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Abstract

We explicitly construct an uncountable class of infinite aperiodic plane graphs
which have equal, and explicitly computable, bond percolation thresholds. Fur-
thermore for both bond percolation and the random-cluster model all large scale
properties, such as the values of the percolation threshold and the critical exponents,
of the graphs are equal. This equivalence holds for all values of p and all q ∈ [0,∞]
for the random-cluster model.

The graphs are constructed by placing a copy of a rotor gadget graph or its
reflection in each hyperedge of a connected self-dual 3-uniform plane hypergraph
lattice. The exact bond percolation threshold may be explicitly determined as the
root of a polynomial by using a generalised star-triangle transformation. Related
randomly oriented models share the same bond percolation threshold value.

1 Introduction and Summary

Although it has been over fifty years since the origins of percolation theory, until recently
the percolation threshold had been exactly determined for only a small collection of lattice
graphs. Periodicity has been a crucial assumption for rigorous proofs of all these exact
percolation threshold values. Research of Scullard [10], Ziff [20], Scullard and Ziff [11],
and Ziff and Scullard [21] used a generalised star-triangle transformation and a concept of
triangle-duality to predict exact solutions for a collection of periodic lattice graphs in two
dimensions. Wierman and Ziff [19] organised this approach to describe a construction
of an infinite class of planar graphs for which the bond percolation threshold can be
mathematically rigorously determined. The graphs are constructed by placing isomorphic
copies of a finite connected planar graph with three terminals, called a generator, in a
connected self-dual planar periodic 3-uniform hypergraph structure. A consequence of
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the construction is that for each of an infinite set of real numbers a ∈ (0, 1) there are
a countable infinite family of periodic lattices which have bond percolation threshold
equal to a. Sedlock and Wierman [12] generalised an argument of Wierman [18] using
the substitution method (See [2, Ch.6]) to show that the critical exponents are equal for
any dual pair of lattices constructed by the method. Placing the same generator and its
dual generator in the countably infinite collection of self-dual hypergraphs identified by
Wierman and Ziff [19] creates a countably infinite set of lattices which have the same
critical exponents. This observation provided supporting evidence for the universality
hypothesis that the critical exponents agree for all two-dimensional percolation models.

In this paper we extend these results in several ways. First we construct an uncountably
large family of infinite planar graphs, most of which have only the trivial automorphism,
with identical bond percolation thresholds. However unlike the previously mentioned
construction the percolative behaviour is identical not only at the threshold pc but at
all values of the edge probability p. Furthermore this is also extended to the general
random-cluster model for all values of the parameter q. We recall that q = 1 corresponds
to ordinary percolation and q = 2 to the Ising model. As before this means that the
critical exponents for the general random-cluster model are also equal for all graphs in
the family.

The graphs are constructed using a generator which exhibits three-fold rotational sym-
metry, but have no other automorphisms. In particular, it is not symmetric respect to
reflection in an axis. Such a graph, called a rotor gadget, arises in the study of the Tutte
polynomial [17] and isomagnetic graphs [1]. The graphs are constructed by determinis-
tically placing either the rotor gadget or its reflection in each of the hyperedges of the
hypergraph structure. Most of the resulting graphs do not have the periodicity required
by the classical methods to rigorously determine exact percolation thresholds. The results
are instead obtained by applying classical methods to a periodic lattice, then modifying
the lattice without changing the connection probabilities between terminals of a genera-
tor, using the the properties of the rotor gadget. The exact bond percolation threshold
can be determined using the generalised star-triangle transformation. Definitions of ele-
ments of the construction and proof method are provided in section 2. Construction of
the aperiodic graphs and the proof that their bond percolation thresholds are equal are
given in section 3.1.

Since all graphs in the class have the same percolation threshold, in section 3.2 we
consider randomly-oriented models in which the placement of the rotor gadget and its
reflection in hyperedges is made according to a probability measure, showing that all such
models share the same percolation threshold as the deterministic models.

In section 3.3, the results of Sedlock and Wierman [12] are applied to show that the
set of critical exponents of bond percolation on these graphs and their dual graphs are
identical, under the assumption that the limits defining the critical exponents exist. This
result extends to the randomly-oriented models also.

Finally, in section 4, the random-cluster model is considered on these graphs, showing
that common critical points and critical exponents are shared by all these graphs, due to
the identity of the connection probabilities and cluster numbers in the rotor graph and its
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reflection. Although it rarely is the case for the random-cluster model, the result holds
for both the q < 1 and q > 1 cases.

2 Definitions and Preliminaries

2.1 Bond Percolation Threshold

Let G be a connected graph, and p ∈ (0, 1) be a real-valued parameter. Let E(G) denote
the edge set of G. In the bond percolation model on G, each e ∈ E(G) is assigned a
state, open or closed. Representing the states open and closed as 0 and 1, respectively, a
realisation of the model may be identified with an element ω ∈ Ω = {0, 1}E(G) = 2E(G),
called a configuration. The states of the edges are mutually independent, with each edge
open with probability p. The corresponding product probability measure on 2E(G) is
denoted by Pp.

