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Departamento de Ingenieŕıa Matemática
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Abstract

In this work we count the number of satisfying states of triangulations of a
convex n-gon using the transfer matrix method. We show an exponential (in n)
lower bound. We also give the exact formula for the number of satisfying states of
a strip of triangles.

1 Introduction

A classic theorem of Petersen claims that every cubic (each degree 3) graph with no
cutedge has a perfect matching. A well-known conjecture of Lovasz and Plummer from the
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mid-1970’s, still open, asserts that for every cubic graph G with no cutedge, the number
of perfect matchings of G is exponential in |V(G)|. The assertion of the conjecture was
proved for the k−regular bipartite graphs by Schrijver [Sch98] and for the planar graphs
by Chudnovsky and Seymour [CS08]. Both of these results are difficult. In general, the
conjecture is widely open; see [KSS08] for a linear lower bound obtained so far.

We suggest to study the conjecture of Lovasz and Plummer in the dual setting. This
relates the conjecture to a phenomenon well-known in statistical physics, namely to the
degeneracy of the Ising model on totally frustrated triangulations of 2−dimensional sur-
faces.

In order to explain this we need to start with another well-known conjecture, namely
the directed cycle double cover conjecture of Jaeger (see [Jae00]): Every cubic graph with
no cutedge can be embedded in an orientable surface so that each face is homeomorphic
to an open disc (i.e., the embedding defines a map) and the geometric dual has no loop.

By a slight abuse of notation we say that a map in a 2−dimensional surface is a
triangulation if each face is bounded by a cycle of length 3 (in particular there is no
loop); hence we allow multiple edges. We say that a set S of edges of a triangulation T is
intersecting if S contains exactly one edge of each face of T.

Assuming the directed cycle double cover conjecture, we can reformulate the conjecture
of Lovasz and Plummer as follows: Each triangulation has an exponential number of
intersecting sets of edges.

We next consider the Ising model. Given a triangulation T = (V,E), we associate the
coupling constant c(e) = −1 with each edge e ∈ E. A spin-assignment of U ⊆ V is a
function σ : U → {+, -} where + denotes 1 and - denotes −1. Each spin-assignment of U
is naturally identified with an element from {+, -}|U|. A state of the Ising model is any
spin-assignment of V. The energy of a state s is defined as −

∑
{u,v}∈E c(uv) · σ(u) · σ(v).

The states of minimum energy are called groundstates. The number of groundstates is
usually called the degeneracy of T, denoted g(T), and it is an extensively studied quantity
(for regular lattices T) in statistical physics (see for example [LV03]). Moreover, a basic
tool in the degeneracy study is the transfer matrix method.

We further say that a state σ frustrates edge {u, v} if σ(u) = σ(v). Clearly, each
state frustrates at least one edge of each face of T, and a state is a groundstate if it
frustrates the smallest possible number of edges. We say that a state σ is satisfying if σ
frustrates exactly one edge of each face of T. Hence, the set of the frustrated edges of any
satisfying state is an intersecting set defined above, and we observe: The number of the
satisfying states is at most twice the number of the intersecting sets of edges. Moreover,
the converse also holds for planar triangulations: if we delete an intersecting set of edges
from a planar triangulation, we get a bipartite graph and its bipartition defines a pair of
satisfying states.

We finally note that a satisfying state does not need to exist, but if it exists, then the
set of the satisfying states is the same as the set of the groundstates.

Summarizing, half the number of satisfying states is a lower bound to the number of
intersecting sets. We can also formulate the result of Chudnovsky and Seymour by: Each
planar triangulation has an exponential degeneracy. This motivates the problem we study
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as well as the (transfer matrix) method we use.

Given Cn a convex n-gon, a triangulation of Cn is a plane graph obtained from Cn by
adding n−3 new edges so that Cn is its boundary (boundary of its outer face). We denote
by ∆(Cn) the set of all triangulations of Cn. An almost-triangulation is a plane graph so
that all its inner faces are triangles. Note that if n > 3, then ∆(Cn) is a subset of the
set of almost-triangulations with n− 2 inner faces. For T an almost-triangulation, we say
that a state σ is satisfying if σ frustrates exactly one edge of each triangular face of T. We
denote by s(T) the number of satisfying states of an almost-triangulation T. The main
goal of this work is to show that the number of satisfying states of any triangulation of a
convex n-gon is exponential in n.

