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Abstract

In this paper we introduce a Ramsey type function S(r; a, b, c) as the maximum
s such that for any r-coloring of N there is a monochromatic sequence x1, x2, . . . , xs

satisfying a homogeneous second order linear recurrence axi + bxi+1 + cxi+2 = 0,
1 6 i 6 s − 2. We investigate S(2; a, b, c) and evaluate its values for a wide class of
triples (a, b, c).

1 Introduction

In this paper we are interested in the following question: If the set of positive integers N
is finitely colored, is it possible to find a monochromatic sequence of a certain length that
satisfies a given second order homogeneous recurrence? A reader that is even remotely
familiar with Ramsey Theory would quickly note that Van der Waerden’s theorem affir-
matively answers this question for the recurrence xi−2xi+1 +xi+2 = 0, any finite coloring
of N, and any finite sequence length. But what about other second order homogeneous
recurrences?

In 1997 Harborth and Maasberg [4] considered the recurrence xi + xi+1 = axi+2 and
obtained a puzzling sequence of results that have inspired a large portion of the work
presented in this paper:
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i. If a = 1 then any finite coloring of positive integers yields a 4-term monochromatic
sequence that satisfies the recurrence.

ii. If a = 2 then any finite coloring of positive integers yields arbitrarily long monochro-
matic sequences that satisfy the recurrence.

iii. If a = 4 then any 2-coloring of [1, 71] will produce a monochromatic 4-term sequence
that satisfies the recurrence.

iv. For any odd prime a there is a 2-coloring of the set positive integers with no
monochromatic 4-term sequence that satisfies the recurrence.

We were intrigued with the question what we can learn about monochromatic se-
quences that satisfy the recurrence xi +xi+1 = 2kxi+2, k > 3 or the recurrence xi +xi+1 =
2kxi+2, k > 3.

The problem of finding monochromatic sequences that satisfy homogeneous recur-
rences belongs to the rich and exciting segment of Ramsey Theory that has its roots in
the celebrated Ph.D. thesis of Richard Rado. Here we mention two results of Rado [8]
that are used in developing ideas presented in this paper.

Theorem 1. Let L be a linear homogeneous equation with integer coefficients. Assume
that L has at least three and not all coefficients of the same sign. Then any 2-coloring of
N admits a monochromatic solution to L.

Let r be a positive integer. A linear equation or a system of linear equations L is
r-regular if every r-coloring of positive integers admits a monochromatic solution to L.
Hence Theorem 1 states that a linear homogeneous equation in more than two variables
and with integer coefficients, both positive and negative, is at least 2-regular. Fox and
Radoičić [2] showed that the equation x1 +2x2−4x3 = 0 is not 3-regular, so Rado’s result
is best possible. Moreover, a recent result by Alekseev and Tsimerman [1] affirmatively
settled Rado’s conjecture that for any r > 3 there is a homogeneous linear equation that
is not r-regular.

We say that a linear equation or a system of linear equations L is regular if it is
r-regular for all r ∈ N.

Theorem 2. For a linear homogeneous system A · x = 0, where A is an m × n matrix
with integer entries, to be regular it is necessary and sufficient that the matrix A satisfies
the columns condition, i.e., that there is a partition S1 ∪ . . .∪ Sk of the set of columns of
the matrix A such that elements of S1 add up to 0 and that, for any j ∈ {2, . . . k}, the
sum of all elements of Sj is a rational linear combination of the elements from ∪j−1

i=1Si.

A version of Rado’s proof of Theorem 1 in English can be found in [7]. A version of
the proof of Theorem 2 and more information about r-regularity, regular systems, the
columns condition, and related problems is possible to find, for example, in [6].

In [3] and [4] Harborth and Maasberg considered the following problem.
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Problem 3. [3] Let a, b, c, s be integers such that a, c 6= 0 and s > 3. Find the largest
r ∈ N, if it exists, such that every r-coloring of N yields a monochromatic s-term sequence
x1, x2, . . . , xs that satisfies the homogeneous second order recurrence axn+bxn+1+cxn+2 =
0. If such an r exists, it is called the degree of partition regularity of the given recurrence
for s-term sequences and denoted by k0(s; a, b, c).

We note that the problem of finding the degree of partition regularity of the given
recurrence for s-term sequences is equivalent to the problem of finding the largest r for
which the linear homogeneous system

ax1 + bx2 + cx3 = 0
...

axs−2 + bxs−1 + cxs = 0

is r-regular. We write k0(s; a, b, c) = 0 if the corresponding system has no solution and
k0(s; a, b, c) = ∞ if the corresponding system is regular.

Observation 4. The following is true for all a, b, c ∈ Z and s > 3:

i. k0(s; a, b, c) = k0(s; c, b, a)

ii. k0(s; a, b, c) = k0(s;na, nb, nc), for any nonzero integer n.

iii. For any s > 3, k0(s+ 1; a, b, c) 6 k0(s; a, b, c).

Harborth and Maasberg proved in [3] the following fact.

