀q ∈ R[x]}. Since {ZC
k }06k6dC

is a basis of
RdC

[x], VC = span{ẑC(µ0), ẑC(µ1), . . . , ẑC(µdC
)}. Taking in mind that dC > εC, the next

corollary is obtained.

Corollary 4.5 C is a completely pseudo-regular code if and only if

qρC ∈ span{ρC0, ρC1, . . . , ρCεC
} for all q ∈ R[x],

or, equivalently, if and only if there exists a basis B of RdC
[x] such that

bρC ∈ span{ρC0, ρC1, . . . , ρCεC
} for all b ∈ B.

An interesting application of this corollary is the following characterization of a com-
pletely regular code (for other characterizations, see e.g. [6, 9]).

Theorem 4.6 Let Γ = (V, E) be a regular graph. Then C ⊂ V is a completely regular
code if and only if, for any given nonnegative integers ℓ 6 dC and k 6 εC, the number of
ℓ-walks between (the vertices of ) C and i ∈ Ck does not depend on the vertex i.

Proof. In Corollary 4.5 take the canonical basis B = {1, x, x2, . . . , xdC} of RdC
[x]. Then,

there exist constants αh, 0 6 h 6 εC, such that xℓρC =
∑εC

h=0 αhρCh. Hence,

(xℓρC)i =
(

Aℓ
∑

j∈C ej

)

i
=
∑

j∈C(Aℓ)ji

=
(
∑εC

h=0 αhρCh

)

i
=
∑εC

h=0 αh

(

∑

j∈Ch
ej

)

i
=
∑εC

h=0 αhδhk = αk.
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From this, we get the result. 2

As the authors of [5] established in the study of the C-local pseudo-distance regularity
from a combinatorial point of view, the conditions of Theorem 4.2 can be apparently
relaxed by restricting them to the set of vertices at maximum distance from C, provided
that C is extremal. Moreover, this gives a numerical (instead of vectorial) characterization
of pseudo-distance-regularity.

Theorem 4.7 Let Γ = (V, E) be a graph and let C ⊂ V be an extremal set with C-

local spectrum spC Γ = {µ
mC(µ0)
0 , µ

mC(µ1)
1 , . . . , µ

mC(µdC
)

dC
}. Let C0, C1, . . . , CεC

= C be the
distance partition of V given by the distance to C. Then, C is a completely pseudo-regular
code if and only if any of the three following conditions applies:

(a) There exists a polynomial p ∈ RεC
[x] such that

pρC = ρC, (11)

in which case p = pC

dC
.

(b) The highest degree C-local predistance polynomial satisfies

pC

dC
(µ0) =

‖ρC‖2

‖ρC‖2
. (12)

(c) The square norm of the vector ρC is:

‖ρC‖2 = ‖ν‖2

(

εC
∑

l=0

mC(µ0)π
2
0(C)

mC(µl)π2
l (C)

)−1

. (13)

Proof. Let us first show that the three conditions are equivalent. To simplify notation,
let pk = pC

k for 0 6 k 6 dC(= εC). Then, using Cauchy-Schwarz inequality, we have:

〈pkρC, ρCk〉 = 〈pkρC, ν〉 = 〈ρC, pkν〉 = pk(µ0)〈ρC, ν〉 = pk(µ0)‖ρC‖2

6 ‖pkρC‖‖ρCk‖ = ‖pk‖C‖ρC‖‖ρCk‖ =
√

pk(µ0)‖ρC‖‖ρCk‖. (14)

Hence,

pk(µ0) 6
‖ρCk‖

2

‖ρC‖2
(0 6 k 6 dC), (15)

and equality holds if and only if the vectors pkρC and ρCk are colinear. In particular, for
k = dC, we have that (12) holds if and only if (11) holds with p = αpdC

and some α ∈ R.
But, using the same reasonings as in the proof of Corollary 4.3, we get 〈p, pC

k 〉C = 0 for
every k < dC, and ‖p‖2

C
= p(µ0). Consequently, α = 1 and p is the highest degree C-local

predistance polynomial, p = pdC
. This proves the equivalence between (a) and (b).

