Value-Peaks of Permutations

Pierre Bouchard
Département de mathématiques
Université du Québec à Montréal
Case postale 8888, Succursale Centre-ville
Montréal (Québec), Canada H3C 3P8
bouchard.pierre@uqam.ca
$\mathrm{Jun} \mathrm{Ma}^{\dagger}$ Institute of Mathematics Academia Sinica Taipei, Taiwan majun904@sjtu.edu.cn

Hungyung Chang*
Department of Applied Mathematics National Sun Yat-sen University
Kaohsiung, Taiwan 80424
changhy@math.nsysu.edu.tw

Jean Yeh
Department of Mathematics
National Taiwan University
Taipei, Taiwan
jean.yh@ms45.url.com.tw

Yeong-Nan Yeh ${ }^{\ddagger}$
Institute of Mathematics
Academia Sinica
Taipei, Taiwan
mayeh@math.sinica.edu.tw

Submitted: Nov 29, 2009; Accepted: Mar 16, 2010; Published: Mar 29, 2010
Mathematics Subject Classification: 05A15

Abstract

In this paper, we focus on a "local property" of permutations: value-peak. A permutation σ has a value-peak $\sigma(i)$ if $\sigma(i-1)<\sigma(i)>\sigma(i+1)$ for some $i \in$ [2,n-1]. Define $V P(\sigma)$ as the set of value-peaks of the permutation σ. For any $S \subseteq[3, n]$, define $V P_{n}(S)$ such that $V P(\sigma)=S$. Let $\mathcal{P}_{n}=\left\{S \mid V P_{n}(S) \neq \emptyset\right\}$. we make the set \mathcal{P}_{n} into a poset \mathscr{P}_{n} by defining $S \preceq T$ if $S \subseteq T$ as sets. We prove that the poset \mathscr{P}_{n} is a simplicial complex on the set $[3, n]$ and study some of its properties. We give enumerative formulae of permutations in the set $V P_{n}(S)$.

[^0]
1 Introduction

Let $[m, n]:=\{m, m+1, \cdots, n\}$. If $m>n$, then $[m, n]=\emptyset$. Let $[n]:=[1, n]$ and \mathfrak{S}_{n} be the set of all the permutations on the set $[n]$. We write permutations of \mathfrak{S}_{n} in the form $\sigma=(\sigma(1) \sigma(2) \cdots \sigma(n))$. Fix a permutation σ in \mathfrak{S}_{n}. For every $i \in[n-1]$, if $\sigma(i)>\sigma(i+1)$, then we say that i is a position-descent of σ. Define the position-descent set of a permutation σ, denoted by $P D(\sigma)$, as $P D(\sigma)=\{i \in[n-1] \mid \sigma(i)>\sigma(i+1)\}$. Given a set $S \subseteq[n-1]$, suppose $P D(\sigma)=S$ for some $\sigma \in \mathfrak{S}_{n}$. We easily obtain the increasing and decreasing intervals of σ from the set S. The permutation σ is a function from the set $[n]$ to itself. Since the monotonic property of a function is a global property of the function, the position-descent set of a permutation gives a "global property" of the permutation. We say a permutation $\sigma \in \mathfrak{S}_{n}$ has a value-descent $\sigma(i)$ if $\sigma(i)>\sigma(i+1)$ for some $i \in[n-1]$. Define the value-descent set of a permutation σ, denoted by $V D(\sigma)$, as $V D(\sigma)=\{\sigma(i) \mid \sigma(i)>\sigma(i+1)\}$. The value-descent set of a permutation is different from its position-descent set. Let $S \subseteq[2, n]$. Suppose $V D(\sigma)=S$ for some $\sigma \in \mathfrak{S}_{n}$. We only have that k is larger than its immediate right neighbour in the permutation σ for any $k \in S$ and do not obtain the increasing and decreasing intervals of σ from the set S. So the value-descent set of a permutation gives a "local property" of the permutation. For any $S \subseteq[2, n]$, define a set $V D_{n}(S)$ as $V D_{n}(S)=\left\{\sigma \in \mathfrak{S}_{n} \mid V D(\sigma)=S\right\}$ and use $v d_{n}(S)$ to denote the number of permutations in the set $V D_{n}(S)$, i.e., $v d_{n}(S)=\left|V D_{n}(S)\right|$. In a joint work [1], Chang, Ma and Yeh derive an explicit formula for $v d_{n}(S)$.

In this paper, we are interested in another "local property" of permutations: valuepeak. A permutation σ has a value-peak $\sigma(i)$ if $\sigma(i-1)<\sigma(i)>\sigma(i+1)$ for some $i \in[2, n-1]$. Define $\operatorname{VP}(\sigma)$ as the set of value-peaks of σ, i.e., $V P(\sigma)=\{\sigma(i) \mid \sigma(i-1)<$ $\sigma(i)>\sigma(i+1)\}$. For example, the value-peak set of $\sigma=(48362517)$ is $\{5,6,8\}$. Since σ has no value-peaks when $n \leqslant 2$, we may always suppose that $n \geqslant 3$. For any $S \subseteq[n]$, define a set $V P_{n}(S)$ as $V P_{n}(S)=\left\{\sigma \in \mathfrak{S}_{n} \mid V P(\sigma)=S\right\}$. Obviously, if $\{1,2,\} \cap S \neq \emptyset$ then $V P_{n}(S)=\emptyset$.

Example 1.1

$$
V P_{5}(\{4,5\})=\left\{\begin{array}{l}
14253,14352,24153,34152,24351,34251, \\
15243,15342,25143,35142,25341,35241
\end{array}\right\} .
$$

Suppose $S=\left\{i_{1}, i_{2}, \cdots, i_{k}\right\}$, where $i_{1}<i_{2}<\cdots<i_{k}$. We prove the necessary and sufficient conditions for $V P_{n}(S) \neq \emptyset$ are $i_{j} \geqslant 2 j+1$ for all $j \in[k]$. Let $\mathcal{P}_{n}=\{S \mid$ $\left.V P_{n}(S) \neq \emptyset\right\}$. We make the set \mathcal{P}_{n} into a poset \mathscr{P}_{n} by defining $S \preceq T$ if $S \subseteq T$ as sets. Fig. 1 shows the Hasse diagrams of $\mathscr{P}_{3}, \mathscr{P}_{4}$ and \mathscr{P}_{5}

Fig.1. the Hasse diagrams of $\mathscr{P}_{3}, \mathscr{P}_{4}$ and \mathscr{P}_{5}.

In the next section we prove that \mathscr{P}_{n} is a simplicial complex on the vertex set $[3, n]$ and derive some properties of \mathscr{P}_{n}.

Then we turn to enumerative problems for permutations by value-peak set. Let $v p_{n}(S)$ denote the number of permutations in the set $V P_{n}(S)$, i.e., $v p_{n}(S)=\left|V P_{n}(S)\right|$. For the cases with $|S|=0,1,2$, we derive explicit formulae for $v p_{n}(S)$. For general $n \geqslant 3$, we derive the following recurrence relation. Let $n \geqslant 3$ and $S \subseteq[3, n]$. Suppose $V P_{n}(S) \neq \emptyset$ and let $r=\max S$ if $S \neq \emptyset, 1$ otherwise. For any $0 \leqslant k \leqslant n-r-1$, we have
$v p_{n}(S \cup[n-k+1, n])=2(k+1) v p_{n-1}(S \cup[n-k, n-1])+k(k+1) v p_{n-2}(S \cup[n-k, n-2])$.
For any $S \subseteq[3, n]$, we write the set S in the form $S=\bigcup_{i=1}^{m}\left[r_{i}-k_{i}+1, r_{i}\right]$ such that $r_{i} \leqslant r_{i+1}-k_{i+1}-1$ for all $i \in[m-1]$. For example, let $n=12$ and $S=\{3,4,8,10,11,12\}$. Then $S=[3,4] \cup[8,8] \cup[10,12]$. We have $r_{1}=4, k_{1}=2, r_{2}=8, k_{2}=1, r_{3}=12, k_{3}=3$. Define the type of the set S, denoted type (S), as $\left(r_{1}^{k_{1}}, r_{2}^{k_{2}}, \ldots, r_{m}^{k_{m}}\right)$. We conclude with a formula for the number of permutations in terms of the type of S.

The paper is organised as follows. In Section 2, we give the necessary and sufficient conditions for $V P_{n}(S) \neq \emptyset$. We prove the poset \mathscr{P}_{n} is a simplicial complex on the set $[3, n]$ and study its some properties. In Section 3, we investigate enumerative problems of permutations in the sets $V P_{n}(S)$. In the Appendix, we list $v p_{n}(S)$ for $1 \leqslant n \leqslant 8$ obtained by computer searches.

2 The Simplicial Complex \mathscr{P}_{n}

In this section, we give the necessary and sufficient conditions for $V P_{n}(S) \neq \emptyset$ for any $n \geqslant 3$ and $S \subseteq[n]$. We show \mathscr{P}_{n} is a simplicial complex on the set $[3, n]$ and study some properties of \mathscr{P}_{n}.

Theorem 2.1 Let $n \geqslant 3$. Suppose $S=\left\{i_{1}, i_{2}, \cdots, i_{k}\right\}$ is a subset of $[n]$, where $i_{1}<i_{2}<$ $\cdots<i_{k}$. Then the necessary and sufficient conditions for $V P_{n}(S) \neq \emptyset$ are $i_{j} \geqslant 2 j+1$ for all $j \in[k]$.

Proof. Suppose $V P_{n}(S) \neq \emptyset$ and let $\sigma \in V P_{n}(S)$. For any $j \in[k]$, all the integers $i_{1}, i_{2}, \cdots, i_{j}$ are a value-peak of σ. Then $i_{j}-j \geqslant j+1$, hence, $i_{j} \geqslant 2 j+1$.

Conversely, suppose $i_{j} \geqslant 2 j+1$ for all $j \in[k]$. Suppose $[n] \backslash S=\left\{a_{1}, a_{2}, \cdots, a_{n-k}\right\}$ with $a_{1}<a_{2}<\cdots<a_{n-k}$. Let σ be the permutation in \mathfrak{S}_{n} defined by

$$
\begin{cases}\sigma(2 j)=i_{j} & \text { for } 1 \leqslant j \leqslant k \\ \sigma(2 j-1)=a_{j} & \text { for } 1 \leqslant j \leqslant k+1 \\ \sigma(j)=a_{j} & \text { for } 2 k+2 \leqslant j \leqslant n\end{cases}
$$

Obviously, $V P(\sigma)=S$ and $V P_{n}(S) \neq \emptyset$.
Corollary 2.1 Let $n \geqslant 3$ and $S \subseteq[n]$. Suppose $V P_{n}(S) \neq \emptyset$. We have $|S| \leqslant\left\lfloor\frac{n-1}{2}\right\rfloor$.