Theorem 5. k0(s; a, b, c) = ∞ if and only if one of the following is true:

i. s = 3 and one of a+ b+ c, a+ b, a+ c, b+ c is equal to zero.

ii. s = 4 and a+ b+ c = 0 or a = b = −c or a = −b = −c.

iii. s > 5 and a+ b+ c = 0

The results by Harborth and Maasberg mentioned at the beginning of this section now
can be stated in the following form:

i. k0(4; 1, 1,−1) = ∞.

ii. k0(s; 1, 1,−2) = ∞, for any s > 3.

iii. k0(4; 1, 1,−4) = 2.

iv. k0(4; 1, 1,−p) = 1, for all odd primes p.
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In an attempt to further examine the function k0(s; a, b, c) and related problems, we
introduce, for r, a, b, c ∈ N, a new Ramsey type function

S(r; a, b, c) = max{s > 0 : k0(s; a, b, c) > r}.

Thus S(r; a, b, c) is the maximum s > 0 such that for any r-coloring of N there is a
monochromatic sequence x1, x2, . . . , xs satisfying the recurrence axi + bxi+1 + cxi+2 = 0,
1 6 i 6 s − 2. We write S(r; a, b, c) = ∞ if the set {s > 0 : k0(s; a, b, c) > r} is not
bounded. For example, S(r; 1,−2, 1) = ∞.

It is the purpose of this paper to investigate S(2; a, b, c) and to evaluate its values for a
wide class of triples (a, b, c). The paper is organized in the following way. In Section 2 we
give some basic properties of the function S(2; a, b, c) and we discuss the case when there
is a prime p which divides exactly two elements of {a, b, c} to the same power. In Section
3 we consider the case when there is a prime p that divides exactly one of the coefficients
a, b, and c. Our results in this Section show that the value of S(2; a, b, c) depends on
the order of a certain element, that is determined by the coefficients a, b, and c, in the
multiplicative group Z∗

p. In Section 4 we introduce a computer-based method for finding
values of S(2; a, b, c). We finish with a few observations and open problems.

To an impatient reader who wonders what happens with the recurrence xi + xi+1 =
2kxi+2 we suggest to take a quick peek at Corollary 17.

The following notation will be used in the remainder of this paper. For x ∈ N and
t ∈ N\{1}, if x = tu(tv+w), for some integers u, v, w ∈ Z with u, v > 0 and 1 6 w 6 t−1,
then we will write x = (u, v, w)t. For a prime p, if l ∈ Z is such that p ∤ l, op(l) denotes
the order of l in the multiplicative group Z∗

p. For n, x, y ∈ Z, by x ≡n y, we mean
x ≡ y (mod n). And lastly, for n ∈ Z, let (n)2 be the remainder when n is divided by 2.

2 The function S(2; a, b, c)

In the rest of this paper we will write S(a, b, c), or just S, to denote the function
S(2; a, b, c).

We start with a few simple facts.

Theorem 6. The following is true for any a, b, c ∈ Z.

i. S(a, b, c) = S(c, b, a).

ii. S(a, b, c) = S(na, nb, nc) for any nonzero integer n.

iii. S(a, b, c) > 3 if a, b, and c are nonzero integers not all of the same sign.

iv. If a + b+ c = 0 then S(a, b, c) = ∞.

Proof. Statements (i) and (ii) follow from Observation 4, statement (iii) follows from
Theorem 1, and (iv) follows from Theorem 2.
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Since it is enough to consider the case when gcd(a, b, c) = 1, we will focus our attention
to the following two cases:

1. There is a prime p that divides exactly two elements of the set {a, b, c}.

2. There is a prime p that divides exactly one element of the set {a, b, c}.

For a wide class of triples, the size of the middle coefficient determines an upper bound
on the values of S.

Theorem 7. Let a, b, c ∈ N with c 6 b. Then S(a, b,−c) 6 4.

Proof. Let α =
a + b

c
. For each non-negative integer i, let Bi = [αi, αi+1)∩N. Let χ be a

2-coloring of N defined by χ(x) = (i)2 if x ∈ Bi, i > 0. We will show that under χ there
is no 5-term monochromatic sequence satisfying the recurrence axi + bxi+1 = cxi+2.

Assume for a contradiction that the sequence x1, x2, x3, x4, x5 is χ-mono- chromatic
and it satisfies the recurrence axi + bxi+1 = cxi+2. Since b > c and a > 0, we have
x2 < x3 < x4 < x5. If x2, x3 ∈ Bi for some i, then

αi+1
6 x4 =

a

c
x2 +

b

c
x3 < αi+2,

which is impossible since this would imply χ(x4) 6= χ(x3). Similarly, there is no i such
that x3, x4 ∈ Bi. Since χ(x2) = χ(x3) and x2 < x3, there exist i, j ∈ N, with j− i positive
and even, such that x2 ∈ Bi and x3 ∈ Bj . But then, we have

αj
6 x3 < x4 < αx3 < αj+2,

i.e., x4 ∈ Bj ∪Bj+1. Hence x4 has to be in Bj , which gives the desired contradiction.

A special case of Theorem 7, together with an earlier mentioned result by Harborth
and Maasberg, covers the Fibonacci recurrence xi + xi+1 − xi+2 = 0.

Corollary 8. S(1, 1,−1) = 4. In fact, S(r; 1, 1,−1) = 4 for all r > 1.