Organization: We first recall, in Section 2, a known and simple bijection between trian-
gulations of a convex n-gon and plane ternary trees with n− 2 internal vertices. We then
formally state the main results of this work. In Section 3 we give a constructive step by
step procedure that given a plane ternary tree Γ with n− 2 internal vertices, sequentially
builds a triangulation T of a convex n-gon by repeatedly applying one of three different
elementary operations. Finally, in Section 4 we interpret each elementary operation in
terms of operations on matrices. Then, we apply the transfer matrix method to obtain,
for each triangulation of a convex n-gon T, an expression for a matrix whose coordinates
add up to the number of satisfying states of T. We then derive a closed formula for the
number of satisfying states of a natural subclass of ∆(Cn); the class of “triangle strips”.
Finally, we establish an exponential lower bound for the number of satisfying states of
triangulations of a convex n-gon. Future research directions are discussed in Section 5.

2 Structure of the class of triangulations of a convex

n-gon

Let T be a triangulation of a convex n-gon. Denote by F(T) the set of inner faces of T
and let {I(T),O(T)} be the partition of F(T) such that ∆ ∈ I(T) if and only if no edge of
∆ belongs to the boundary of T (i.e. to Cn). We henceforth refer to the elements of I(T)
by interior triangles of T. Consider now the bijection Γ between ∆(Cn) and the set of all
plane ternary trees with n− 2 internal vertices and n leaves that maps T to ΓT so that:

(i) {γ∆, γ∆′} is an edge of ΓT if and only if ∆ and ∆′ are inner faces of T that share
an edge, and

(ii) e is a leaf of ΓT adjacent to γ∆ if and only if e is an edge of Cn that belongs to ∆.

(See Figure 1 for an illustration of how Γ acts on an element of ∆(Cn).) The bijection
Γ induces another bijection, say γ, from the inner faces of T (i.e. F(T)), to the internal
vertices of ΓT. In particular, inner faces ∆ and ∆′ of T share an edge if and only if
{γ∆, γ∆′} is an edge of ΓT which is not incident to a leaf. Hence, γ identifies interior
triangles of T with internal vertices of ΓT that are not adjacent to leaves.
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Figure 1: A triangulation of a convex 9-gon T and the associated tree ΓT.

2.1 Main results

Say a triangulation of a convex n-gon T is a strip of triangles provided |I(T)| = 0.
Our first result is an exact formula for the number of satisfying states of any strip of
triangles. Our second main contribution gives an exponential lower bound for the number
of satisfying states of any triangulation of a convex n-gon. Specifically, denoting by Fk

the k-th Fibonacci number and ϕ = (1 +
√

5)/2 ≈ 1.61803 the golden ratio, we establish
the following results:

Theorem 1 If T is a triangulation of a convex n-gon with |I(T)| = 0, then s(T) = 2Fn+1.

Theorem 2 If T is a triangulation of a convex n-gon, then s(T) > ϕ2(
√
ϕ)n. Moreover,√

ϕ ≈ 1.27202.

3 Construction of triangulations of a convex n-gon

In this section we discuss how to iteratively construct any triangulation of a convex n-gon.
First, we introduce two basic operations whose repeated application allows one to build
strips of triangles. Then, we describe a third operation which is crucial for recursively
building triangulations with a non-empty set of interior triangles from triangulations with
fewer interior triangles.

3.1 Basic operations

Let T = (V,E) be a triangulation of a convex n-gon. We will often distinguish a boundary
edge of T to which we shall refer as bottom edge of T and denote by bTc.

We now define two elementary operations (see Figure 2 for an illustration):
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Operation W
Input: (T, bTc) where T ∈ ∆(Cn) and bTc = (β1, β2).

Output: (T̂, bT̂c), where T̂ ∈ ∆(Cn+1) is a triangulation obtained from

T by adding a new vertex β̂1 to T and two new edges {β̂1, β1}
and {β̂1, β2}. Moreover, bT̂c = (β̂1, β2).

Operation Z
Input: (T, bTc) where T ∈ ∆(Cn) and bTc = (β1, β2).

Output: (T̂, bT̂c), where T̂ ∈ ∆(Cn+1) is a triangulation obtained from

T by adding a new vertex β̂2 to T and two new edges {β1, β̂2}
and {β̂2, β2}. Moreover, bT̂c = (β1, β̂2).

Henceforth, we also view operations W and Z as maps from inputs to outputs. Abusing
terminology, we consider two nodes joined by an edge to be a degenerate triangulation
whose bottom edge is its unique edge. Let T0 be a degenerate triangulation. Say that bT0c
is the top edge of T, denoted dTe (see Figure 2), if there is a sequence R1, . . . ,Rl ∈ {W,Z}
such that (T, bTc) is obtained by evaluating Rl ◦ · · · ◦R2 ◦R1 at (T0, bT0c). When bottom
edges are clear from context, we shall simply write

T = Rl ◦ · · · ◦ R2 ◦ R1(T0) .

bTc

dTe dTe

bTc

W Z
α1 α2

β2β1 β1 β2

α2α1

bβ2
bβ1

Figure 2: An arbitrary strip of triangles T with dTe = (α1, α2) and bTc = (β1, β2).
Operations W and Z evaluated at (T, bTc).