Proof. Suppose $S=\left\{i_{1}, i_{2}, \cdots, i_{k}\right\}$ with $i_{1}<i_{2}<\cdots<i_{k}$. Since $V P_{n}(S) \neq \emptyset$, Theorem 2.1 tells us that $n \geqslant i_{k} \geqslant 2 k+1$. Hence $k \leqslant\left\lfloor\frac{n-1}{2}\right\rfloor$.

Corollary 2.2 Let $n \geqslant 3$ and $S \subseteq[n]$. Suppose $V P_{n}(S) \neq \emptyset$. Then for $|S|<\left\lfloor\frac{n-1}{2}\right\rfloor$, we have $V P_{n+1}(S \cup\{n+1\}) \neq \emptyset$; for $|S|=\left\lfloor\frac{n-1}{2}\right\rfloor$, we have $V P_{n+1}(S \cup\{n+1\}) \neq \emptyset$ if n is even; otherwise, $V P_{n+1}(S \cup\{n+1\})=\emptyset$.

Proof. Let $k=|S| . \quad k<\left\lfloor\frac{n-1}{2}\right\rfloor$ implies $2(k+1)+1 \leqslant 2\left\lfloor\frac{n-1}{2}\right\rfloor+1<n+1$. So, $V P_{n+1}(S \cup\{n+1\}) \neq \emptyset$ when $|S|<\left\lfloor\frac{n-1}{2}\right\rfloor$. For the case with $k=\left\lfloor\frac{n-1}{2}\right\rfloor$, we have

$$
2(k+1)+1= \begin{cases}n+1 & \text { if } n \text { is even } \\ n+2 & \text { if } n \text { is odd }\end{cases}
$$

By Theorem 2.1, $V P_{n+1}(S \cup\{n+1\}) \neq \emptyset$ if n is even; otherwise, $V P_{n+1}(S \cup\{n+1\})=\emptyset$.
Following [3], define a simplicial complex Δ on a vertex set V as a collection of subsets of V satisfying:
(1) If $x \in V$, then $\{x\} \in \Delta$, and
(2) if $S \in \Delta$ and $T \subseteq S$, then $T \in \Delta$.

Theorem 2.2 Let $n \geqslant 3$. Then \mathscr{P}_{n} is a simplicial complex on the set $[3, n]$.
Proof. Obviously, $\emptyset \in \mathscr{P}_{n}$. For any $3 \leqslant x \leqslant n$, Theorem 2.1 implies $\{x\} \in \mathscr{P}_{n}$. Let T be a subset of $[n]$ such that $V P_{n}(T)=\emptyset$. Note that $V P_{n}(S)=\emptyset$ for any $T \subseteq S$. Thus given an $S \in \mathscr{P}_{n}$, we have $T \in \mathscr{P}_{n}$ for all $T \subseteq S$. Hence, \mathscr{P}_{n} is a simplicial complex on the set $[3, n]$.

If P and Q are posets, then the direct product of P and Q is the poset $P \times Q$ on the set $\{(x, y) \mid x \in P$ and $y \in Q\}$ such that $(x, y) \leqslant\left(x^{\prime}, y^{\prime}\right)$ in $P \times Q$ if $x \leqslant x^{\prime}$ in P and $y \leqslant y^{\prime}$ in Q. Recall that the poset \mathbf{n} is formed by the set $[n]$ with its usual order. By Corollary 2.2, we obtain a method to construct the poset \mathscr{P}_{n+1} from \mathscr{P}_{n}.

Theorem $2.3 \mathscr{P}_{n+1} \cong \mathbf{2} \times \mathscr{P}_{n}$ if n is even; $\mathscr{P}_{n+1} \cong\left(2 \times \mathscr{P}_{n}\right) \backslash\left(\{1\} \times \mathcal{P}_{n,\left\lfloor\frac{n-1}{2}\right\rfloor-1}\right)$ if n is odd.

Now, we derive some properties of the simplicial complex \mathscr{P}_{n}. By Theorem 2.3, it is easy to obtain the Möbius function of the poset \mathscr{P}_{n}.

Corollary 2.3 Let $\mu_{n}=\mu_{\mathscr{P}_{n}}$ be the Möbius function of the poset \mathscr{P}_{n}. Then $\mu_{n}(S, T)=$ $(-1)^{|T|-|S|}$ for any $S \preceq T$ in \mathscr{P}_{n}.

Proof. Obviously, $\mu_{3}(\emptyset,\{3\})=-1$. By induction for n, we assume $\mu_{n}(S, T)=(-1)^{|T|-|S|}$ for any $S \preceq T$ in \mathscr{P}_{n}. By Theorem 2.3, it follows that

$$
\mu_{n+1}(S, T)= \begin{cases}\mu_{n}(S \backslash\{n+1\}, T \backslash\{n+1\}) & \text { if } n+1 \in S \cap T \\ \mu_{n}(S, T) & \text { if } n+1 \notin S \cup T \\ -\mu_{n}(S, T \backslash\{n+1\}) & \text { if } n+1 \notin S \text { and } n+1 \in T\end{cases}
$$

for any $S \prec T$. Simple computations show that $\mu_{n+1}(S, T)=(-1)^{|T|-|S|}$.
For every $S \in \mathscr{P}_{n}$, we call the element S a face of \mathscr{P}_{n} and the dimension of S is defined to be $|S|-1$, denoted $\operatorname{dim}(S)$. In particular, the void set \emptyset is always a face of \mathscr{P}_{n} of dimension -1 , i.e., $\operatorname{dim}(\emptyset)=-1$. Also define the dimension of \mathscr{P}_{n} by $\operatorname{dim}\left(\mathscr{P}_{n}\right)=$ $\max _{S \in \mathscr{P}_{n}}(\operatorname{dim}(S))$.

Theorem $2.4 \operatorname{dim}\left(\mathscr{P}_{n}\right)=\left\lfloor\frac{n-1}{2}\right\rfloor-1$.
Proof. Taking $S=\left\{3,5, \cdots, 2\left\lfloor\frac{n-1}{2}\right\rfloor+1\right\}$, by Theorem 2.1, we have $S \in \mathscr{P}_{n}$. From Corollary 2.1 it follows that the dimension of \mathscr{P}_{n} is $\left\lfloor\frac{n-1}{2}\right\rfloor-1$.

Define $\mathcal{P}_{n, i}$ as the set of all the faces of dimension i in \mathscr{P}_{n}, i.e., $\mathcal{P}_{n, i}=\{S \in$ $\left.\mathcal{P}_{n}| | S \mid=i+1\right\}$ for any $-1 \leqslant i \leqslant\left\lfloor\frac{n-1}{2}\right\rfloor-1$. Let $p_{n, i}=\left|\mathcal{P}_{n, i}\right|$. The sequence $\left(p_{n,-1}, p_{n, 0}, \ldots, p_{n,\left\lfloor\frac{1}{2}(n-1)\right\rfloor-1}\right)$ is called the f-vector of the simplicial complex \mathscr{P}_{n}. Define the f-polynomial of \mathscr{P}_{n} as $\mathscr{P}_{n}(x)=\sum_{i=0}^{\left\lfloor\frac{1}{2}(n-1)\right\rfloor} p_{n, i-1} x^{\left\lfloor\frac{1}{2}(n-1)\right\rfloor-i}$.

To study the f-vector of \mathscr{P}_{n}, we introduce the concept of left factors of Dyck path. An n-Dyck path is a lattice path in the first quadrant starting at $(0,0)$ and ending at $(2 n, 0)$ with only two kinds of steps-rise step: $U=(1,1)$ and fall step: $D=(1,-1)$. We can also consider an n-Dyck path P as a word of $2 n$ letters using only U and D. Let $L=w_{1} w_{2} \cdots w_{n}$ be a word, where $w_{j} \in\{U, D\}$ and $n \geqslant 0$. If there is another word R which consists of U and D such that $L R$ forms a Dyck path, then L is called an n-left factor of Dyck paths. Let \mathcal{L}_{n} denote the set of all n-left factors of Dyck paths. For any $i \geqslant 0$, let $\mathcal{L}_{n, i}$ denote the set of all n-left factors of Dyck paths from $(0,0)$ to $(n, n-2 i)$. It is well known that $\left|\mathcal{L}_{n}\right|$, the cardinality of \mathcal{L}_{n}, equals the nth central binomial number $b_{n}=\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$ and $\left|\mathcal{L}_{n, i}\right|=\frac{n-2 i+1}{i}\binom{n}{i-1}$ (see Cori and Viennot [2]).

In the following lemma, we give a bijection ϕ from the set \mathcal{P}_{n} to the set \mathcal{L}_{n-1}.
Lemma 2.1 There is a bijection ϕ between the set \mathcal{P}_{n} and the set \mathcal{L}_{n-1} for any $n \geqslant 3$. Furthermore, the number of elements in \mathscr{P}_{n} is $\binom{n-1}{\left\lfloor\frac{n-1}{2}\right\rfloor}$.

Proof. For any $S \in \mathcal{P}_{n}$, we construct a word $\phi(S)=w_{1} w_{2} \cdots w_{n-1}$ as follows:

$$
w_{i}=\left\{\begin{array}{lll}
D & \text { if } & i+1 \in S \\
U & \text { if } & i+1 \notin S
\end{array}\right.
$$

for any $i \in[n-1]$. Theorem 2.1 implies $\phi(S)$ is an $(n-1)$-left factor of a Dyck path. Conversely, for any an n-left factor $w_{1} w_{2} \cdots w_{n-1}$ of a Dyck path, let $S=\left\{i+1 \mid w_{i}=D\right\}$. Then $V P_{n}(S) \neq \emptyset$. Thus the mapping ϕ is a bijection. Note that the number of $(n-1)$-left factors of Dyck paths is $\binom{n-1}{\left\lfloor\frac{n-1}{2}\right\rfloor}$. Hence, $\left|\mathcal{P}_{n}\right|=\binom{n-1}{\left\lfloor\frac{n-1}{2}\right\rfloor}$.