Next we consider recurrences of the form xi−bxi+1+xi+2 = 0, b > 1. We note that there
is no 4-term sequence of positive integers that satisfies the recurrence xi−xi+1 +xi+2 = 0.
Thus S(1,−1, 1) = 3. By Theorem 2, S(1,−2, 1) = ∞. The remaining cases are given by
the following theorem.

Theorem 9. S(1,−b, 1) = 3 for all b > 3.

Proof. Since b is positive, by Theorem 1, S(1,−b, 1) > 3.
First, assume that b is odd and define a 2-coloring χ as

χ(x) =







0 if x ≡b 1, 2, . . . , b−1
2
,

1 if x ≡b
b+1
2
, . . . , b− 1,

χ(x/b) if x ≡b 0.
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Let the sequence x1, x2, x3, x4 be monochromatic and let it satisfy the recurrence xi −
bxi+1 + xi+2 = 0, with x4 minimal possible. Then x1 + x3 ≡b 0 and x2 + x4 ≡b 0. This
is possible only if x1 ≡b x2 ≡b x3 ≡b x4 ≡b 0. Let yi = xi/b, 1 6 i 6 4. It follows that
χ(yi) = χ(xi), for all i ∈ {1, 2, 3, 4}, and yi − byi+1 + yi+2 = 0, i ∈ {1, 2}, with y4 < x4.
This contradicts our assumption that x4 is minimal.

Now assume that b = 2b′ for some b′ > 2 and define a 2-coloring χ as

χ(x) =







0 if x ≡b 1, 2, . . . , b′ − 1,
1 if x ≡b b

′ + 1, . . . , b− 1,
χ(x/b′) if x ≡b′ 0.

The remainder of the proof is similar to the proof of the odd case.

In [3] Harborth and Maasberg proved that if gcd(a, b, c) = 1 and if there is a prime p
which divides exactly two elements of {a, b, c} to the same power, i.e., there are positive
integers k, A, B, and C, p ∤ ABC, such that {a, b, c} = {Apk, Bpk, C}, then k0(4; a, b, c) 6

2. We strengthen their result in the following way.

Theorem 10. Let a, b, c be integers such that gcd(a, b, c) = 1. If there is a prime p which
divides exactly two of the coefficients to the same power, then S(a, b, c) 6 3.

Proof. Suppose that p is a prime which divides exactly two elements of the set {a, b, c}
to the same power k, say a = Apk and b = Bpk, p ∤ AB, and p ∤ c.

We define a 2-coloring χ as χ(x) =
(⌊

u
k

⌋)

2
, where x = (u, v, w)p.

Let x1, x2, x3, x4 be a monochromatic sequence that satisfies the recurrence axi +
bxi+1 + cxi+2 = 0. Suppose that xi = (ui, vi, wi)p, for some ui, vi, wi ∈ Z, 1 6 i 6 4. Then

Apu1+k(pv1 + w1) +Bpu2+k(pv2 + w2) = −cpu3(pv3 + w3) (1)

Apu2+k(pv2 + w2) +Bpu3+k(pv3 + w3) = −cpu4(pv4 + w4) (2)

If u1 < u2 then pu1+k(Apv1 +Aw1 +Bpu2−u1(pv2 +w2)) = −cpu3(pv3 +w3) and, since
w1 6= 0 and w3 6= 0, it follows that u1 + k = u3. Thus

⌊u3

k

⌋

= 1 +
⌊u1

k

⌋

.

This contradicts our assumption that χ(x1) = χ(x3). Similarly we conclude that u2 < u1

is not possible. Hence, we must have u1 = u2 = u3. Then, since k > 1, pu3+1 divides the
left-hand side of (1) but not the right-hand side, a contradiction.

The proof in the case when pk divides a and c is similar to the proof above.

An immediate consequence of Theorem 10 is the following claim:

Corollary 11. If gcd(a, b, c) = 1 and if there is a prime p that divides exactly two elements
of the set {a, b, c} to the same power then k0(4; a, b, c) = 1.
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3 The cases S(a,−pkq, c) and S(a, b,−pkq)

In this section we consider the case when only one of the coefficients is divisible by a
prime p.

Theorem 12. Let p be a prime and let a, c, and q be arbitrary integers not divisible by
p. Let C ≡p −c/a with C 6≡p 1. Then, for any k > 1,

(i) If p is odd and op(C) is even then S(a,−pkq, c) 6 3.

(ii) If p is odd and op(C) is odd then S(a,−pkq, c) 6 5.

(iii) If p = 2, k > 2 and a ≡4 c then S(a,−2kq, c) 6 3.

Proof. We start with the definition of a 2-coloring of Z∗

p that we will use to prove claims
(i) and (ii).