3.2 The |I(T)| = 0 case

Our goal in this section is to show that any triangulation of a convex n-gon with no
interior triangles can be obtained by sequentially applying basic operations of type W
and Z starting from a degenerate triangulation.

Let T be a triangulation such that |I(T)| = 0. Note that each internal vertex of ΓT

is adjacent to at least one leaf. Hence, ΓT has two internal vertices each one adjacent
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to exactly two leaves, and n − 4 internal vertices adjacent to exactly one leaf. This
implies that ΓT is made up of a path P = γ∆1 . . . γ∆n−2 with two leaves connected to
each γ∆1 and γ∆n−2 , and one leaf connected to each internal vertex of the path P (see
Figure 3). To obtain T from ΓT we choose one of the two endnodes of the path (say γ∆1)
and sequentially add the triangles ∆1, . . . ,∆n−2 one by one, according to the bijection
γ, starting from γ∆1 and following the trajectory of the path P . Consequently, we can
construct T from a pair of vertices (α1, α2) of ∆1 by applying a sequence of n−2 operations
R1,R2, . . . ,Rn−2 ∈ {W,Z}, where the choice of each operation depends on the structure
of ΓT. For example, for the triangulation in Figure 3, provided dTe = (α1, α2) and
bTc = (β1, β2), we have that R1 = W, R2 = Z, R3 = Z, and so on and so forth.
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α1

α2

β2

β1

γ∆4

γ∆n−5

γ∆n−3

γ∆n−2

∆1

∆2

∆3

∆4

∆n−5

∆n−3

γ∆3

γ∆2

γ∆n−4

γ∆1

Γ̃ T̃

∆n−2

∆n−4

Figure 3: A tree Γ̃ in the range of bijection Γ and construction of triangulation T̃ such
that ΓeT = Γ̃.

The next result summarizes the conclusion of the previous discussion.

Lemma 3 For any T ∈ ∆(Cn) it holds that |I(T)| = 0 if and only if there is a degenerate
triangulation T0 and basic operations R1,R2, . . . ,Rn−2 ∈ {W,Z} such that

T = Rn−2 ◦ · · · ◦ R2 ◦ R1(T0) .

In fact, there are non–negative integers w1, . . . , wm, z1, . . . , zm adding up to n − 2 such
that wj > 1 for j 6= 1, zj > 1 for j 6= m, and

T = Zzm ◦Wwm ◦ · · · ◦ Zz2 ◦Ww2 ◦ Zz1 ◦Ww1(T0) .
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3.3 The |I(T)| > 1 case

We now consider the following additional basic operation (see Figure 4 for an illustration):

Operation •
Input: (Ti, bTic) where Ti ∈ ∆(Cni

), i ∈ {1, 2} and bTic = (βi
1, β

i
2).

Output: (T, bTc), where T ∈ ∆(Cn1+n2−1) is a triangulation obtained
from T1 and T2 by identifying β2

1 with β1
2 and adding the edge

{β1
1 , β

2
2}. Moreover, bTc = (β1

1 , β
2
2).
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β1
1

β1
1

β2
2

β2
2

β2
1

T1 T2
β = β1

2 = β2
1

T1 T2•

β1
2

T = T1 • T2

Figure 4: Building an interior triangle by means of operation •.

Assume T is such that |I(T̃)| = 1. In particular, let I(T) = {∆}. Clearly, the tree ΓT

contains exactly one internal vertex that is not adjacent to a leaf. Hence, in ΓT there must
be three internal vertices each of them adjacent to two leaves, and n− 6 internal vertices
adjacent to exactly one leaf. Thus, we can identify in ΓT three paths P1 = γ∆1

1
. . . γ∆1

n1
,

P2 = γ∆2
1
. . . γ∆2

n2
, and P3 = γ∆3

n3
. . . γ∆3

1
with end-vertices γ∆1

n1
= γ∆2

n2
= γ∆3

n3
= γ∆, and

such that: (1) n1 + n2 + n3 = n and n1, n2, n3 > 2, (2) each γ∆j
1

with j ∈ {1, 2, 3} is

adjacent to two leaves of ΓT, and (3) each γ∆j
ij

with j ∈ {1, 2, 3} and ij ∈ {2, . . . , nj − 1}
is adjacent to a single leaf of ΓT.

Given ΓT, we can construct T by means of the following iterative step by step proce-
dure:

1. For i ∈ {1, 2}, add triangles ∆i
1, . . . ,∆

i
ni−1 according to the bijection following the

trajectory from γ∆i
1

to γ∆i
ni−1

given by Pi, thus obtaining a triangulation Ti such

that ΓTi
is the minimal subtree of ΓT containing Pi \ γ∆. Moreover, note that

Ti ∈ ∆(Cni+1) is such that |I(Ti)| = 0, and that there is a degenerate triangulation
Ti,0 which is an edge of triangle ∆i

1, and basic operations Ri
1, . . . ,R

i
ni−1 ∈ {W,Z}

such that
Ti = Ri

ni−1 ◦ . . . ◦ Ri
2 ◦ Ri

1(Ti,0) .