Corollary 2.4 Let $n \geqslant 3$. There is a bijection between the set $\mathcal{P}_{n, i}$ and the set $\mathcal{L}_{n-1, i+1}$ for any $-1 \leqslant i \leqslant\left\lfloor\frac{n-1}{2}\right\rfloor-1$. Furthermore, we have

$$
p_{n, i}= \begin{cases}1 & \text { if } \quad i=-1 \\ \frac{n-2 i-2}{i+1}\binom{n-1}{i} & \text { if } 0 \leqslant i \leqslant\left\lfloor\frac{n-1}{2}\right\rfloor-1 .\end{cases}
$$

Proof. We just consider the case with $i \geqslant 0$. For any $S \in \mathcal{P}_{n, i}$, since $|S|=i+1$, the number of the letter D in the word $\phi(S)$ is $i+1$. Hence, $\phi(S)$ is a left factor of a Dyck path from $(0,0)$ to $(n-1, n-2 i-3)$. So, $\phi(S) \in \mathcal{L}_{n-1, i+1}$. Hence, $p_{n, i}=\left|\mathcal{L}_{n-1, i+1}\right|=$ $\frac{n-2 i-2}{i+1}\binom{n-1}{i}$.

Corollary 2.5 Let $n \geqslant 3$. The sequence $\left(p_{n,-1}, p_{n, 0}, \ldots, p_{n,\left\lfloor\frac{1}{2}(n-1)\right\rfloor-1}\right)$ satisfies the following recurrence relation: for any even integer n,

$$
p_{n+1, i}= \begin{cases}p_{n, i} & \text { if } i=-1, \\ p_{n, i-1}+p_{n, i} & \text { if } i=0,1, \cdots, \frac{n}{2}-2 \\ p_{n, i-1} & \text { if } i=\frac{n}{2}-1\end{cases}
$$

for any odd integer n,

$$
p_{n+1, i}= \begin{cases}p_{n, i} & \text { if } i=-1 \\ p_{n, i-1}+p_{n, i} & \text { if } i=0,1, \cdots, \frac{n-3}{2}\end{cases}
$$

with initial conditions $\left(p_{3,-1}, p_{3,0}\right)=(1,1)$.
Proof. First, we consider the case of an even integer n. It is easy to see $p_{n+1,-1}=$ $p_{n,-1}=1$.

For any $S \in \mathcal{P}_{n+1, \frac{1}{2} n-1}$, Corollary 2.2 tells us $n+1 \in S$. Note that $S \in \mathcal{P}_{n+1, \frac{1}{2} n-1}$ if and only if $S \backslash\{n+1\} \in \mathcal{P}_{n, \frac{1}{2} n-2}$. Hence, $p_{n+1, \frac{1}{2} n-1}=p_{n, \frac{1}{2} n-2}$.

For every $i \in\left\{0,1, \ldots, \frac{1}{2} n-2\right\}$, it is easy to see $\mathcal{P}_{n, i} \subseteq \mathcal{P}_{n+1, i}$. For any $S \in \mathcal{P}_{n+1, i}$ with $n+1 \in S, S \backslash\{n+1\}$ can be viewed as an element of $\mathcal{P}_{n, i-1}$. Conversely, for any $S \in \mathcal{P}_{n, i-1}$, Corollary 2.2 implies $S \cup\{n+1\} \in \mathcal{P}_{n+1, i}$. Hence, $p_{n+1, i}=p_{n, i-1}+p_{n, i}$.

Similarly, we can consider the case of an odd integer n.
Theorem 2.5 Let $n \geqslant 3$.
(1) The f-polynomial $\mathscr{P}_{n}(x)$ of the simplicial complex \mathscr{P}_{n} satisfies the following recurrence relation:

$$
x^{\varepsilon(n)} \mathscr{P}_{n+1}(x)=(1+x) \mathscr{P}_{n}(x)-\varepsilon(n) \frac{2}{n+1}\binom{n-1}{\frac{n-1}{2}}
$$

for any n, where $\varepsilon(n)=0$ if n is even; $\varepsilon(n)=1$ otherwise, with initial condition $\mathscr{P}_{3}(x)=x+1$.
(2) Let $\mathscr{P}(x, y)=\sum_{n \geqslant 3} \mathscr{P}_{n}(x) y^{n}$. Then $\mathscr{P}(x, y)=\left[\frac{(1+y+x y)\left[1+x-C\left(y^{2}\right)\right]}{x-(x+1)^{2} y^{2}}-1\right] y^{2}$, where $C(y)=\frac{1-\sqrt{1-4 y}}{2 y}$.

Proof. (1) Obviously, $\mathscr{P}_{3}(x)=x+1$. Given an odd integer n, we suppose $n=2 i+1$ with $i \geqslant 1$. Corollary 2.5 implies $x \mathscr{P}_{2 i+2}(x)=(1+x) \mathscr{P}_{2 i+1}(x)-\frac{1}{(i+1)}\binom{2 i}{i}$. Similarly, given an even integer n, we suppose $n=2 i$ with $i \geqslant 2$. By Corollary 2.5, we have $\mathscr{P}_{2 i+1}(x)=(1+x) \mathscr{P}_{2 i}(x)$.
(2) Let $\mathscr{P}_{\text {odd }}(x, y)=\sum_{i \geqslant 1} \mathscr{P}_{2 i+1}(x) y^{2 i+1}$ and $\mathscr{P}_{\text {even }}(x, y)=\sum_{i \geqslant 2} \mathscr{P}_{2 i}(x) y^{2 i}$. We have $\mathscr{P}_{\text {odd }}(x, y)=(x+1) y^{3}+(x+1) y \mathscr{P}_{\text {even }}(x, y)$ and $\mathscr{P}(x, y)=\mathscr{P}_{\text {odd }}(x, y)+\mathscr{P}_{\text {even }}(x, y)$. It is easy to check $x \mathscr{P}_{2 i+3}(x)=(1+x)^{2} \mathscr{P}_{2 i+1}(x)-\frac{1}{i+1}\binom{2 i}{i}(x+1)$. So, $\mathscr{P}_{\text {odd }}(x, y)$ satisfies the following equation

$$
x \mathscr{P}_{\text {odd }}(x, y)=(x+1)^{2} y^{2} \mathscr{P}_{\text {odd }}(x, y)+(x+1) y^{3}\left[1+x-C\left(y^{2}\right)\right],
$$

where $C(y)=\frac{1-\sqrt{1-4 y}}{2 y}$. Equivalently, $\mathscr{P}_{\text {odd }}(x, y)=\frac{(x+1) y^{3}\left[1+x-C\left(y^{2}\right)\right]}{x-(x+1)^{2} y^{2}}$. Hence

$$
\mathscr{P}(x, y)=\left[\frac{(1+y+x y)\left[1+x-C\left(y^{2}\right)\right]}{x-(x+1)^{2} y^{2}}-1\right] y^{2} .
$$

Let $\mathscr{H}_{n}(x)=\mathscr{P}_{n}(x-1)=\sum_{i=0}^{\left\lfloor\frac{1}{2}(n-1)\right\rfloor} h_{n, i} x^{\left\lfloor\frac{1}{2}(n-1)\right\rfloor-i}$. The polynomial $\mathscr{H}_{n}(x)$ and the sequence $\left(h_{n, 0}, h_{n, 1}, \cdots\right.$,
$\left.h_{n,\left\lfloor\frac{1}{2}(n-1)\right\rfloor}\right)$ are called the h-polynomial and the h-vector of \mathscr{P}_{n} respectively.
Corollary 2.6 Let $n \geqslant 3$.
(1) The h-polynomial $\mathscr{H}_{n}(x)$ of the simplicial complex \mathscr{P}_{n} satisfies the recurrence relation:

$$
(x-1)^{\varepsilon(n)} \mathscr{H}_{n+1}(x)=x \mathscr{H}_{n}(x)-\varepsilon(n) \frac{2}{(n+1)}\binom{n-1}{\frac{n-1}{2}}
$$

for any n, where $\varepsilon(n)=0$ if n is even; $\varepsilon(n)=1$ otherwise, with initial condition $\mathscr{H}_{3}(x)=x$.
(2) Let $\mathscr{H}(x, y)=\sum_{n \geqslant 3} \mathscr{H}_{n}(x) y^{n}$. We have $\mathscr{H}(x, y)=\left[\frac{(1+x y)\left[x-C\left(y^{2}\right)\right]}{x-1-x^{2} y^{2}}-1\right] y^{2}$.

Proof. (1) Since $\mathscr{H}_{n}(x)=\mathscr{P}_{n}(x-1)$, by Theorem 2.5 , we easily obtain $\mathscr{H}_{n+1}(x)=$ $x \mathscr{H}_{n}(x)$ if n is even, and $(x-1) \mathscr{H}_{n+1}(x)=x \mathscr{H}_{n}(x)-\frac{2}{n+1}\binom{n-1}{\frac{n-1}{2}}$ if n is odd, with initial condition $\mathscr{H}_{3}(x)=x$.
(2) Since $\mathscr{H}(x, y)=\mathcal{P}(x-1, y)$, we have $\mathscr{H}(x, y)=\left[\frac{(1+x y)\left[x-C\left(y^{2}\right)\right]}{x-1-x^{2} y^{2}}-1\right] y^{2}$.