For l ∈ Z such that p ∤ l let H be the cyclic subgroup generated by l and let
{a1, a2, . . . , at} be a complete set of representatives in Z∗

p/H . Recall that d = op(l)
denotes the order of l in the multiplicative group Z∗

p.
A 2-coloring ψ(p,l) : Z∗

p → {0, 1} is defined as ψ(p,l)(x) = (i)2 if x = ajl
i for some

1 6 i 6 d− 1 and 1 6 j 6 t.
Thus

ψ(p,l)(x) = ψ(p,l)(lx) ⇔ (d)2 = 1 and x = ajl
d−1 for some j. (3)

We define a coloring χ : N → {0, 1} by χ(x) = ψ(p,C)(w), where x = (u, v, w)p.
Proof of claim (i): Assume that a χ-monochromatic sequence x1, x2, x3, x4 satisfies

the recurrence axi − pkqxi+1 + cxi+2 = 0. For 1 6 i 6 4, let ui, vi and wi be such
that xi = (ui, vi, wi)p. Then χ(xi) = ψ(p,C)(wi), i.e., the set {w1, w2, w3, w4} is ψ(p,C)-
monochromatic and

apu1(pv1 + w1) + cpu3(pv3 + w3) = pu2+kq(pv2 + w2) (4)

apu2(pv2 + w2) + cpu4(pv4 + w4) = pu3+kq(pv3 + w3). (5)

If u1 < u3 then u1 = u2 +k, by (4), which together with (5) implies u2 = u4 and hence

pu2 (p(av2 + cv4) + aw2 + cw4) = pu3+k(pv3 + w3).

Since u2 < u3 + k, this is possible only if w2 ≡p Cw4. But since op(C) is even and
ψ(p,C)(w2) = ψ(p,C)(w4), this contradicts (3).

Similarly u3 < u1 is not possible.
Assume u1 = u3. Since ψ(p,C)(w1) = ψ(p,C)(w3), by (3) aw1 + cw3 6≡p 0. By (4),

u1 = u3 = u2 + k, which implies that u2 < u3 + k and thus contradicts (5).
Hence, in the case of p odd and d even we have that S2(a,−p

kl, c) 6 3.
Proof of claim (ii): Assume that a χ-monochromatic sequence x1, x2, x3, x4, x5, x6, xi =

(ui, vi, wi)p, satisfies the recurrence axi−p
kqxi+1+cxi+2 = 0. Then {w1, w2, w3, w4, w5, w6}

is a monochromatic set under ψ(p,C) and in addition to (4) and (5) we have

apu3(pv3 + w3) + cpu5(pv5 + w5) = pu4+kq(pv4 + w4) (6)

apu4(pv4 + w4) + cpu6(pv6 + w6) = pu5+kq(pv5 + w5). (7)
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If u1 < u3 then u1 = u2+k, u2 = u4 and w2 ≡p Cw4. Since u2 +k = u1 < u3, it follows
that u4 + k < u3 and, from (6), we get u5 < u3. Similarly, by using the equations (6) and
(7), we get w4 ≡p Cw6. Therefore w2 ≡p Cw4 ≡p C

2w6 and ψ(p,C)(w2) = ψ(p,C)(w4) =
ψ(p,C)(w6), which contradicts (3).

Cases u3 < u1 and u1 = u3, with w1 6≡p Cw3, are handled in the same way.
If u1 = u3, with w1 ≡p Cw3, then u1 = u3 < u2 + k. Therefore, from (5), we get

u4 + k > u3. But this implies u3 = u5 and w3 ≡p Cw5. Hence w1 ≡p Cw3 ≡p C
2w5 and

ψ(p,C)(w1) = ψ(p,C)(w3) = ψ(p,C)(w5), contradicting (3). This completes the proof of (ii).
Proof of claim (iii): Define χ : N → {0, 1} as χ(x) = (v)2, where x = (u, v, 1)2. Assume

that a monochromatic sequence x1, x2, x3, x4 satisfies the recurrence axi−2kqxi+1+cxi+2 =
0. Let xi = (ui, vi, 1) for some ui, vi > 0, 1 6 i 6 4. It follows, since χ(x1) = χ(x2) =
χ(x3) = χ(x4), that v1, v2, v3 and v4 are all of the same parity and

2u1a(2v1 + 1) + 2u3c(2v3 + 1) = 2u2+kq(2v2 + 1) (8)

2u2a(2v2 + 1) + 2u4c(2v4 + 1) = 2u3+kq(2v3 + 1). (9)

If u1 < u3 then, from (8), u1 = u2 + k and, from (9), u2 = u4. Hence,

2u2 (2(av2 + bv4) + a+ c) = 2u3+kq(2v3 + 1).

Since a and c are both odd and since a ≡4 c we conclude that a+ c ≡4 2. Hence,

2u2+1

(

av2 + bv4 +
a + c

2

)

= 2u3+kq(2v3 + 1).

Since av2 + bv4 is even and
a+ c

2
is odd it follows that u3 + k = u2 +1 < u3 − k+1. This

is not possible since k > 2.
Similarly, if u3 < u1 then we obtain that u3 = u2 + k, u2 = u4, and u2 + 1 = u3 + k,

which is again not possible.
So, assume u1 = u3. Then

2u3+1

(

av1 + bv3 +
a+ c

2

)

= 2u2+kq(2v2 + 1)

which implies that u3+k > u2 +1. But from (9), we have u2 +1 > u3 +k, a contradiction.
Hence, in the case of k > 2 and a ≡4 c, S(a,−2kl, c) 6 3.

Next we consider the recurrence axi + bxi+1 = pkqxi+2, where p is a prime number,
a, b, q are integers not divisible by p, and k is a positive integer. For m > 3 and a
sequence x1, x2, . . . , xm, xi = (ui, vi, wi)p, that satisfies this recurrence we have that, for
all i ∈ [1, m− 2],

apui(pvi + wi) + bpui+1(pvi+1 + wi+1) = pui+2+kq(pvi+2 + wi+2).