Also, note that bTic is an edge of ∆i
ni−1.

2. Apply operation • in order to construct T̂ = T1 • T2 ∈ ∆(Cn1+n2+1). Note that

∆ ∈ F(T̂) and bT̂c is the unique edge of ∆ which is in the boundary of T̂.
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Steps 1 and 2

Step 3

Figure 5: Sketch of construction of an arbitrary T with |I(T)| = 1.

3. Finally, starting from T̂ add triangles associated to vertices of the path P3. This is
done by performing a sequence of n3− 1 operations W and Z along P3 \ γ∆ starting

from (T̂, bT̂c). Given that T̂ ∈ ∆(Cn1+n2+1), we obtain T ∈ ∆(Cn1+n2+n3) (recall
that n1 + n2 + n3 = n).

We summarize the previous discussion as follows:

Lemma 4 Let T be a triangulation of a convex n-gon such that |I(T)| = 1. For some
n1, n2, n3 > 2 such that n1+n2+n3 = n, there are triangulations T1 and T2 of convex (n1+
1) and (n2 +1)-gons such that |I(T1)| = |I(T2)| = 0, and basic operations R1, . . . ,Rn3−1 ∈
{W,Z} such that

T = Rn3−1 ◦ · · · ◦ R2 ◦ R1(T1 • T2) .

Now, we state the main result concerning the recursive construction of an arbitrary
triangulation of a convex n-gon that we will need.

Lemma 5 Let T be a triangulation of a convex n-gon such that |I(T)| = m > 2. Then,

there are n̂ > 5, ñ > 3 and l > 1 such that ñ+n̂+l−1 = n, and triangulations T̃ ∈ ∆(Cen)

and T̂ ∈ ∆(Cbn) satisfying:
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1. |I(T̃)| = 0,

2. (T̂, bT̂c) is either:

(a) The output of operation W or Z and |I(T̂)| = m− 1, or

(b) The output of operation • and |I(T̂)| = m− 2.

3. There are basic operations R1, . . . ,Rl ∈ {W,Z} for which T = Rl◦· · ·◦R2◦R1(T̃•T̂).

Proof: Observe that there must be an internal vertex of ΓT, say γ∆, such that if ΓbT, ΓeT
and ΓTl+2

are the three sub-trees of ΓT rooted in γ∆, then all internal vertices of ΓeT \ γ∆

and ΓTl+2
\ γ∆ are adjacent to at least one leaf. In particular, |I(T̃)| = |I(Tl+2)| = 0, and

condition 1 of the statement of the lemma is satisfied.

Let γb∆ be the neighbor of γ∆ in ΓbT. Note that one of the following two situations must
occur:

Case 1: In ΓbT \ γ∆, the vertex γb∆ is adjacent to a leaf (see Figure 6.(a)). In
particular, ΓbT has exactly m−1 internal vertices which are not adjacent to any leaf,
or

Case 2: None of the neighbors of γb∆ in ΓbT \ γ∆ are adjacent to leaves (see Figu-
re 6.(b)). In particular, ΓbT has exactly m−2 internal vertices which are not adjacent
to any leaf.
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ΓeT

(a) (b)

ΓTl+2

γ∆ γ∆

ΓeT

ΓTl+2

γ b∆1
γ b∆

ΓbT
γ b∆

γ b∆2

ΓbT

Figure 6: Structure of ΓT depending on the one of subtree ΓbT.

Assume that the first case holds. Recall that |I(T̂)| = m− 1. Let T̂0 be the triangulation
such that ΓbT0

is the ternary tree obtained from ΓbT \ γ∆ by deleting the neighbor of γb∆
which is a leaf. Let bT̂0c be the edge of T̂0 corresponding to the unique edge incident to
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γb∆ in ΓbT0
. Note that applying one basic operation of type W or Z we can obtain (T̂, bT̂c)

from (T̂0, bT̂0c). Therefore, (T̂, bT̂c) satisfies condition 2a of the statement of the lemma.