Corollary 2.7 Let the sequence $\left(h_{n, 0}, h_{n, 1}, \cdots, h_{n,\left\lfloor\frac{1}{2}(n-1)\right\rfloor}\right)$ be the h-vector of \mathscr{P}_{n}. Then $h_{n, i}$ satisfies the following recurrence relation:

$$
h_{n+1, i}= \begin{cases}h_{n, 0} & \text { if } i=0, \\ h_{n, i}+\varepsilon(n) h_{n+1, i-1} & \text { if } 1 \leqslant i \leqslant\left\lfloor\frac{n}{2}\right\rfloor-1, \\ \varepsilon(n) c_{\left\lfloor\frac{n}{2}\right\rfloor} & \text { if } i=\left\lfloor\frac{n}{2}\right\rfloor,\end{cases}
$$

where $c_{m}=\frac{1}{m+1}\binom{2 m}{m}$ and $\varepsilon(n)=0$ if n is even; otherwise, $\varepsilon(n)=1$, with initial conditions $\left(h_{3,0}, h_{3,1}\right)=(1,0)$. Equivalently,

$$
h_{n, i}=\frac{\left\lfloor\frac{n}{2}\right\rfloor-i}{\left\lfloor\frac{n}{2}\right\rfloor+i}\binom{\left\lfloor\frac{n}{2}\right\rfloor+i}{\left\lfloor\frac{n}{2}\right\rfloor} .
$$

Proof. The recurrence relations are obtained by comparing coefficients on both sides of the identity in 2.6 (1). Consider $t_{n, i}=\frac{\left\lfloor\frac{n}{2}\right\rfloor-i}{\left\lfloor\frac{n}{2}\right\rfloor+i}\binom{\left\lfloor\frac{n}{2}\right\rfloor+i}{\left\lfloor\frac{n}{2}\right\rfloor}$. Note that $t_{n, i}$ and $h_{n, i}$ satisfy the same recurrence relations and $\left(t_{3,0}, t_{3,1}\right)=(1,0)$. Hence,

$$
h_{n, i}=t_{n, i}=\frac{\left\lfloor\frac{n}{2}\right\rfloor-i}{\left\lfloor\frac{n}{2}\right\rfloor+i}\binom{\left\lfloor\frac{n}{2}\right\rfloor+i}{\left\lfloor\frac{n}{2}\right\rfloor} .
$$

Remark 2.1 Let $n \geqslant 3$. The number of left factors of the Dyck path from $(0,0)$ to $\left(\left\lfloor\frac{n}{2}\right\rfloor+i-1,\left\lfloor\frac{n}{2}\right\rfloor-i-1\right)$ equals $\frac{\left\lfloor\frac{n}{2}\right\rfloor-i}{\left\lfloor\frac{n}{2}\right\rfloor+i}\binom{\left\lfloor\frac{n}{2}\right\rfloor+i}{\left\lfloor\frac{n}{2}\right\rfloor}$ for any $0 \leqslant i \leqslant\left\lfloor\frac{n-1}{2}\right\rfloor$.

Define the reduced Euler characteristic of \mathscr{P}_{n} by $\tilde{\chi}\left(\mathscr{P}_{n}\right)=\sum_{i=0}^{\left\lfloor\frac{1}{2}(n-1)\right\rfloor}(-1)^{i-1} p_{n, i-1}$.
Corollary 2.8 For any $n \geqslant 3, \tilde{\chi}\left(\mathscr{P}_{n}\right)= \begin{cases}0 & \text { if } n \text { is odd, } \\ \frac{2(-1)^{\frac{n}{2}}}{n}\binom{n-2}{\frac{1}{2}(n-2)} & \text { if } n \text { is even } .\end{cases}$
Proof. Clearly, $\mathscr{P}_{3}(-1)=0$. Theorem 2.5 tells us

$$
\mathscr{P}_{n+1}(-1)= \begin{cases}0 & \text { if } n \text { is even } \\
\frac{2}{n+1}\left(\begin{array}{l}
n-1 \\
\frac{1}{2}(n-1)
\end{array}\right. & \text { if } n \text { is odd }\end{cases}
$$

for any $n \geqslant 4$. Since $\tilde{\chi}\left(\mathscr{P}_{n}\right)=(-1)^{\left\lfloor\frac{n-1}{2}\right\rfloor-1} \mathscr{P}_{n}(-1)$, we have

$$
\tilde{\chi}\left(\mathscr{P}_{n}\right)= \begin{cases}0 & \text { if } n \text { is odd } \\ \frac{2(-1)^{\frac{n}{2}-2}}{n}\binom{n-2}{\frac{1}{2}(n-2)} & \text { if } n \text { is even } .\end{cases}
$$

Let P be a finite post. Define $Z(P, i)$ to be the number of multichains $x_{1} \leqslant x_{2} \leqslant \cdots \leqslant$ x_{i-1} in P for any $i \geqslant 2$. $Z(P, i)$ is called the zeta polynomial of P. We state Proposition 3.11.1 a and Proposition 3.14.2 in [3] as the following lemma.

Lemma 2.2 [3] Suppose P is a poset.
(1) Let d_{i} be the number of chains $x_{1}<x_{2}<\cdots<x_{i-1}$ in P. Then $Z(P, i)=\sum_{j \geqslant 2} d_{j}\binom{i-2}{j-2}$.
(2) If P is simplicial and graded, then $Z(P, x+1)$ is the rank-generating function of P.

Corollary 2.9 Let $n \geqslant 3$ and $i \geqslant 2$. Then
(1) $Z\left(\mathscr{P}_{n}, i\right)=(i-1)^{\left\lfloor\frac{n-1}{2}\right\rfloor} \mathscr{P}_{n}\left(\frac{1}{i-1}\right)$ for any $i \geqslant 2$,
(2) $Z\left(\mathscr{P}_{n}, i\right)$ satisfies the recurrence relations:

$$
Z\left(\mathscr{P}_{n+1}, i\right)=i Z\left(\mathscr{P}_{n}, i\right)-\varepsilon(n) \frac{2(i-1)^{\frac{1}{2}(n+1)}}{n+1}\binom{n-1}{\frac{1}{2}(n-1)}
$$

where $\varepsilon(n)=0$ if n is even; $\varepsilon(n)=1$ otherwise, with initial condition $Z\left(\mathscr{P}_{3}, i\right)=i$.
(3) Let $Z(x, y)=\sum_{n \geqslant 3} Z\left(\mathscr{P}_{n}, x\right) y^{n}$. We have

$$
Z(x, y)=\left[\frac{(1+x y)\left[x-(x-1) C\left(y^{2}(x-1)\right)\right]}{1-x^{2} y^{2}}-1\right] y^{2}
$$

Proof. (1) Let $\mathscr{P}_{n}(x)$ be the f-polynomial of \mathscr{P}_{n}. We have the rank-generating function of \mathscr{P}_{n} is $x^{\left\lfloor\frac{1}{2}(n-1)\right\rfloor} \mathscr{P}_{n}\left(\frac{1}{x}\right)$. Lemma $2.2(2)$ implies that $Z\left(\mathscr{P}_{n}, i\right)=(i-1)^{\left\lfloor\frac{n-1}{2}\right\rfloor} \mathscr{P}_{n}\left(\frac{1}{i-1}\right)$.
(2) The recurrence relations for $Z\left(\mathscr{P}_{n}, i\right)$ follow from Theorem 2.5.
(3) Note that $Z\left(\mathscr{P}_{n}, x+1\right)=x^{\left\lfloor\frac{n-1}{2}\right\rfloor} \mathscr{P}_{n}\left(\frac{1}{x}\right)=(\sqrt{x})^{n-2+\varepsilon(n)} \mathscr{P}_{n}\left(\frac{1}{x}\right)$. By the proof of Theorem 2.5, we have $\mathscr{P}_{\text {odd }}(x, y)=\frac{(x+1) y^{3}\left[1+x-C\left(y^{2}\right)\right]}{x-(x+1)^{2} y^{2}}$ and $\mathscr{P}_{\text {even }}(x, y)=\frac{\mathscr{P}_{\text {odd }}(x, y)-(x+1) y^{3}}{(x+1) y}$. Then

$$
\begin{aligned}
Z(x+1, y) & =\sum_{n \geqslant 3}(\sqrt{x})^{n-2+\varepsilon(n)} \mathscr{P}_{n}\left(\frac{1}{x}\right) y^{n} \\
& =\frac{1}{x} \mathscr{P}_{\text {even }}\left(\frac{1}{x}, y \sqrt{x}\right)+\frac{1}{\sqrt{x}} \mathscr{P}_{\text {odd }}\left(\frac{1}{x}, y \sqrt{x}\right) \\
& =\left[\frac{(1+y+x y)\left[1+x-x C\left(y^{2} x\right)\right]}{1-(x+1)^{2} y^{2}}-1\right] y^{2} .
\end{aligned}
$$

Let $d_{\mathscr{P}_{n}, i}$ be the number of chains $S_{n, 1} \prec S_{n, 2} \prec \cdots \prec S_{n, i}$ of \mathscr{P}_{n}.
Theorem 2.6 For any $i \geqslant 1$,

$$
d_{\mathscr{P}_{n}, i}=\sum\binom{n}{d_{1}, d_{2}, \cdots, d_{i+1}} \frac{2 d_{i+1}-n}{n}
$$

where the sum is over all $\left(d_{1}, \cdots, d_{i+1}\right)$ such that $\sum_{k=1}^{i+1} d_{k}=n, d_{1} \geqslant 0, d_{k} \geqslant 1$ for all $2 \leqslant k \leqslant i$ and $d_{i+1} \geqslant n-\left\lfloor\frac{n-1}{2}\right\rfloor$.

Proof. Let $i \geqslant 1$ and $S_{n, 1} \prec S_{n, 2} \prec \cdots \prec S_{n, i}$ be a chain of \mathscr{P}_{n}. Suppose $\left|S_{n, k}\right|=j_{k}$ for any $k \in[i]$. Then $0 \leqslant j_{1}<j_{2}<\cdots<j_{i} \leqslant\left\lfloor\frac{n-1}{2}\right\rfloor$. There are $p_{n, j_{i}-1}$ ways to obtain the set $S_{n, i}$. Given $S_{n, k}$ with $k \geqslant 2$, there are $\binom{j_{k}}{j_{k-1}}$ ways to form the subset $S_{n, k-1} \subseteq S_{n, k}$. Hence,

$$
\begin{aligned}
d_{\mathscr{P}_{n}, i} & =\sum_{0=j_{0} \leqslant j_{1}<j_{2}<\cdots<j_{i} \leqslant\left\lfloor\frac{n-1}{2}\right\rfloor} \prod_{k=0}^{i-1}\binom{j_{k+1}}{j_{k}} p_{n, j_{i}-1} \\
& =\sum\binom{n}{d_{1}, d_{2}, \cdots, d_{i+1}} \frac{2 d_{i+1}-n}{n},
\end{aligned}
$$

where the sum is over all $\left(d_{1}, \cdots, d_{i+1}\right)$ such that $\sum_{k=1}^{i+1} d_{k}=n, d_{1} \geqslant 0, d_{k} \geqslant 1$ for all $2 \leqslant k \leqslant i$ and $d_{i+1} \geqslant n-\left\lfloor\frac{n-1}{2}\right\rfloor$.