This implies that if u1 < u2 then

u1 = u3 + k and aw1 ≡p qw3

ui = ui+1 + k and bwi ≡p qwi+1 for all i > 3,
(10)
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if u2 < u1 then

ui = ui+1 + k and bwi ≡p qwi+1 for all i > 2, (11)

and if u1 = u2 and aw1 + bw2 6≡p 0 then

u1 = u2 = u3 + k
ui = ui+1 + k for all i > 2
bwi ≡p qwi+1 for all i > 3.

(12)

These facts will be used in the proof of the following theorem.

Theorem 13. Let k be a positive integer and let p be an odd prime. Let a, b, q ∈ Z be such
that a ≡p 1 and that b and q are not divisible by p. For B ≡p −b, L ≡p q/b, s = op(B),
d = op(L), and t = gcd(s, d) we have that if s is even then

S(a, b,−pkq) 6







3 if s/t is even
3 if s/t and d/t are both odd
4 if s/t is odd and d/t is even

Proof. Let H =
{

1, L, L2, . . . , Ld−1
}

and K = {1, B,B2, . . . , Bs−1}, let G = HK, and let
{α1, α2, . . . , αr} be a complete set of representatives of classes in Z∗

p/G. Fix an integer n

such that gcd(n, t) = 1 and Bs/t ≡p L
n(d/t) and note that if Bi ≡p L

j , for some i, j ∈ Z,
then (s/t)| i and (d/t)| j.

Case 1: Assume that s/t is even.
We 2-color the group G by f (BiLj) = (i)2 for i, j ∈ Z. Now, if Bi1Lj1 ≡p B

i2Lj2 for
some i1, i2, j1, j2, then Bi1−i2 = Lj2−j1 and (s/t)| (i1 − i2). Since s/t is even, this implies
i1 ≡2 i2. Therefore, f (Bi1Lj1) = f (Bi2Lj2) and f is well-defined. Now, we extend this
coloring to a 2-coloring of Z∗

p by F (x) = f
(

xα−1
j

)

if x ∈ Gαj. Note that, for any x ∈ Z∗

p,

F (Bx) 6= F (x) (13)

F (Lx) = F (x) (14)

We define χ : N → {0, 1} by χ(x) =
(⌊

u
k

⌋

+ F (w)
)

2
, where x = (u, v, w)p.

Suppose that a χ-monochromatic sequence x1, x2, x3, x4 satisfies the recurrence axi +
bxi+1 = pkqxi+2. As before, xi = (ui, vi, wi)p.

If u1 6= u2 then, from (10) and (11), u3 = u4 + k and w3 ≡p Lw4. Hence,

⌊u3

k

⌋

+ F (w3) = 1 +
⌊u4

k

⌋

+ F (Lw4) = 1 + χ(x4),

which is not possible because χ(x3) = χ(x4).
Assume that u1 = u2. Then F (w1) = F (w2) and, from (13), it follows w1 6≡p Bw2,

i.e., aw1 + bw2 6≡p 0. Hence, from (12), u3 = u4 + k and w3 ≡p Lw4, which is not possible.
Therefore, in the case of s/t even, S(a, b,−pkq) 6 3.
Case 2: Assume that s/t and d/t are both odd. Since s is even, t, and hence d, must

also be even.

the electronic journal of combinatorics 17 (2010), #R38 9



We define a 2-coloring on the group G by f (BiLj) = (i+ j)2 for i, j ∈ Z. If Bi1Lj1 ≡p

Bi2Lj2 for some i1, i2, j1, j2, then Bi1−i2 ≡p L
j2−j1. Hence, (s/t)| (i1−i2) and (d/t)| (j2−j1)

and, since s/t and d/t are both odd, we conclude that i1 − i2 ≡2 j2 − j1. Therefore f is
well-defined.

We extend f to a 2-coloring F of Z∗

p in the same way as in Case 1. Now, for any
x ∈ Z∗

p,

F (Bx) 6= F (x) (15)

F (Lx) 6= F (x) (16)

This time we define χ : N → {0, 1} by χ(x) = F (w), where x = (u, v, w)p.
Suppose that x1, x2, x3, x4, with xi = (ui, vi, wi)p, is a χ-monochromatic sequence that

satisfies axi + bxi+1 = pkqxi+2.
If u1 6= u2 then, from (10) and (11), w3 ≡p Lw4. This implies χ(x3) = F (w3) =

F (Lw4) 6= χ(x4). If u1 = u2 then F (w1) = F (w2) and, from (15), we obtain w1 6≡p Bw2.
Case 3: Assume that s/t is odd and d/t is even.