The number of open edges in ω is denoted |ω|. An open cluster is a maximal connected
subgraph of G which has all edges open. The size of the cluster C, denoted |C|, is the
number of edges in C. The number of open clusters in ω is denoted k(ω).

Now assume that G is an infinite locally-finite graph. Let E∞ denote the event that
there is an infinite open cluster in G. A standard coupling argument shows that Pp[E∞]
is nondecreasing in p, and Kolmogorov’s zero-one law shows that its value is either 0 or 1
for any p. Thus, there exists a bond percolation threshold pc(G) such that Pp[E∞] = 0 for
p < pc(G) and Pp[E∞] = 1 for p > pc(G).

2.2 Plane Lattice

A plane graph is a graph that is drawn in the plane with non-crossing edges. Typically,
the edges are drawn as straight line segments, but we may assume that they are drawn as
piecewise linear curves. A plane graph is periodic if there are two basis vectors u, v ∈ R2

such that the translation of R2 by any linear combination of the u and v with integer
coefficients induces an isomorphism of G as a plane graph. By a plane lattice we mean a
periodic plane graph G which is connected, infinite, and locally finite, and the vertex set
is a subset of R2 which has no accumulation points.

Given a plane graph G, its dual graph, denoted G∗, is the graph whose vertices are
in one-to-one correspondence with the faces of G, and whose edges are in one-to-one
correspondence with the edges of G: Each vertex of G∗ lies in the corresponding face of
G. For each edge e ∈ E(G), its dual edge e∗ joins the vertices of G∗ corresponding to the
faces of G in which it lies. Note that if G is a plane lattice, then an appropriate drawing
of G∗ is also.

2.3 Generator and Dual Generator

In this article, a generator is a finite plane graph G which is connected and has three
vertices, referred to as boundary vertices, attachment points, or terminals, among the
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vertices on the boundary of the unbounded face. A generator G will be drawn in the plane
with its boundary vertices, labelled counterclockwise as A, B, and C, at the vertices of
the triangle, and all vertices and edges of G contained in the triangle and its interior.

Given a generator G, its dual generator G∗ is a graph with a vertex located in each
bounded face of G and three vertices, labelled A′, B′, and C ′, in the unbounded face, and
edges of G∗ in one-to-one correspondence with the edges of G. For each edge e ∈ E(G),
its dual edge e∗ is incident to the vertices of G corresponding to the faces in which it lies,
with the following provision for edges e∗ with an endvertex in the unbounded face of G:
Let πAB denote the path of edges in G which is on the boundary of the unbounded face
of G and does not pass through C, and define πBC and πAC similarly. If e ∈ πAB, connect
its dual edge e∗ to C ′. If e ∈ πBC , connect e∗ to A′. If e ∈ πAC , connect e∗ to B′. Clearly,
G∗ is not the dual graph of G, but is the appropriate graph to use in the construction of
dual lattices constructed from G.

2.4 Partition Probabilities

To describe the probabilities of open connections within a 3-terminal generator G, we
consider the probabilities of the five possible partitions of the terminals into distinct open
clusters. A partition will be denoted by a string of vertices and vertical bars, in which
vertices separated by a bar are in different open clusters. The five possible partitions are
ABC, AB|C, AC|B, A|BC, and A|B|C. In a percolation model with parameter p, the
probability of each partition will be a polynomial function of p. As p increases from 0
to 1, Pp[ABC] increases from 0 to 1, while Pp[A|B|C] decreases from 1 to 0. Given a
generator G, let p0(G) denote the value of p such that these probabilities are equal. As a
consequence of a generalised star-triangle transformation described in Wierman and Ziff
[19], p0(G) determines the exact bond percolation threshold of the lattice constructed
from a generator G as in the following paragraphs.

2.5 Plane Hypergraph Lattice

A hypergraph H consists of a vertex set V (H) and a set E(H) of subsets of V (H) called
hyperedges. A k-hyperedge is a hyperedge that contains exactly k vertices. A k-uniform
hypergraph is one in which every hyperedge is a k-hyperedge. In this article, we will
restrict consideration to 3-uniform hypergraphs.

A plane hypergraph is a hypergraph that is drawn in the plane so that each hypergraph
vertex is represented by a point in the plane, each hyperedge is represented by a region
bounded by a polygon with its hyperedge vertices located at vertices of the polygon, and
the polygons intersect only at hyperedge vertices. A hypergraph H is connected if for any
x, y ∈ V (H) there is a sequence x = w0, w1, w2, . . . , wn = y ∈ H such that wi−1 and wi are
in a common hyperedge for each i = 1, . . . , n− 1,. A hypergraph is locally finite if each of
its vertices is in only a finite set of hyperedges. As for plane graphs, a plane hypergraph
is periodic if there are two basis vectors u, v ∈ R2 such that the translation of R2 by any
integer linear combination of u and v induces an isomorphism of H as a plane hypergraph.

the electronic journal of combinatorics 17 (2010), #R48 4



A plane hypergraph lattice is a periodic plane hypergraph which is connected, infinite, and
locally finite, and the vertex set is a subset of R2 which has no accumulation points.