Suppose now that the second case holds. Recall that |I(T̂)| = m− 2. Let γb∆1 and γb∆2 be
the vertices in ΓbT \ γ∆ that are neighbors of γb∆. Let ΓbT,1 and ΓbT,2 be the trees obtained
from ΓbT\γ∆

by removing the trees rooted at γb∆2 and γb∆1 , respectively. Consider i ∈ {1, 2}
and note that ΓbT,i is a ternary tree since by hypothesis neither γb∆1 nor γb∆2 are adjacent

to leaves of ΓbT \ γ∆. Let T̂i be the triangulation that is in bijective correspondence with

ΓbT,i. Define bT̂ic to be the edge of triangulation T̂i which is in bijection with the edge

(γb∆, γb∆i) of ΓbT,i. Note that (T̂, bT̂c) may be obtained as T̂1 • T̂2. Therefore, (T̂, bT̂c)
satisfies condition 2b of the statement of the lemma.

To finish the construction of T it suffices to apply an appropriate sequence of l operations
from the set {W,Z} starting from (T̃ • T̂, bT̃ • T̂c). The result follows.

4 Satisfying States

In this section we first present a technique, the so called Transfer Matrix Method. The
technique is usually applied in situations where there is an underlying regular lattice, and
gives formulas for its degeneracy. We adapt the technique to the context where instead of
a lattice there is a triangulation of a convex n-gon T and use it to determine s(T). Then,
we apply the method to derive an exact formula for the number of satisfying states of
strips of triangles. Finally, we extend our arguments in order to establish an exponential
lower bound for s(T) of any T triangulation of a convex n-gon.

4.1 Transfer matrices and satisfying matrix

Henceforth, the index of rows and columns of all 4 × 4 matrices we consider will be
assumed to belong to {+, -}2. Let T be a triangulation of a convex n-gon such that
|I(T)| = 0. From now on, let 1 denote the 4 × 1 vector all of whose coordinates are 1,
i.e. 1 = (1, 1, 1, 1)t. Our immediate goal is to obtain a matrix M = M(T) of type 4× 4
that satisfies the following two conditions:

Condition 1: Columns and rows of M are indexed by spin-assignments of the top
and bottom node pairs of T, respectively.

Condition 2: For φ, ψ ∈ {+, -}2, the value M[φ, ψ] is equal to the number of
satisfying states of T if the spin-assignments of the top and bottom node pairs of T
are ψ and φ, respectively.

Matrix M is called the satisfying matrix of T. It immediately follows that

s(T) = 1t · M · 1 .
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By Lemma 3, each triangulation T ∈ ∆(Cn) such that |I(T)| = 0 may be constructed
by applying a sequence of n − 2 operations of type W or Z starting from T’s top edge.
To each operation R ∈ {W,Z} we associate a so called transfer matrix of type 4× 4, say
R ∈ {W ,Z} such that:

• Columns of R are indexed by spin-assignments of the bottom node pair of T.

• Rows are indexed by spin-assignments of the bottom node pair of R(T).

• For φ, ψ ∈ {+, -}2, matrix R satisfies

R[φ, ψ] =


1 , if by setting the spin-assignments of the bottom node

pairs of T and R(T) to ψ and φ respectively, the state of
the triangle created by the application of R is satisfying,

0 , otherwise.

Proposition 6 Let n > 3 and T0 be a degenerate triangulation. Let T ∈ ∆(Cn) be
such that T = Rn−2 ◦ · · ·R2 ◦ R1(T0). If Ri denotes the transfer matrix associated to
Ri ∈ {W,Z}, then M(T) = Rn−2 · · ·R2 · R1.

Proof: We proceed by induction on n. If n = 3 we have that T = R1(T0) and the
statement follows by definition of M(T) and R. Assume n > 3. By inductive hypothesis

the satisfying matrix of the triangulation T̂ = Rn−3 ◦ · · · ◦ R2 ◦ R1(T0) ∈ ∆(Cn−1) is

M(T̂) = Rn−3 · Rn−4 · · ·R2 · R1 .

The matrix Rn−2 · M(T̂) satisfies Condition 1 since columns of the matrix M(T̂) are

indexed by the spin-assignment of dT̂e = dTe and the rows of matrix Rn−2 by the spin-
assignment of bTc.
We still need to show that Rn−2 · M(T̂) satisfies Condition 2. By inductive hypothesis,

we have that M(T̂)[χ, ψ] is the number of satisfying states of T̂ if the spin-assignments

for bT̂c and dT̂e are χ and ψ, respectively. By definition, Rn−2[φ, χ] may be 1 or 0

depending on whether or not the application of Rn−2 to (T̂, bT̂c) creates a triangle for

which a satisfying state is obtained by setting the spin-assignments of bTc and of bT̂c
equal to φ and χ, respectively. Therefore, Rn−2[φ, χ] = 1 if and only if each satisfying

state in T̂ with spin-assignment χ and ψ for bT̂c and dT̂e respectively, is a satisfying state
in T with spin-assignment φ and ψ for bTc and dTe respectively. By definition of M(T),
it immediately follows that

M(T)[φ, ψ] =
∑

χ∈{+,-}2

Rn−2[φ, χ] · M(T̂)[χ, ψ] =
(
Rn−2 · M(T̂)

)
[φ, ψ] ,

and that M(T) = Rn−2 · M(T̂), thus concluding the inductive proof.
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4.2 Satisfying states of strips of triangles

We now apply the transfer matrix method to count the number of satisfying states in any
triangulation of a convex n-gon T satisfying the condition |I(T)| = 0. First, we observe
that the matrices W and Z associated to operations W and Z, respectively, are given by:

W =


0 0 1 0
0 1 0 1
1 0 1 0
0 1 0 0

 , Z =


0 1 0 0
1 1 0 0
0 0 1 1
0 0 1 0

 .