We color the group G by f (BiLj) =
(

i+
⌊

j
d/t

⌋)

2
, for i, j ∈ Z. Now, if Bi1−i2 ≡p

Lj2−j1, for some i1, i2, j1, j2, then i1 − i2 = (s/t)m1 and j1 − j2 = (d/t)m2, for some
m1, m2 ∈ Z. It follows that

Lj2−j1 ≡p B
m1(s/t) ≡p L

m1n(d/t)

and m1n(d/t)+ j1 − j2 = (d/t)(m1n+m2) is a multiple of d. Hence, m1n+m2 is divisible
by t and m1n + m2 ≡2 0, since t is even. Also, because gcd(n, t) = 1, n must be odd.
Next we observe that

m1n+m2 =
i1 − i2
s/t

n +
j1 − j2
d/t

=
i1 − i2
s/t

n +

⌊

j1
d/t

⌋

−

⌊

j2
d/t

⌋

and
i1 − i2
s/t

n +

⌊

j1
d/t

⌋

−

⌊

j2
d/t

⌋

≡2 (i1 − i2) +

⌊

j1
d/t

⌋

−

⌊

j2
d/t

⌋

,

since s/t and n are both odd.
Hence,

(i1 − i2) +

⌊

j1
d/t

⌋

−

⌊

j2
d/t

⌋

≡2 0

which implies

i1 +

⌊

j1
d/t

⌋

≡2 i2 +

⌊

j2
d/t

⌋

.

Therefore, f (Bi1Lj1) = f (Bi2Lj2) and f is well-defined. We extend this coloring to the
coloring F as above. For any x ∈ Z∗

p, we have

F (Bx) 6= F (x)
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and
F (Lx) 6= F (x) ⇒ F (L2x) = F (Lx),

since d/t > 0 is even.
In this case we define χ : N → {0, 1} by χ(x) =

(⌊

u
k

⌋

+ F (w)
)

2
, where x = (u, v, w)p.

Suppose that a χ-monochromatic sequence x1, x2, x3, x4, x5, with
xi = (ui, vi, wi)p, satisfies the recurrence axi + bxi+1 = pkqxi+2.

If u1 6= u2 then from (10) and (11) u3 = u4+k, u4 = u5+k, w3 ≡p Lw4 and w4 ≡p Lw5.
Hence,

χ(x3) ≡2

⌊u3

k

⌋

+ F (w3) ≡2 1 +
⌊u4

k

⌋

+ F (Lw4) ≡2 1 + χ(x4) + F (Lw4) + F (w4).

But since χ(x3) = χ(x4), we must have F (Lw4) 6= F (w4). In the same way, we must have
F (Lw5) 6= F (w5). This contradicts (3), since w4 ≡p Lw5.

Assume that u1 = u2. Then F (w1) = F (w2) and, from (3), aw1 + bw2 6≡p 0. Hence,
from (12), u3 = u4 + k, u4 = u5 + k, w3 ≡p Lw4 and w4 ≡p Lw5, which is a contradiction.

Therefore, in the case of s/t odd and d/t even, S(a, b,−pkq) 6 4.

The upper bounds for the values of S(a, b, c) on some additional classes of triples
(a, b, c) easily follow.

Corollary 14. Let p be an odd prime, let k > 1, and let a, b, q ∈ Z be such that none of
a, b, q is divisible by p. Let B ≡p −b/a, L ≡p q/b, s = op(B), d = op(L) and t = gcd(s, d).
Then, if s is even

S(a, b,−pkq) 6







3 if s/t is even
3 if s/t and d/t are both odd
4 if s/t is odd and d/t is even

Proof. Let A ∈ Z be such that aA ≡p 1, and let a′ = aA, b′ = bA and l′ = lA. Then

S(a, b,−pkq) = S(aA, bA,−pkqA) = S(a′, b′,−pkq′),

since −b/a = −b′/a′ ≡p −b′ and q/b = q′/b′, B ≡p −b′ and L ≡p q
′/b′. Therefore, the

claim follows from Theorem 13.

What happens when p = 2? We are able to describe the case of the recurrence
axi + bxi+1 = 2kqxi+2 if a and b are odd numbers congruent modulo 4.

Theorem 15. Let a, b, q ∈ Z be odd integers with a ≡4 b.

(i) If k = 2 then S(a, b,−2kq) 6 4.

(ii) If k > 3 then S(a, b,−2kq) 6 3.
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Proof. Let L = q − b.
Proof of claim (i): Assume L ≡4 0 and define a 2-coloring χ : N → {0, 1} as χ(x) =

(⌊

u
2

⌋

+ v
)

2
, where x = (u, v, 1)2. Suppose that a monochromatic sequence x1, x2, x3, x4, x5,

xi = (ui, vi, 1)2, satisfies the recurrence axi + bxi+1 = 2kqxi+2.
If u1 6= u2 then from (10) and (11), u3 = u4+2 and 4a(2v2+1)+b(2v3+1) = q(2v4+1).

Hence, 2a(2v2 + 1) + bv3 = qv4 + L/2. Since L ≡4 0, this implies v3 ≡2 v4. But then,

χ(x3) ≡2

⌊u3

2

⌋

+ v3 ≡2 1 +
⌊u4

2

⌋

+ v4 ≡2 1 + χ(x4),

a contradiction.
If u1 = u2, since χ(x1) = χ(x2), it follows that v1 ≡2 v2. Hence

2u2 (2(av1 + bv2) + a+ b) = 2u3+2q(2v3 + 1).

Since a ≡4 b it follows that u2 = u3 + 1 > u3. Then, from (11), we get u4 = u5 + 2 and
v4 ≡2 v5. This fact implies χ(x4) 6= χ(x5).