Corollary 2.10 For any $n \geqslant 3$,

$$
\mathscr{P}_{n}(x)=\sum_{i=2}^{\left\lfloor\frac{n-1}{2}\right\rfloor+2} \frac{x^{\left\lfloor\frac{n-1}{2}\right\rfloor+2-i}}{(i-2)!} \prod_{j=1}^{i-2}(1-j x) \sum\binom{n}{d_{1}, d_{2}, \cdots, d_{i}} \frac{2 d_{i}-n}{n}
$$

where the second sum is over all $\left(d_{1}, \cdots, d_{i}\right)$ such that $\sum_{k=1}^{i} d_{k}=n, d_{1} \geqslant 0, d_{k} \geqslant 1$ for all $2 \leqslant k \leqslant i-1$ and $d_{i} \geqslant n-\left\lfloor\frac{n-1}{2}\right\rfloor$.
Proof. Lemma 2.2(1) implies $Z\left(\mathscr{P}_{n}, i\right)=\sum_{j=2}^{\left\lfloor\frac{n-1}{2}\right\rfloor+2} d_{\mathscr{P}_{n, j-1}\binom{i-2}{j-2} \text {. By Corollary 2.9, we have }}$

$$
\mathscr{P}_{n}\left(\frac{1}{i-1}\right)=\left(\frac{1}{i-1}\right)^{\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2} \sum_{j=2} d_{\mathscr{P}_{n}, j-1}\binom{i-2}{j-2}
$$

for any $i \geqslant 2$. Note that

$$
x^{\left\lfloor\frac{n-1}{2}\right\rfloor} \sum_{j=2}^{\left\lfloor\frac{n-1}{2}\right\rfloor+2} d_{\mathscr{P}_{n}, j-1}\binom{\frac{1}{x}-1}{j-2}=\sum_{j=2}^{\left\lfloor\frac{n-1}{2}\right\rfloor+2} \frac{x^{\left\lfloor\frac{n-1}{2}\right\rfloor+2-j}}{(j-2)!} \prod_{k=1}^{j-2}(1-k x) d_{\mathscr{P}_{n}, j-1}
$$

is a polynomial. Hence, $\mathscr{P}_{n}(x)=\sum_{j=2}^{\left\lfloor\frac{n-1}{2}\right\rfloor+2} \frac{x^{\left\lfloor\frac{n-1}{2}\right\rfloor+2-j}}{(j-2)!} \prod_{k=1}^{j-2}(1-k x) d_{\mathscr{P}_{n}, j-1}$.

3 Enumerations for Permutations in the Set $V P_{n}(S)$

In this section, we will consider enumerative problems of permutations in the set $V P_{n}(S)$. Let $v p_{n}(S)$ denote the number of permutations in the set $V P_{n}(S)$, i.e., $v p_{n}(S)=\left|V P_{n}(S)\right|$. First, we need the following lemma.

Lemma 3.1 Let $n \geqslant 3$ and $S \subseteq[n]$. Suppose $V P_{n}(S) \neq \emptyset$. Then
(1) $v p_{n+1}(S)=2 v p_{n}(S)$, and
(2) let $m=\max S$. We have $v p_{n}(S)=2^{n-m} v p_{m}(S)$ for any $n \geqslant m$.

Proof. (1) It is easy to see $((n+1) \sigma(1) \cdots \sigma(n)) \in V P_{n+1}(S)$ and $(\sigma(1) \cdots \sigma(n)(n+1)) \in$ $V P_{n+1}(S)$ for any $\sigma=(\sigma(1) \cdots \sigma(n)) \in V P_{n}(S)$. Conversely, for any $\sigma \in V P_{n+1}(S)$, the position of the integer $n+1$ is 1 or $n+1$, i.e., $\sigma^{-1}(n+1)=1$ or $n+1$, since $n+1 \notin S$. Hence, $v p_{n+1}(S)=2 v p_{n}(S)$.
(2) Iterating the identity of Lemma 3.1(1), we obtain $v p_{n}(S)=2^{n-m} v p_{m}(S)$.

For any $\sigma \in \mathfrak{S}_{n}$, let τ be a subsequence $\left(\sigma\left(j_{1}\right) \sigma\left(j_{2}\right) \cdots \sigma\left(j_{k}\right)\right)$ of $(\sigma(1) \cdots \sigma(n))$, where $1 \leqslant j_{1}<j_{2}<\cdots<j_{k} \leqslant n$. Define $\phi_{\sigma, \tau}$ as an increasing bijection of $\left\{\sigma\left(j_{i}\right) \mid 1 \leqslant i \leqslant k\right\}$ onto $[k]$. Let $\phi_{\sigma}(\tau)=\left(\phi_{\sigma, \tau}\left(\sigma\left(j_{1}\right)\right) \phi_{\sigma, \tau}\left(\sigma\left(j_{2}\right)\right) \cdots \phi_{\sigma, \tau}\left(\sigma\left(j_{k}\right)\right)\right)$. For the cases with $|S|=$ $0,1,2$, in the following theorem, we derive the explicit formulae for $v p_{n}(S)$
Theorem 3.1 Let $n \geqslant 3$. Then
(1) $v p_{n}(\emptyset)=2^{n-1}$,
(2) $v p_{n}(\{i\})=2^{n-2}\left(2^{i-2}-1\right)$ for any $i \in[3, n]$, and
(3) $v p_{n}(\{i, j\})=2^{n-3}\left(2^{i-2}-1\right)\left(2^{j-i-1}-1\right)+2^{n+j-i-5} \cdot 3\left(3^{i-2}-2^{i-1}+1\right)$ for any $i, j \in[3, n]$ and $i<j$.
Proof. (1) For any $\sigma \in \mathfrak{S}_{n}$, suppose the position of the integer 1 is $i+1$, i.e., $\sigma^{-1}(1)=i+1$. Then $\sigma \in V P_{n}(\emptyset)$ if and only if σ satisfies $\sigma(1)>\cdots>\sigma(i+1)<\cdots<\sigma(n)$. For each integer $j \neq 1$, the position of j has two possibilities at the left or right of the integer 1. Hence, $v p_{n}(\emptyset)=2^{n-1}$.
(2) By Lemma 3.1(2), we first consider the number of permutations in the set $V P_{i}(\{i\})$, where $i \geqslant 3$. For any $\sigma \in V P_{i}(\{i\})$, suppose the position of the integer i is $k+1$, i.e., $\sigma^{-1}(i)=k+1$. Then $1 \leqslant k \leqslant i-2$, $\phi_{\sigma}(\sigma(1) \cdots \sigma(k)) \in V P_{k}(\emptyset)$ and $\phi_{\sigma}(\sigma(k+$ 2) $\cdots \sigma(i)) \in V P_{i-k-1}(\emptyset)$. There are $\binom{i-1}{k}$ ways to form the set $\{\sigma(1), \cdots, \sigma(k)\}$. So, $v p_{i}(\{i\})=\sum_{k=1}^{i-2}\binom{i-1}{k} 2^{k-1} 2^{i-k-2}=2^{i-2}\left(2^{i-2}-1\right)$. Hence, $v p_{n}(\{i\})=2^{n-2}\left(2^{i-2}-1\right)$.
(3) It is easy to see the identity holds for $i=3$ and $j=4$. By Lemma 3.1(2), we first consider the number of permutations in the set $V P_{j}(\{i, j\})$, where $3 \leqslant i<j$. We begin from the case $\sigma \in V P_{j}(\{i, j\})$ with $\sigma^{-1}(i)<\sigma^{-1}(j)$. Let

$$
\begin{aligned}
& T_{1}(\sigma)=\left\{\sigma(k) \mid \sigma(k)<i \text { and } k<\sigma^{-1}(i)\right\}, \\
& T_{2}(\sigma)=\left\{\sigma(k) \mid \sigma(k)<i \text { and } \sigma^{-1}(i)<k<\sigma^{-1}(j)\right\}, \\
& T_{3}(\sigma)=\left\{\sigma(k) \mid \sigma(k)<i \text { and } k>\sigma^{-1}(j)\right\} .
\end{aligned}
$$

Note that $T_{k}(\sigma) \neq \emptyset$ for $k=1,2$ since σ has a value-peak i and $\bigcup_{k=1}^{3} T_{k}(\sigma)=[i-1]$. Let

$$
\begin{aligned}
& T_{4}(\sigma)=\left\{\sigma(k) \mid i<\sigma(k)<j \text { and } k<\sigma^{-1}(i)\right\} \\
& T_{5}(\sigma)=\left\{\sigma(k) \mid i<\sigma(k)<j \text { and } \sigma^{-1}(i)<k<\sigma^{-1}(j)\right\} .
\end{aligned}
$$

We discuss the following two subcases.
Subcase 1. $T_{3}(\sigma)=\emptyset$.
Let $T_{6}(\sigma)=\left\{\sigma(k) \mid i<\sigma(k)<j, k>\sigma^{-1}(j)\right\}$. Then $T_{6}(\sigma) \neq \emptyset$ since σ must have a value-peak j and $\bigcup_{k=4}^{6} T_{k}(\sigma)=[i+1, j-1]$. For $k=1,2,6$, the subsequences of σ, that are determined by elements from $T_{k}(\sigma)$, correspond to a permutation in $V P_{\left|T_{k}(\sigma)\right|}(\emptyset)$. The subsequences of σ, that are determined by elements from $T_{4}(\sigma)$ and $T_{5}(\sigma)$, are decreasing and increasing, respectively. So, the number of permutations under this subcase is

$$
\left.\sum_{\left(T_{1}, T_{2}\right)}\binom{i-1}{\left|T_{1}\right|,\left|T_{2}\right|} 2^{\left|T_{1}\right|-1} 2^{\left|T_{2}\right|-1} \sum_{\left(T_{4}, T_{5}, T_{6}\right)}\binom{j-i-1}{\left|T_{4}\right|,\left|T_{5}\right|,\left|T_{6}\right|}\right)^{\left|T_{6}\right|-1}=2^{j-4}\left(2^{i-2}-1\right)\left(2^{j-i-1}-1\right)
$$

where the first sum is over all pairs $\left(T_{1}, T_{2}\right)$ such that $T_{i} \neq \emptyset$ for $i=1,2$ and $T_{1} \cup T_{2}=[i-1]$; the second sum is over all triples $\left(T_{4}, T_{5}, T_{6}\right)$ such that $T_{6} \neq \emptyset$ and $T_{4} \cup T_{5} \cup T_{6}=[i+1, j-1]$.