Note that W = Π · Z · Π where Π is the following permutation matrix:

Π =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Since Π−1 = Π, for any k > 0 we get that

Wk = (Π · Z · Π)k = Π · Zk · Π . (1)

Theorem 7 Let T0 be a degenerate triangulation, w1, . . . , wm, z1, . . . , zm be a sequence
of non–negative integers adding up to n − 2 such that wj > 1 for j 6= 1 and zj > 1 for
j 6= m. If T = Zzm ◦Wwm ◦ . . . ◦ Zz1 ◦Ww1(T0) and M = M(T), then

M = Zzm · Π · Zwm · Π · · ·Π · Zz1 · Π · Zw1 · Π .

Moreover, if Fk denotes the k-th Fibonacci number, then

M · 1 =


Fn−1

Fn

Fn

Fn−1

 .

Proof: From Proposition 6 we have

M = Zzm · Wwm · Zzm−1 · Wwm−1 · · · Zz2 · Ww2 · Zz1 · Ww1 .

By (1), the first stated identity immediately follows.

Now, for the second part, let k > 1. Observe that(
0 1
1 1

)k

=

(
Fk−1 Fk

Fk Fk+1

)
.
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It follows that,

Zk · 1 =


Fk−1 Fk 0 0
Fk Fk+1 0 0
0 0 Fk+1 Fk

0 0 Fk Fk−1

 · 1 =


Fk+1

Fk+2

Fk+2

Fk+1

 . (2)

The first stated identity, the fact that Π · Zk · 1 = Zk · 1, and observing that Π · 1 = 1,
we get that

M · 1 = Zzm · Π · Zwm · Π · · · Zz1 · Π · Zw1 · Π · 1
= Zzm · Zwm · · · Zz1 · Zw1 · 1 .

Since
∑m

i=1(zi + wi) = n− 2, the desired conclusion follows from (2).

Proof of Theorem 1: By hypothesis and Lemma 3 we have that for some degenerate
triangulation T0 there are non–negative integers w1, . . . , wm, z1, . . . , zm adding up to n−2
such that wj > 1 if j 6= 1, zj > 1 if j 6= m, and

T = Zzm ◦Wwm ◦ · · · ◦ Zz2 ◦Ww2 ◦ Zz1 ◦Ww1(T0) .

By Theorem 7, we get that s(T) = 1t · M(T) · 1 = 2(Fn + Fn−1) = 2Fn+1.

We now obtain some intermediate results that we will need to prove Theorem 2: Let
T ∈ ∆(Cn) and {β1, β2} be an edge belonging to the boundary of T. The satisfying
vector of T associated to node pair (β1, β2) denoted by vT((β1, β2)) is a vector indexed
by the spin-assignments {+, -}2 of (β1, β2), so that vT((β1, β2))[ψ] is equal to the number
of satisfying states of T if the spin-assignment of (β1, β2) is equal to ψ. For instance, by
Theorem 7, for every triangulation T of a convex n-gon with no interior triangles,

vT(bTc) =


Fn−1

Fn

Fn

Fn−1

 .

Clearly, for every T ∈ ∆(Cn) we have that

vT[++] = vT[--] , vT[+-] = vT[-+] . (3)

Note that for edges (β1, β2) 6= (β̂1, β̂2) belonging to the boundary of T, if

vT((β1, β2)) =


x
y
y
x

 , vT((β̂1, β̂2)) =


x̂
ŷ
ŷ
x̂

 ,

then 2(x + y) = 2(x̂ + ŷ), or equivalently x + y = x̂ + ŷ.
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Proposition 8 If R ∈ {W,Z}, T̂ ∈ ∆(Cbn), and T = R(T̂), then

vT(bTc) = R · v bT(bT̂c) .

Proof: Implicit in the proof of Proposition 6.

We now define a useful operation on satisfying vectors. Let • be the binary operator
over N4 defined by 

x1

x2

x3

x4

 •


y1

y2

y3

y4

 =


x2 y3

x1y2 + x3y4

x4y3 + x3y1

x3y2

 .