Now assume L ≡4 2 and define a 2-coloring χ as χ(x) = (v)2, where x = (u, v, 1)2.
Suppose that x1, x2, x3, x4, x5, with xi = (ui, vi, 1)2, is a monochromatic sequence that

satisfies axi + bxi+1 = 2kqxi+2. Then all vi’s are of the same parity.
If u1 6= u2 then, as before, 2a(2v2 + 1) + bv3 = qv4 + L/2. Since L ≡4 2, this implies

v3 ≡2 1 + v4, a contradiction. If u1 = u2, we get v4 ≡2 1 + v5, a contradiction again.
Proof of claim (ii): Assume that k > 3.
If L ≡4 0 we define a 2-coloring χ as χ(x) =

(⌊

u
k

⌋

+ v
)

2
, where x = (u, v, 1)2.

Suppose that x1, x2, x3, x4, xi = (ui, vi, 1)2, is a monochromatic sequence that satisfies
axi + bxi+1 = 2kqxi+2.

If u1 6= u2 then u2 > u3 +k and u3 = u4 +k. It follows that 2u2−u3−1a(2v2 +1)+ bv3 =
qv4 + L/2. Since L ≡4 0 and u2 − u3 > k > 3 we conclude that v3 ≡2 v4. Hence

χ(x3) ≡2

⌊u3

k

⌋

+ v3 ≡2 1 +
⌊u4

k

⌋

+ v4 ≡2 1 + χ(x4),

which contradicts our assumption that x3 and x4 are of the same color.
If u1 = u2 then v1 ≡2 v2 and 2u2 (2(av1 + bv2) + a+ b) = 2u3+2l(2v3 + 1). Since

a+ b ≡4 2 it follows that u2 = u3 +k−1 > u3 +1. Then, from (11), we obtain u3 = u4 +2
and v3 ≡2 v4. This implies χ(x4) 6= χ(x5).

If L ≡4 2 we define a 2-coloring χ of positive integers by χ(x) = (v)2, where x =
(u, v, 1)2.

Reasoning similar to one demonstrated above leads to the conclusion that there is no
4-term monochromatic sequence that satisfies the recurrence axi + bxi+1 = 2kqxi+2.

As we mentioned in the introduction, this paper was inspired by results obtained by
Harborth and Maasberg in [3], [4], and [5]. The following theorem extends Harborth and
Maasberg’s result from [4] that k0(4; 1, 1,−p) = 1 for all odd primes p.

Theorem 16. Let r and m be positive odd integers and let k be a non-negative integer.
Then S(1, 1,−rm(kr + 1)) = 3.
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Proof. We consider a recurrence xn + xn+1 = rm(kr + 1)xn+2 where r, m, and k are as
above.

A 2-coloring ϕ is defined in the following way. For q ∈ {1, ..., r − 1} the coloring
ϕ colors all m ≡r q by 0 if q ∈ {1, ..., (r − 1)/2} and ϕ colors all m ≡r q by 1 if
q ∈ {(r − 1)/2, ..., r − 1}. If m is a multiple of r then ϕ(m) 6= ϕ(m/r).

Suppose that there is a ϕ-monochromatic sequence x1, x2, x3, x4 that satisfies the
recurrence and that x1 is the smallest possible. Thus

rm(kr + 1)x3 = x2 + x1 and rm(kr + 1)x4 = x3 + x2.

Since x2 +x1 ≡rm x3 +x2 ≡rm 0 and since x1, x2, and x3 are of the same color we conclude
that x1, x2, and x3 are multiples of rm. Let x1 = rmy1, x2 = rmy2, and x3 = rmy3. Then

rm(kr + 1)y3 = y2 + y1 and (kr + 1)x4 = y3 + y2.

Note that y1, y2, and y3 are of the same color that is different than the color of x4 since
m is odd. As before, the first equality implies that y1 and y2 are multiples of r. Hence
y3 ≡r x4. Since {y3, x4} is not monochromatic this implies that both of them are multiples
of r. Say, x4 = ry4. But then y1, y2, y3, y4 is a monochromatic sequence that satisfy the
original recurrence with y1 < x1 which contradicts our assumption that x1 is the smallest
possible.

Now we are in a position to describe what happens with the recurrence xi + xi+1 =
cxi+2, if c is a positive integer.

Corollary 17. Let c ∈ N. Then

S(1, 1,−c) =































4 if c = 1 or c = 4,
∞ if c = 2,
3 if c ≡8 0,
3 if c = rm(kr + 1) for some odd r,> 0 and k ∈ N,
3 if c = pkq for some odd prime p, k > 0 and q ∈ N

such that p ∤ q and op(q) 6≡4 0.

In all other cases, 3 6 S(1, 1,−c) 6 4.

We note that if p is a prime such that p ≡4 3 and if q ∈ N is such that p ∤ q then either
op(q) is odd or op(q) ≡4 2. Thus, for such p and q, S(1, 1,−pkq) = 3, k ∈ N.

4 More Values for S(2; a, b, c): Another Technique

In this section we introduce a new technique which gives upper bounds for S(a, b, c) for
some of the cases not covered in Sections 2 and 3, as well as some of the cases which have
been already covered. We introduce this technique through the case of the recurrence
8xi − 6xi+1 + xi+2 = 0.
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Theorem 18. S(−8, 6,−1) 6 5.