Subcase 2. $T_{3}(\sigma) \neq \emptyset$.
Suppose $\min T_{3}(\sigma)=s$. Let

$$
\begin{aligned}
& T_{6}(\sigma)=\left\{\sigma(k) \mid i<\sigma(k)<j \text { and } \sigma^{-1}(j)<k<\sigma^{-1}(s)\right\}, \\
& T_{7}(\sigma)=\left\{\sigma(k) \mid i<\sigma(k)<j \text { and } k>\sigma^{-1}(s)\right\} .
\end{aligned}
$$

Then, for $k=1,2,3$, the subsequences of σ, that are determined by elements from $T_{k}(\sigma)$, correspond to a permutation in $V P_{\left|T_{k}(\sigma)\right|}(\emptyset)$. The subsequences of σ, that are determined by elements from $T_{4}(\sigma)$ and $T_{6}(\sigma)$, are decreasing. The subsequences of σ, that are determined by elements from $T_{5}(\sigma)$ and $T_{7}(\sigma)$, are increasing. So, the number of permutations under this subcase is

$$
\sum_{\left(T_{1}, T_{2}, T_{3}\right)}\binom{i-1}{\left|T_{1}\right|,\left|T_{2}\right|,\left|T_{3}\right|} 2^{\left|T_{1}\right|-1} 2^{\left|T_{2}\right|-1} 2^{\left|T_{3}\right|-1} 4^{j-i-1}=2^{2 j-i-6} \cdot 3\left(3^{i-2}-2^{i-1}+1\right)
$$

where the sum is over all triples $\left(T_{1}, T_{2}, T_{3}\right)$ such that $T_{i} \neq \emptyset$ for $i=1,2,3$ and $T_{1} \cup T_{2} \cup T_{3}=$ [$i-1]$.

Similarly, we may consider the case $\sigma \in V P_{j}(\{i, j\})$ with $\sigma^{-1}(i)>\sigma^{-1}(j)$. Therefore, $v p_{j}(\{i, j\})=2\left[2^{j-4}\left(2^{i-2}-1\right)\left(2^{j-i-1}-1\right)+2^{2 j-i-6} \cdot 3\left(3^{i-2}-2^{i-1}+1\right)\right]$. In general, for any $n \geqslant 3$ and $3 \leqslant i<j \leqslant n$,

$$
v p_{n}(\{i, j\})=2^{n-3}\left(2^{i-2}-1\right)\left(2^{j-i-1}-1\right)+2^{n+j-i-5} \cdot 3\left(3^{i-2}-2^{i-1}+1\right)
$$

In the following lemma, we give a recurrence relation for $v p_{n}(S)$.
Lemma 3.2 Let $n \geqslant 3$ and $S \subseteq[n-1]$. Then

$$
v p_{n}(S \cup\{n\})=[n-2-2|S|] v p_{n-1}(S)+\sum_{j \notin S, j<n} 2 v p_{n-1}(S \cup\{j\}) .
$$

Proof. Suppose $\sigma \in V P_{n-1}(S)$. We want to form a new permutation $\tau \in V P_{n}(S \cup\{n\})$ by inserting the integer n into σ. For any $j \in S$, since the integer j is a value-peak in the new permutation, we can not insert n into σ beside j. But the integer n must be a value-peak. So, there are $(n-2-2|S|)$ ways to form a new permutation τ from σ such that $\tau \in V P_{n}(S \cup\{n\})$.

For any $j \notin S$ with $j<n$ and $\sigma \in V P_{n-1}(S \cup\{j\})$, we must insert n into σ beside j such that n becomes a value-peak. So, there are 2 ways to form a new permutation τ from σ such that $\tau \in V P_{n}(S \cup\{n\})$.

Hence, $v p_{n}(S \cup\{n\})=[n-2-2|S|] v p_{n-1}(S)+\sum_{j \notin S, j<n} 2 \cdot v p_{n-1}(S \cup\{j\})$.
For any $S \in[n]$, suppose $S=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$. Let \mathbf{x}_{S} stand for the monomial $x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}$; In particular, let $\mathbf{x}_{\emptyset}=1$. Given $n \geqslant 3$, we define a generating function as follows

$$
g_{n}\left(x_{1}, x_{2}, \ldots, x_{n} ; y\right)=\sum_{\sigma \in \mathfrak{S}_{n}} \mathbf{x}_{V P(\sigma)} y^{|V P(\sigma)|}
$$

We also write $g_{n}\left(x_{1}, x_{2}, \ldots, x_{n} ; y\right)$ as g_{n} for short. By the recurrence relation as above, we obtain the following result for the generating function g_{n}.

Corollary 3.1 Let $n \geqslant 3$ and $g_{n}=\sum_{\sigma \in \mathfrak{S}_{n}} \mathbf{x}_{V P(\sigma)} y^{|V P(\sigma)|}$. Then g_{n} satisfies the following recursion:

$$
g_{n+1}=\left[2+(n-1) x_{n+1} y\right] g_{n}+2 x_{n+1} \sum_{i=1}^{n} \frac{\partial g_{n}}{\partial x_{i}}-2 x_{n+1} y^{2} \frac{\partial g_{n}}{\partial y} .
$$

for all $n \geqslant 3$ with initial condition $g_{3}=4+2 x_{3} y$, where the notation " $\frac{\partial g_{n}}{\partial y}$ " denotes partial differentiation of g_{n} with respect to y.
Proof. Obviously, $g_{3}=4+2 x_{3} y$ and $\sum_{\sigma \in \mathfrak{S}_{n}} \mathbf{x}_{V P(\sigma)} y^{|V P(\sigma)|}=\sum_{S \subseteq[2, n]} v p_{n}(S) \mathbf{x}_{S} y^{|S|}$. Hence,

$$
\begin{aligned}
g_{n+1}= & \sum_{S \subseteq[n+1]} v p_{n+1}(S) \mathbf{x}_{S} y^{|S|} \\
= & \sum_{S \subseteq[n+1], n+1 \in S} v p_{n+1}(S) \mathbf{x}_{S} y^{|S|}+\sum_{S \subseteq[n+1], n+1 \notin S} v p_{n+1}(S) \mathbf{x}_{S} y^{|S|} \\
= & \sum_{S \subseteq[n]}\left[(n-1-2|S|) v p_{n}(S)+\sum_{i \in[n] \backslash S} 2 v p_{n}(S \cup\{i\})\right] \mathbf{x}_{S} x_{n+1} y^{|S|+1}+2 g_{n} \\
= & 2 \sum_{S \subseteq[n]} \sum_{i \in[n] \backslash S} v p_{n}(S \cup\{i\}) \mathbf{x}_{S} x_{n+1} y^{|S|+1}-2 \sum_{S \subseteq[n]}|S| v p_{n}(S) \mathbf{x}_{S} x_{n+1} y^{|S|+1} \\
& +\left[2+(n-1) x_{n+1} y\right] g_{n} .
\end{aligned}
$$

Note that

$$
\frac{\partial g_{n}}{\partial y}=\sum_{S \subseteq[n]}|S| v p_{n}(S) \mathbf{x}_{S} y^{|S|-1}
$$

and

$$
\begin{aligned}
& \sum_{S \subseteq[n]} \sum_{i \in[n] \backslash S} v p_{n}(S \cup\{i\}) \mathbf{x}_{S} x_{n+1} y^{|S|+1} \\
= & \sum_{S \subseteq[n], S \neq \emptyset} v p_{n}(S) x_{n+1} y^{|S|} \sum_{i \in S} \frac{\mathbf{x}_{S}}{x_{i}} \\
= & x_{n+1} \sum_{i=1}^{n} \frac{\partial g_{n}}{\partial x_{i}} .
\end{aligned}
$$

Therefore, $g_{n+1}=\left[2+(n-1) x_{n+1} y\right] g_{n}+2 x_{n+1} \sum_{i=1}^{n} \frac{\partial g_{n}}{\partial x_{i}}-2 x_{n+1} y^{2} \frac{\partial g_{n}}{\partial y}$.
By computer search, we obtain $v p_{n}(S)$ for all $3 \leqslant n \leqslant 8$ and $S \subseteq[3, n]$ and list them in Appendix. In Table 1., we give the generating functions g_{n} for $3 \leqslant n \leqslant 5$.

The generating function g_{n} for $3 \leqslant n \leqslant 5$
$g_{3}=4+2 x_{3} y$
$g_{4}=8+4 x_{3} y+12 x_{4} y$
$g_{5}=16+8 x_{3} y+24 x_{4} y+56 x_{5} y+4 x_{3} x_{5} y^{2}+12 x_{4} x_{5} y^{2}$

Table 1. The generating function g_{n} for $3 \leqslant n \leqslant 5$.
Corollary 3.2 Let $n \geqslant 3$ and $S \subseteq[3, n]$.
(1) Suppose $S=\left\{i_{1}, \ldots, i_{k}\right\}$, where $i_{1}<i_{2}<\ldots<i_{k}$. If there exists $j \in[k]$ such that $i_{j}=2 j+1$, then $v p_{n}(S \cup\{n\})=[n-2-2|S|] v p_{n-1}(S)+\sum_{i \notin S, 2 j+2<i<n} 2 v p_{n-1}(S \cup\{i\})$.
(2) $v p_{n}(\{3,5, \ldots, 2 k+1\})=2^{n-k-1}$ for all $k \in\left[\left\lfloor\frac{n-1}{2}\right\rfloor\right]$.

Proof. (1) By Theorem 2.1, $V P_{n}(S \cup i)=\emptyset$ for any $i \notin S$ and $i<2 j+1$ since $i_{j}=2 j+1$. We immediately obtain the results as desired.
(2) By induction on k. For $\bar{k}=1$, by Theorem 3.1(2), we have $v p_{n}(\{3\})=2^{n-2}$. Suppose the identity holds for any $\bar{k}=k$. For $\bar{k}=k+1$, by Lemma 3.2 and the induction hypothesis, $v p_{2 k+3}(\{3,5, \ldots, 2 k+3\})=v p_{2 k+2}(\{3,5, \ldots, 2 k+1\})=2 v p_{2 k+1}(\{3,5, \ldots, 2 k+$ $1\})=2 \cdot 2^{k}=2^{k+1}$. Hence $v p_{n}(\{3,5, \ldots, 2 k+3\})=2^{n-2 k-3} \cdot 2^{k+1}=2^{n-k-2}$.