Proposition 9 Let T1 ∈ ∆(Cn1) and T2 ∈ ∆(Cn2) be such that bT1c = (β1
1 , β

1
2) and

bT2c = (β2
1 , β

2
2). Then,

vT1•T2((β
1
1 , β

2
2)) = vT1((β

1
1 , β

1
2)) • vT2((β

2
1 , β

2
2)) .

Proof: To simplify the notation we henceforth denote vT1•T2((β
1
1 , β

2
2)), vT1((β

1
1 , β

1
2)) and

vT2((β
2
1 , β

2
2)) by vβ1

1β2
2
, vβ1

1β1
2
, and vβ2

1β2
2
, respectively. For i ∈ {1, 2}, we know that vβi

1βi
2
[ψ]

is equal to the number of satisfying states of Ti if ψ ∈ {+, -}2 is the spin-assignment for
(βi

1, β
i
2). We consider the following cases depending on the spin-assignment of (β1

1 , β
2
2).

• Spin-assignment of (β1
1 , β

2
2) is ++: Since +++ is not a satisfying assignment for the

triangle (β1
1 , β, β

2
2) of T, if the spin-assignment of β = β2

1 = β1
2 is +, then the state of

T is not satisfying. If the spin assignment of (β1
1 , β, β

2
2) is +-+, each satisfying state

of T1 and T2 (with spin-assignment for (β1
1 , β

1
2) equal to +- and spin-assignment for

(β2
1 , β

2
2) equal to -+) is a satisfying state for T, and

vβ1
1β2

2
[++] = vβ1

1β1
2
[+-]vβ2

1β2
2
[-+] .

• Spin-assignment of (β1
1 , β

2
2) is +-: Note that the triangle (β1

1 , β, β
2
2) with spin-

assignment ++- fulfills the condition of satisfying state. Hence, each satisfying state
of T1 and T2 (with spin-assignment for (β1

1 , β
1
2) equal to ++ and spin-assignment for

(β2
1 , β

2
2) equal to +-) is a satisfying state for T. Analogously, if the spin-assignment

of β is equal to -, each satisfying state of T1 and T2 (with spin-assignment for
(β1

1 , β
1
2) equal to +- and spin-assignment for (β2

1 , β
2
2) equal to --) is a satisfying

state for T. It follows that

vβ1
1β2

2
[+-] = vβ1

1β1
2
[++]vβ2

1β2
2
[+-] + vβ1

1β1
2
[+-]vβ2

1β2
2
[--] .

Finally, by a symmetry argument, we also have that vβ1
1β2

2
[--] = vβ1

1β1
2
[-+]vβ2

1β2
2
[+-] and

vβ1
1β2

2
[-+] = vβ1

1β1
2
[-+]vβ2

1β2
2
[++] + vβ1

1β1
2
[--]vβ2

1β2
2
[-+].
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We now recall some basic well known facts about Fibonacci numbers. Let ϕ denote
the golden ratio. If Fn denotes the n-th Fibonacci number, it is well known that Fn+1 =
Fn + Fn−2 for all n > 1, and that

Fn =
ϕn − (− 1

ϕ
)n

√
5

.

It immediately follows that for all n > 1,

ϕn−2 6 Fn 6
1 +

(
1
ϕ

)2

√
5

ϕn 6 ϕn . (4)

Lemma 10 If T is a triangulation of a convex n-gon, then ϕn−|I(T)| > ϕ2(
√
ϕ)n.

Proof: Since |O(T)| > |I(T)| + 2 and |O(T)| + |I(T)| = n − 2, we get that |I(T)| 6
(n/2)− 2. The claimed result immediately follows.

Proof of of Theorem 2: We claim that for any triangulation of a convex n-gon T such
that |I(T)| = m it holds that s(T) > ϕn−m. To prove this claim we proceed by induction
on m. If m = 0, by Theorem 1 we have that s(T) = 2Fn+1. Using the lower bound in (4)
we obtain s(T) > 2ϕn−1 > ϕn. If m = 1, by Lemma 4 we know that for some n1, n2, n3 > 2
such that n1 + n2 + n3 = n there are triangulations T1 ∈ ∆(Cn1+1) and T2 ∈ ∆(Cn2+1)
such that |I(T1)| = |I(T2)| = 0, and basic operations R1, . . . ,Rn3−1 ∈ {W,Z} such that

T = Rn3−1 ◦ · · · ◦ R2 ◦ R1(T1 • T2) .

By Theorem 7, for i ∈ {1, 2} we know that

vTi
(bTic) =


Fni

Fni+1

Fni+1

Fni

 .

Now, denote vT1•T2(bT1 • T2c) by v. Observe that Proposition 9 and the definition of •
imply that

v =


Fn1

Fn1+1

Fn1+1

Fn1

 •


Fn2

Fn2+1

Fn2+1

Fn2

 =


Fn1+1Fn2+1

Fn1Fn2+1 + Fn1+1Fn2

Fn1Fn2+1 + Fn1+1Fn2

Fn1+1Fn2+1

 .