Let D = C be the subset of vertices at distance εC = dC from C and assume that
ρD = pρC. Since ∂(i, j) > εC for every i ∈ C and j ∈ D, we have εD > εC. Moreover,

the electronic journal of combinatorics 17 (2010), #R37 15



the equality pρC = p(µ0)ẑC(µ0) + · · ·+ p(µdC
)ẑC(µdC

) = ρD gives dC > dD. Altogether,
we have εD > εC = dC > dD > εD, thus (ε :=) εD = εC and (M :=) evC Γ = evD Γ.
This, together with Corollary 2.3(b), proves the equivalence between (a)-(b) and (c) since
∑ε

l=0 mD(µl) = 1.
Now, let us prove that C is a completely pseudo-regular code if and only if any of

the conditions holds. The necessity follows from Theorem 3.4 (see also Theorem 4.2). To
prove sufficiency, we first note that the orthogonal systems corresponding to the C-local
predistance polynomials, {pk}06k6ε, and D-local predistance polynomials, {pk}06k6ε, are
related in R[x]/(Z) by pk = p−1

ε pε−k, 0 6 k 6 ε. (This is well-defined since, by Corollary
2.3(a), p has an inverse p−1 in the ring Rε[x]/(Z), being Z :=

∏ε

l=0(x − µl); see also [2].)
Indeed, since ElρD = ElpρC = p(µl)ElρC, we have

mD(µl) =
‖ElρD‖2

‖ρD‖2
= p2(µl)

‖ElρC‖2

‖ρC‖2

‖ρC‖2

‖ρD‖2
=

p2(µl)

p(µ0)
mC(µl) .

Hence,

〈pk, ph〉D =

ε
∑

l=0

mD(µl)pk(µl)ph(µl)

=
1

p(µ0)

ε
∑

l=0

mC(µl)p
2(µl)p

−1(µl)pε−k(µl)p
−1(µl)pε−h(µl)

=
1

p(µ0)

ε
∑

l=0

mC(µl)pε−k(µl)pε−h(µl) =
1

p(µ0)
〈pε−k, pε−h〉C

= δkhp
−1(µ0)pε−k(µ0) = δkhpk(µ0).

Given 0 6 k 6 ε, let us consider the set Sk = {r + ps : r ∈ Rk−1[x], s ∈ Rε−k−1[x]}
where, by convention, R−1[x] = ∅. Then, for any q ∈ Sk, we have:

〈qρC, ρCk〉 = 〈rρC, ρCk〉 + 〈sρD, ρCk〉 = 0. (16)

Note also that

Rε[x] = span{p0, . . . , pk, pk+1, . . . , pε} = span{p0, . . . , pk, pεp̄ε−k−1, . . . , pεp̄0}

= Sk ⊕ span{pk}. (17)

Moreover, using (17), we get that the C-local Hoffman polynomial can be written as
HC = qk + ξkpk, where qk ∈ Sk and ξk is the corresponding Fourier coefficient. That is,

HC = qk +
〈HC, pk〉C

‖pk‖2
C

pk = qk + mC(µ0)H(µ0)pk = qk + pk. (18)

Then, from (18), (16) and (14), we get:

〈pkρC, ρCk〉 = 〈(HC − qk)ρC, ρCk〉 = 〈HCρC, ρCk〉 = 〈ν, ρCk〉 = ‖ρCk‖
2

6
√

pk(µ0)‖ρC‖‖ρCk‖. (19)
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Thus,

pk(µ0) >
‖ρCk‖

2

‖ρC‖2
(0 6 k 6 dC), (20)

which, together with (15), allows us to conclude that we have equalities in (14), (19),
the vectors pkρC, ρCk are colinear for every 0 6 k 6 dC(= εC), and C is a completely
pseudo-regular code by Theorem 4.2. 2
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