Now, we give another recurrence relation for $v p_{n}(S)$.
Lemma 3.3 Let $n \geqslant 3$ and $S \subseteq[3, n]$. Suppose $V P_{n}(S) \neq \emptyset$ and let $r=\max S$ if $S \neq \emptyset$, 1 otherwise. For any $0 \leqslant k \leqslant n-r-1$, we have
$v p_{n}(S \cup[n-k+1, n])=2(k+1) v p_{n-1}(S \cup[n-k, n-1])+k(k+1) v p_{n-2}(S \cup[n-k, n-2])$.
Proof. For any $\sigma \in V P_{n}(S \cup[n-k+1, n])$, we consider the following four cases.
Case 1. There are no integers $i \in[n-k+1, n]$ such that the position of i is beside $n-k$ in σ, i.e., $\left|\sigma^{-1}(i)-\sigma^{-1}(n-k)\right|=1$. Then $\sigma^{-1}(n-k)=1$ or n since the permutation σ
has not a value-peak $n-k$. We obtain a new permutation τ by exchanging the positions of $n-k$ and n in σ. Clearly, $\tau \in V P_{n}(S \cup[n-k, n-1])$. Lemma 3.1 (1) tells us $v p_{n}(S \cup[n-k, n-1])=2 v p_{n-1}(S \cup[n-k, n-1])$. Hence, the number of permutations under this case is $2 \cdot v p_{n-1}(S \cup[n-k, n-1])$.

Case 2. There are exactly two integers $j, m \in[n-k+1, n]$ such that $\mid \sigma^{-1}(j)-\sigma^{-1}(n-$ $k) \mid=1$ and $\left|\sigma^{-1}(m)-\sigma^{-1}(n-k)\right|=1$. Deleting j and m, we obtain a subsequence τ of σ. Then $\phi_{\sigma}(\tau) \in V P_{n-2}(S \cup[n-k, n-2])$. Note that there are $k(k-1)$ ways to form the pairs (j, m). Hence, the number of permutations under this case is $k(k-1) v p_{n-2}(S \cup$ [$n-k, n-2]$).

Case 3. There is exactly one integer $j \in[n-k+1, n]$ such that $\left|\sigma^{-1}(j)-\sigma^{-1}(n-k)\right|=1$. Then there are k ways to form the set $\{j\}$. Let τ be the subsequence of σ obtained by deleting j. There are the following two subcases.

Subcase 3.1. $\sigma^{-1}(n-k) \neq 1$ and n. Then $\phi_{\sigma}(\tau) \in V P_{n-1}(S \cup[n-k, n-1])$. Hence, the number of permutations under this subcase is $k \cdot v p_{n-1}(S \cup[n-k, n-1])$.

Subcase 3.2. $\sigma^{-1}(n-k)=1$ or n. Then $\phi_{\sigma}(\tau) \in V P_{n-2}(S \cup[n-k, n-2])$. Hence, the number of permutations under this subcase is $k \cdot v p_{n-2}(S \cup[n-k, n-2])$.

So,

$$
\begin{aligned}
& v p_{n}(S \cup[n-k+1, n]) \\
= & 2 v p_{n-1}(S \cup[n-k, n-1])+k(k-1) v p_{n-2}(S \cup[n-k, n-2]) \\
& +2 k \cdot v p_{n-1}(S \cup[n-k, n-1])+2 k \cdot v p_{n-2}(S \cup[n-k, n-2]) \\
= & 2(k+1) v p_{n-1}(S \cup[n-k, n-1])+k(k+1) v p_{n-2}(S \cup[n-k, n-2]) .
\end{aligned}
$$

Now we associate the recurrence relation in Lemma 3.3 with a lattice path in the plane $\mathbb{Z} \times \mathbb{Z}$, where \mathbb{Z} is the set of integers. In particular, let $(n, k),(n-1, k)$ and $(n-2, k-1)$ be three vertices in the plane $\mathbb{Z} \times \mathbb{Z}$. We get a step $(1,0)$ (resp. $(2,1))$ by connecting the vertex $(n-1, k)($ resp. $(n-2, k-1))$ to the vertex (n, k) and give this step a weight $2(k+1)$ (resp. $k(k+1)$). Fig. 2 shows the resulting graph.

Fig. 2. the graph resulting from the recurrence relation.
Fixing a set S, let the weight of the vertex (n, k) be $v p_{n}(S \cup[n-k+1, n])$. It is easy to see we can obtain the recurrence relation for $v p_{n}(S)$ by Fig. 2. So we introduce the concept of value-peak path in the plane $\mathbb{Z} \times \mathbb{Z}$ as follows.

A value-peak path is a lattice path in the first quadrant starting at $(0,0)$ and ending at (n, k) with only two kinds of steps-horizon step $H=(1,0)$ and rise step $R=(2,1)$. We also consider a value-peak path P from $(0,0)$ to (n, k) as a word of $n-k$ letters using only H and R. Let $P_{n, k}$ be the set of all the value-peak paths from $(0,0)$ to (n, k). Let
i be a nonegative integer and $P=e_{1} e_{2} \cdots e_{n-k} \in P_{n, k}$. For every $j \in[n-k]$, define the weight $w_{i}\left(e_{j}\right)$ of the step e_{j} as follows: if the step e_{j} connects a vertex (x, y) to a vertex $(x+1, y)$, then $w_{i}\left(e_{j}\right)=2 i+2(y+1)$; if the step e_{j} connects a vertex (x, y) to a vertex $(x+2, y+1)$, then $w_{i}\left(e_{j}\right)=(y+i+1)(y+i+2)$. Furthermore, define the weight of the value-peak path P, denoted $w_{i}(P)$, as $w_{i}(P)=\prod_{j=1}^{n-k} w_{i}\left(e_{j}\right)$ and $w(i ; n, k)=\sum_{P \in P_{n, k}} w_{i}(P)$. For any $i<0$, let $w(i ; n, k)=0$.

Example 3.1 Let $n=8, k=3$ and $i=0$. We draw a value-peak path $P=e_{1} e_{2} e_{3} e_{4} e_{5}=$ $H R R H R$ from $(0,0)$ to $(8,3)$ in Fig. 3. For every step e_{j} in P, we give a label on the step to denote the weight of e_{j}, i.e., $w_{0}\left(e_{1}\right)=2, w_{0}\left(e_{2}\right)=2, w_{0}\left(e_{3}\right)=6, w_{0}\left(e_{4}\right)=6$, $w_{0}\left(e_{5}\right)=12$. Hence, $w_{0}(P)=1728$.

Fig. 3. A value-peak path P with weights from $(0,0)$ to $(8,3)$.
Lemma $3.4 w(i ; n, k)=\frac{(i+k)!(i+k+1)!}{i!(i+1)!}\left[x^{n-2 k}\right] \prod_{m=0}^{k} \frac{1}{1-2(i+1+m) x}$.
Proof. Suppose $P=e_{1} e_{2} \cdots e_{n-k} \in P_{n, k}$ and let $\mathcal{R}=\left\{j \mid e_{j}=R\right\}$, then $|\mathcal{R}|=k$. Furthermore, suppose $\mathcal{R}=\left\{e_{j_{1}}, \cdots, e_{j_{k}}\right\}$, where $0=j_{0}<j_{1}<j_{2}<\cdots<j_{k} \leqslant n-k-r=$ j_{k+1} and it follows that

$$
w_{i}(P)=\prod_{m=0}^{k}[2 i+2 m+2]^{j_{m+1}-j_{m}-1} \prod_{m=0}^{k-1}(m+i+1)(m+i+2)
$$

Let $t_{m}=j_{m+1}-j_{m}-1$ for any $0 \leqslant m \leqslant k$. Then $t_{m} \geqslant 0$ and $\sum_{m=0}^{k} t_{m}=n-2 k$. So,

$$
\begin{aligned}
w(i ; n, k) & =\sum \prod_{m=0}^{k}[2 i+2 m+2]^{t_{m}} \prod_{m=0}^{k-1}(m+i+1)(m+i+2) \\
& =\frac{(i+k)!(i+k+1)!}{i!(i+1)!} \sum \prod_{m=0}^{k}[2(i+m+1)]^{t_{m}}
\end{aligned}
$$

where the sum is over all $(k+1)$-tuples $\left(t_{0}, t_{1}, \cdots, t_{k}\right)$ such that $\sum_{m=0}^{k} t_{m}=n-r-2 k$ and $t_{m} \geqslant 0$. It is easy to see the sum is the coefficient of $x^{n-2 k}$ in the power series $\prod_{m=0}^{k} \frac{1}{1-2(i+1+m) x}$. This completes the proof.

Lemma 3.5 Let $n \geqslant 3$ and $S \subseteq[3, n]$. Then
(1) $v p_{n}([n-k+1, n])=w(0 ; n-1, k)$.
(2) Suppose $S \neq \emptyset$ and $V P_{n}(S) \neq \emptyset$. Let $r=\max S$. For any $0 \leqslant k \leqslant n-r-1$, we have $v p_{n}(S \cup[n-k+1, n])=\sum_{i=0}^{m} w(k-i ; m+i, i) v p_{n-m-i}(S \cup[r+1, n-m-i])$, where $m=n-r-k$.

Proof. (1) Fix $k \geqslant 0$. By induction on $n \geqslant k$. For $\bar{n}=k$, we have $v p_{k}([1, k])=0$. It is easy to see $w(0 ; k-1, k)=k!(k+1)!\left[x^{-k-1}\right] \prod_{m=0}^{k} \frac{1}{1-2(m+1) x}=0$. Hence, the identity holds for $\bar{n}=k$. Suppose the identity holds for all $\bar{n} \leqslant n$. For $\bar{n}=n+1$, by Lemma 3.3 and the induction hypothesis,

$$
\begin{aligned}
& v p_{n+1}([n-k+2, n+1]) \\
= & 2(k+1) v p_{n}([n-k+1, n])+k(k+1) v p_{n-1}([n-k+1, n-1]) \\
= & 2(k+1) w(0 ; n-1, k)+k(k+1) w(0 ; n-2, k-1) \\
= & w(0 ; n, k)
\end{aligned}
$$

Thus the identity holds for $\bar{n}=n+1$.
(2) Let us apply induction on $\bar{m}=n-r-k$. For $\bar{m}=1$, we have $n-k=r+1$. By Lemma 3.3,

$$
\begin{aligned}
& v p_{n}(S \cup[n-k+1, n]) \\
= & 2(k+1) v p_{n-1}(S \cup[r+1, n-1])+k(k+1) v p_{n-2}(S \cup[r+1, n-2]) \\
= & w(k ; 1,0) v p_{n-1}(S \cup[r+1, n-1])+w(k-1 ; 2,1) v p_{n-2}(S \cup[r+1, n-2]) \\
= & \sum_{i=0}^{\bar{m}} w(k-i ; \bar{m}+i, i) v p_{n-\bar{m}-i}(S \cup[r+1, n-\bar{m}-i]) .
\end{aligned}
$$