Repeated application of Proposition 8 yields that

s(T) = 1t · Rn3−1 · · ·R2 · R1 · v .
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By (3) and due to the block structure of Z, we have that Π · v = v and Π · Zq · v = Zq · v,
for every q > 0. Therefore, since W = Π · Z · Π, the last displayed identity may be
rewritten as s(T) = 1t · Zn3−1 · v. Hence,

s(T) = 1t ·


Fn3−2 Fn3−1 0 0
Fn3−1 Fn3 0 0

0 0 Fn3 Fn3−1

0 0 Fn3−1 Fn3−2

 · v

= 2 (Fn3Fn1+1Fn2+1 + Fn3+1(Fn1Fn2+1 + Fn1+1Fn2)) .

Since Fibonacci numbers satisfy the identity Fp+q = FpFq−1 + Fp+1Fq, we get that

s(T) = 2 (Fn3(Fn1+1Fn2+1 + Fn1Fn2+1 + Fn1+1Fn2) + Fn3−1(Fn1Fn2+1 + Fn1+1Fn2))

= 2 (Fn3(Fn1+2Fn2+1 + Fn1+1Fn2) + Fn3−1(Fn1+2Fn2 + Fn1+1Fn2−1 − Fn1−1Fn2−1))

= 2(Fn3Fn1+n2+2 + Fn3−1(Fn1+n2+1 − Fn1−1Fn2−1))

= 2(Fn1+n2+n3+1 − Fn3−1Fn1−1Fn2−1) .

Since n = n1 + n2 + n3, 2 > ϕ and ϕ2 − 1 = ϕ, by (4) it follows that

s(T) > 2ϕn1+n2+n3−1
(
1− ϕ−2

)
> ϕn−1 .

Now, suppose the claim holds for every triangulation T ∈ ∆(Cn) such that |I(T)| < m.
Let T ∈ ∆(Cn) be such that |I(T)| = m.

We know from Lemma 5 that there is a T̃ ∈ ∆(Cen) such that |I(T̃)| = 0, a T̂ ∈ ∆(Cbn)
satisfying condition 2 of Lemma 5, basic operations R1, . . . ,Rl ∈ {W,Z} where l > 1, and
n = n̂+ ñ+ l − 1 such that

T = Rl ◦ · · · ◦ R1(T̃ • T̂) .

By an argument similar to the one used to handle the m = 1 case, we have that

s(T) = 1t · Rl · · ·R2 · R1 · v eT•bT(bT̃ • T̂c) .

Since T̃ ∈ ∆(Cen) is such that |I(T̃)| = 0, by Theorem 7 we have that

v eT(bT̃c) =


Fen−1

Fen
Fen
Fen−1

 .

Let x̂ and ŷ denote v bT(bT̂c)[++] and v bT(bT̂c)[+-] respectively. Observe that (3) implies

that v bT(bT̂c)[-+] = ŷ and v bT(bT̂c)[--] = x̂. Hence, by Proposition 9,

v eT•bT(bT̃ • T̂c) =


Fen−1

Fen
Fen
Fen−1

 •


x̂
ŷ
ŷ
x̂

 =


ŷFen

x̂Fen + ŷFen−1

x̂Fen + ŷFen−1

ŷFen

 .
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Denoting v = v eT•bT(bT̃ • T̂ c) we again observe that (3) implies that Π · v = v and
Π · Zq · v = Zq · v for all q > 0. Putting everything together we conclude that

s(T) = 1t · Z l ·


ŷFen

x̂Fen + ŷFen−1

x̂Fen + ŷFen−1

ŷFen


= 2(x̂Fl+2Fen + ŷ(Fl+1Fen + Fl+2Fen−1)) .

The lower bound for Fibonacci numbers given in (4) and the fact that 2 > ϕ imply that

s(T) > 2
(
x̂ϕl+en−2 + 2ŷϕl+en−3

)
> 2(x̂+ ŷ)ϕl+en−2 .

Recalling that s(T̂) = 2(x̂+ŷ) and observing that conditions 1 and 2 of Lemma 5 guarantee

that |I(T̂)| is equal to m − 1 or m − 2, from the inductive hypothesis we obtain that

s(T̂) > ϕbn−(m−1). It follows that s(T) > ϕbn+en+l−2−(m−1) = ϕn−m. This concludes the
inductive prove of the claim. Lemma 10 immediately implies the desired result.

5 Conclusion

We have established that the number of satisfying states of any triangulation of a convex
n-gon is exponential in n. It would be of interest to generalize this result to more general
triangulations. Two natural cases to address next are triangulations that are embedable
over low genus surfaces and k-trees.
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