Proof. Let π be a permutation on Z2
11 defined by

π(a, b) = (b, 6b− 8a).

We consider the recurrence −8xi + 6xi+1 = xi+2 modulo 11. Excluding the trivial cycle
(0, 0), we represent the cycles of this permutation by the following Table 1.

0 1 6 6 10 1 3 10 3 4
0 2 1 1 9 2 6 9 6 8
0 3 7 7 8 3 9 8 9 1
0 4 2 2 7 4 1 7 1 5
0 5 8 8 6 5 4 6 4 9
0 6 3 3 5 6 7 5 7 2
0 7 9 9 4 7 10 4 10 6
0 8 4 4 3 8 2 3 2 10
0 9 10 10 2 9 5 2 5 3
0 10 5 5 1 10 8 1 8 7
1 2 4 8 5 10 9 7 3 6
1 4 5 9 3
2 8 10 7 6

Table 1: The cycles of the permutation π of Z2
11.

(In the first row, 0 1 6 6 . . . means (0, 1)
π
→ (1, 6)

π
→ (6, 6)

π
→ . . ..)

Let f be a 2-coloring of Z11 such that

f(m) =

{

0 if m ∈ {1, 2, 3, 5, 7}
1 if m ∈ {4, 6, 8, 9, 10}

and assume that 0 is colored by both colors.
We observe that no 6 consecutive elements in any of the cycles have the same color,

but that there is a cycle with five consecutive elements colored by the same color; 6 9 6 8 0
or 7 5 7 2 0, for example. Also, we note that a single 0 is among any five consecutive
elements of the same color, in any of the cycles.

Let χ : N → {0, 1} be such that χ(x) = f(w) if x = (u, v, w)11 for some u, v > 0 and
1 6 w 6 10. It is not difficult to see that, under this coloring there is no monochromatic
6-term sequence x1, x2, x3, x4, x5, x6 satisfing the recurrence xn+2 = 6xn+1 − 8xn.

The above proof also implies that if a, b, c ∈ Z are such that a ≡11 8, b ≡11 −6 and
c ≡11 −1 then S(a, b, c) 6 5.

The method of the above theorem can be summarized as follows.
Given the recurrence relation axi+bxi+1 = cxi+2, we choose a prime number p such that

p ∤ c and consider the recurrence as a permutation on Z2
p defined by π(x, y) = (y, αax+αby)

where α ∈ Z is such that αc ≡p 1. Then we find a 2-coloring of Zp in a way that we
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minimize the length of the longest monochromatic interval in any cycle of the permutation
π, assuming that 0 is colored by both colors.

We repeat this process for several primes and choose the best one among them.
Some computer generated results of this method are summarized in Tables 2 and 3.

We observe that some of the bounds in those two tables are tighter than the bound given
by Theorem 7.

p a (mod p) b (mod p) S(a, b,−1)
1 1, 2 6 4

3 2 0 6 3
2 1, 2 6 4
1 1, 4 6 5
1 2, 3 6 3

2, 4 0 6 3
2 2, 3 6 4

5 3 0 6 3
3 1, 4 6 4
4 1 6 4
4 3 6 6
1 1, 2, 5, 6 6 5
1 4 6 4
2 0, 1, 3, 4 6 5
2 2 6 4
2 5 6 4

3, 5, 6 0 6 3
3 1 6 5
3 4 6 6

7 3 6 6 4
4 0, 2, 3, 5 6 5
4 1, 6 6 4
5 1 6 6
5 2 6 5
5 4, 5, 6 6 4
6 1, 3, 5 6 4
6 4 6 5

Table 2: Some more bounds for S(a, b,−1)

5 Concluding Remarks

It is a very interesting fact that S(a, b, c) 6 6 in all cases that we have considered, except
when a + b + c = 0, in which case S(a, b, c) = ∞. We wonder if a + b + c 6= 0 implies
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p a (mod p) b (mod p) S(a, b,−1)
1 1, 4, 7, 10 6 6
1 2, 5, 5, 6, 9 6 5
1 3, 8 6 4

2, 6, 7 0 6 3
2 1, 2, 6, 8 6 5
2 3, 4, 5, 7 6 4
3 0, 1, 2, 3, 5, 6, 10 6 5
3 4, 7 6 4

11 3 8 6 6
4 0, 2, 3, 4, 7, 9, 10 6 5
4 1 6 6
4 5, 6 6 4
5 0, 2, 3, 4, 5, 8, 9 6 5
5 1, 10 6 4
5 6 6 6
6 2, 3, 4, 9 6 4
6 5, 7, 8, 10 6 5

Table 3: Some more bounds for S(a, b,−1)

S(a, b, c) 6 6.
From Corollary 17 we see that the only two values of c for which the value of S(1, 1,−c)

equals 4 are c = 1 and c = 4. The case c = 1 is discussed in Corollary 8 and the case
c = 4 was done in [5] with the help of computer by showing that any 2-coloring of
the interval [1, 71] contains a monochromatic 4-term sequence satisfying the recurrence
xi + xi+1 = 4xi+2. We ask if there are other values of c for which S(1, 1,−c) = 4. For
example, is it true that S(1, 1,−10) = 4? (The case c = 10 is the smallest value of c for
which the exact value of S(1, 1,−c) is unknown. The next case is c = 26.)
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