Hence the identity holds for $\bar{m}=1$. Suppose the identity holds for $\bar{m}=m$. For $\bar{m}=$ $m+1=n-r-k$, by Lemma 3.3,

$$
\begin{aligned}
v p_{n}(S \cup[n-k+1, n]) & =2(k+1) v p_{n-1}(S \cup[n-k, n-1]) \\
& +k(k+1) v p_{n-2}(S \cup[n-k, n-2]) .
\end{aligned}
$$

By the induction hypothesis,

$$
v p_{n-1}(S \cup[n-k, n-1])=\sum_{i=0}^{m} w(k-i ; m+i, i) v p_{n-1-m-i}(S \cup[r+1, n-1-m-i])
$$

and

$$
\begin{aligned}
& v p_{n-2}(S \cup[n-k, n-2]) \\
= & \sum_{i=0}^{m} w(k-1-i ; m+i, i) v p_{n-2-m-i}(S \cup[r+1, n-2-m-i]) \\
= & \sum_{i=1}^{m+1} w(k-i ; m-1+i, i-1) v p_{n-1-m-i}(S \cup[r+1, n-1-m-i]) .
\end{aligned}
$$

It is easy to see

$$
2(k+1) w(k-i ; m+i, i)+k(k+1) w(k-i ; m+i-1 . i-1)=w(k-i ; m+1+i, i)
$$

for all $i \in[m]$,

$$
2(k+1) w(k ; m, 0)=w(k ; m+1,0)
$$

and

$$
k(k+1) w(k-m-1 ; 2 m, m)=w(k-m-1 ; 2(m+1), m+1) .
$$

Hence, $v p_{n}(S \cup[n-k+1, n])=\sum_{i=0}^{m+1} w(k-i ; m+1+i, i) v p_{n-1-m-i}(S \cup[r+1, n-1-m-i])$.
For any $S \subseteq[3, n]$, recall that type(S) denotes the type of the set S.
Theorem 3.2 Let $n \geqslant 3$ and $S \subseteq[3, n]$. Suppose type $(S)=\left(r_{1}^{k_{1}}, r_{2}^{k_{2}}, \cdots, r_{m}^{k_{m}}\right)$ with $m \geqslant 2$ and $V P_{n}(S) \neq \emptyset$. Let $r_{0}=0, A_{i}=r_{i}-r_{i-1}-k_{i}$ and $B_{i}=\sum_{j=i}^{m} k_{j}$ for any $1 \leqslant i \leqslant m$. Then

$$
\begin{aligned}
v p_{n}(S)= & 2^{n-r_{m}} \sum_{i_{m}=0}^{A_{m}} \sum_{i_{m-1}=0}^{A_{m-1}} \cdots \sum_{i_{2}=0}^{A_{2}}\left[\prod_{s=2}^{m} w\left(B_{s}-\sum_{j=s}^{m} i_{j} ; A_{s}+i_{s}, i_{s}\right)\right. \\
& \left.\cdot w\left(0 ; A_{1}+B_{1}-\sum_{j=2}^{m} i_{j}-1, B_{1}-\sum_{j=2}^{m} i_{j}\right)\right]
\end{aligned}
$$

Proof. By induction on m. For $\bar{m}=2$, by Lemma 3.5,

$$
\begin{aligned}
v p_{r_{2}}(S) & =\sum_{i_{2}=0}^{A_{2}} w\left(k_{2}-i_{2} ; A_{2}+i_{2}, i_{2}\right) v p_{r_{1}+k_{2}-i_{2}}\left(\left[r_{1}-k_{1}+1, r_{1}+k_{2}-i_{2}\right]\right) \\
& =\sum_{i_{2}=0}^{A_{2}} w\left(B_{2}-i_{2} ; A_{2}+i_{2}, i_{2}\right) w\left(0 ; A_{1}+B_{1}-i_{2}-1, B_{1}-i_{2}\right)
\end{aligned}
$$

Suppose the identity holds for $\bar{m}=m$. For $\bar{m}=m+1$, by Lemma 3.5,

$$
v p_{r_{m+1}}(S)=\sum_{t=0}^{A_{m+1}} w\left(k_{m+1}-t ; A_{m+1}+t, t\right) v p_{r_{m}+k_{m+1}-t}\left(S_{t}\right)
$$

where type $\left(S_{t}\right)=\left(r_{1}^{k_{1}}, r_{2}^{k_{2}}, \cdots,\left(r_{m}+k_{m+1}-t\right)^{k_{m}+k_{m+1}-t}\right)$. For every $0 \leqslant t \leqslant A_{m+1}$, note that $A_{t, i}^{\prime}=A_{i}$ and $B_{t, i}^{\prime}=B_{i}-t$ for any $1 \leqslant i \leqslant m$. By the induction hypothesis,

$$
\begin{aligned}
v p_{r_{m+1}}(S)= & \sum_{t=0}^{A_{m+1}} \sum_{i_{m}=0}^{A_{m}} \sum_{i_{m-1}=0}^{A_{m-1}} \cdots \sum_{i_{2}=0}^{A_{2}}\left[w\left(0 ; A_{1}+B_{t, 1}^{\prime}-\sum_{j=2}^{m} i_{j}-1, B_{t, 1}^{\prime}-\sum_{j=2}^{m} i_{j}\right)\right. \\
& \left.\cdot w\left(k_{m+1}-t ; A_{m+1}+t, t\right) \prod_{s=2}^{m} w\left(B_{t, s}^{\prime}-\sum_{j=s}^{m} i_{j} ; A_{s}+i_{s}, i_{s}\right)\right] \\
= & \sum_{i_{m+1}=0}^{A_{m+1}} \sum_{i_{m}=0}^{A_{m}} \sum_{i_{m-1}=0}^{A_{m-1}} \cdots \sum_{i_{2}=0}^{A_{2}}\left[\prod_{s=2}^{m+1} w\left(B_{s}-\sum_{j=s}^{m+1} i_{j} ; A_{s}+i_{s}, i_{s}\right)\right. \\
& \left.\cdot w\left(0 ; A_{1}+B_{1}-\sum_{j=2}^{m+1} i_{j}-1, B_{1}-\sum_{j=2}^{m+1} i_{j}\right)\right] .
\end{aligned}
$$

Example 3.2 Let $n=8$ and $S=\{3,7,8\}$. Then type $(S)=\left(3^{1}, 8^{2}\right), A_{1}=2, A_{2}=3$, $B_{1}=3$ and $B_{2}=2$. By Theorem 3.2, we have

$$
\begin{aligned}
v p_{8}(\{3,7,8\})= & w(2 ; 3,0) w(0 ; 4,3)+w(1 ; 4,1) w(0 ; 3,2) \\
& +w(0 ; 5,2) w(0 ; 2,1)+w(-1 ; 6,3) w(0 ; 1,0) .
\end{aligned}
$$

Note that

$$
\begin{aligned}
& w(2 ; 3,0)=216, w(0 ; 4,3)=0, \quad w(1 ; 4,1)=456, \quad w(0 ; 3,2)=0 \\
& w(0 ; 5,2)=144, w(0 ; 2,1)=2, \quad w(-1 ; 6,3)=0, \quad w(0 ; 1,0)=1
\end{aligned}
$$

Thus $v p_{8}(\{3,7,8\})=288$.

4 Appendix

For convenience to check identities given in the previous sections, by computer search, for $1 \leqslant n \leqslant 8$, we obtain the number $v p_{n}(S)$ of permutations in the set $V P_{n}(S) \neq \emptyset$ and list them in Table 2.

n									
1	$S=\emptyset$								
	1								
2	\emptyset								
	2								
3	\emptyset	$\{3\}$							
	4	2							
4	\emptyset	$\{3\}$	$\{4\}$						
	8	4	12						
5	\emptyset	$\{3\}$	$\{4\}$	$\{5\}$	$\{3,5\}$	$\{4,5\}$			
	16	8	24	56	4	12			
6	\emptyset	$\{3\}$	$\{4\}$	$\{5\}$	$\{6\}$	$\{3,5\}$	$\{3,6\}$	$\{4,5\}$	$\{4,6\}$
	32	16	48	112	240	8	24	24	72
	$\{5,6\}$								
	144								
7	\emptyset	$\{3\}$	$\{4\}$	$\{5\}$	$\{6\}$	$\{7\}$	$\{3,5\}$	$\{3,6\}$	$\{3,7\}$
	64	32	96	224	480	992	16	48	112
	$\{4,5\}$	$\{4,6\}$	$\{4,7\}$	$\{5,6\}$	$\{5,7\}$	$\{6,7\}$	$\{3,5,7\}$	$\{3,6,7\}$	$\{4,5,7\}$
	48	144	336	288	688	1200	8	24	24
	$\{4,6,7\}$	$\{5,6,7\}$							
	72	144							
8	\emptyset	$\{3\}$	$\{4\}$	$\{5\}$	$\{6\}$	$\{7\}$	$\{8\}$	$\{3,5\}$	$\{3,6\}$
	128	64	192	448	960	1984	4032	32	96
	$\{3,7\}$	$\{3,8\}$	$\{4,5\}$	$\{4,6\}$	$\{4,7\}$	$\{4,8\}$	$\{5,6\}$	$\{5,7\}$	$\{5,8\}$
	224	480	96	288	672	1440	576	1376	2976
	$\{6,7\}$	$\{6,8\}$	$\{7,8\}$	$\{3,5,7\}$	$\{3,5,8\}$	$\{3,6,7\}$	$\{3,6,8\}$	$\{3,7,8\}$	$\{4,5,7\}$
	2400	5280	8640	16	48	48	144	288	48
	$\{4,5,8\}$	$\{4,6,7\}$	$\{4,6,8\}$	$\{4,7,8\}$	$\{5,6,7\}$	$\{5,6,8\}$	$\{5,7,8\}$	$\{6,7,8\}$	
	144	144	432	864	288	864	1728	2880	

Table 2. $v p_{n}(S)$ for $1 \leqslant n \leqslant 8$ with $V P_{n}(S) \neq \emptyset$.

References

[1] H. Y. Chang, J. Ma, Y. N. Yeh, Enumerations of Permutations by Value-Descent Sets, preprint.
[2] R. Cori, X. G. Viennot, A synthesis of bijections related to Catalan numbers, 1983, unpublished.
[3] R. P. Stanley, Enumerative Combinatorics vol. 1, Cambridge University Press, Cambridge, 1997.

[^0]: *Partially supported by NSC 98-2115-M-110-009
 ${ }^{\dagger}$ Corresponding author
 ${ }^{\ddagger}$ Partially supported by NSC 96-2115-M-001-005