2.6 Dual and Self-Dual Hypergraphs

Given a plane hypergraph lattice H embeded in the plane, the complement to the set of
points inside the edges of H in the plane is a union of polygonal faces. Construct the
dual plane hypergraph lattice H∗ as follows: [The reader should note that this concept of
plane duality differs from the standard hypergraph duality concept.] The vertices of H∗

are in one-to-one correspondence with the faces of H, represented by a point in the face,
see Figure 1. The hyperedges of H∗ are in one-to-one correspondence with the hyperedges
of H. For each hyperedge H ∈ H, the dual hyperedge H∗ is represented by a polygonal
region with the hypergraph vertices of H∗ in the faces of H neighbouring H , and which
does not intersect the polygonal region of any hyperedge of H other than H . Note that
since H is a plane hypergraph lattice, there is an appropriate drawing of H∗ in which the
hyperedges of H∗ do not intersect except at vertices of H∗, and which is periodic. Thus,
there is a drawing such that H∗ is also a plane hypergraph lattice.

A plane hypergraph lattice H is self-dual if H∗ and H are isomorphic as graphs.
Self-dual plane hypergraph lattices play a major role in the determination of exact bond
percolation thresholds for plane periodic lattices. Wierman and Ziff [19] illustrate several
examples of self-dual plane hypergraph lattices, and prove that there are infinitely many.

2.7 Lattice Construction

Given a self-dual plane hypergraph lattice H and a generator G, we now construct a
pair of dual plane lattices as follows: Embed the generator G in each hyperedge of H
with the terminals of G located at the vertices of the hyperedge, with each copy of G
contained in the region representing the corresponding hyperedge, with the set of copies
having a specified orientation O so that the resulting plane graph is periodic. Denote the
resulting plane lattice by L(G,H,O). Construct a drawing of the dual plane hypergraph
lattice H∗, and embed copies of the dual generator G∗ in the regions corresponding to the
hyperedges of H∗ according to the orientation O∗ determined by the convention specified
above in the definition of dual generator, to obtain a plane lattice L(G∗,H∗,O∗). The
infinite graphs L(G,H,O) and L(G∗,H∗,O∗) are a dual pair of plane lattices, to which
we may apply standard results from bond percolation theory. For a given lattice L we call
the set of vertices which correspond to the terminal vertices, or equivalently the vertices
of the hypergraph, the hubset of the lattice and denote it by Hub(L).

2.8 Symmetry Considerations

A plane lattice L or plane hypergraph lattice H has k-fold symmetry, for k > 2, if it is
invariant under rotation about the origin through an angle of 2π/k. A plane lattice L
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Figure 1: Part of a plane hypergraphs lattice, with edges coloured (Top Left), The lattice
and the vertices of the dual (Top Right), The lattice and with the dual superimposed
(Bottom Left), The dual (Bottom Right)

or plane hypergraph lattice H has reflection symmetry if it is invariant under reflection
through a line.

Classical percolation methods which are used to obtain exact percolation threshold
values require reflection symmetry [9] or k-fold symmetry [3]. Note that all the self-dual
plane hypergraph lattices described in [19] have reflection symmetry or a k-fold symmetry.
A result of Sheffield [14] applies to all plane lattices with no such symmetry requirements
[3]. We state our results without requiring symmetry, since it is plausible that there exist
self-dual planar hypergraphs which do not exhibit any symmetry. However the examples
we have explicitly considered are symmetric enough to be dealt with by less intricate
methods than those used by Sheffield.

2.9 Rotor Gadget

A rotor gadget is a finite plane graph with three terminal vertices such that the graph has
rotational symmetry, and the three terminals belong to the same orbit under the rotation,
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Figure 2: A rotor gadget and its reflection.

but has no other automorphisms. In Figure 2 we show an example of a rotor gadget.
Since we consider only rotor gadgets as generators, in this article we suppress mention

of orientation in the notation for lattices. By using suitable subdivision and addition of
edges it is easy to see that the set of non-isomorphic rotor gadgets is countably infinite.

Rotor gadgets were introduced by Tutte in his study of the Tutte polynomial and chro-
matic polynomials. (See [17] for an enjoyable introduction and historical survey.) Later
[1] they were also used to show that almost all planar triangulations are not determined
by their bivariate Ising polynomial.

3 Results and Proofs for Percolation

3.1 Aperiodic Graphs

Our aim is to prove that an uncountable family of aperiodic planar graphs have equal
bond percolation thresholds. We may construct such a family from a rotor gadget R and
a self-dual plane hypergraph lattice H. Each ρ ∈ {R, R′}E(H) ≡ 2E(H), corresponds to an
assignment of the rotor graph R or its reflection R′ to each hyperedge of H. Let L(R,H, ρ)
denote the graph constructed by embedding the assigned generator in each hyperedge of
H.

Lemma 3.1. For each rotor gadget R and self-dual plane hypergraph lattice H, the set
{L(R,H, ρ) : ρ ∈ 2E(H)} contains uncountably many non-isomorphic graphs.

Proof. The set E(H) of hyperedges of H is infinite, so 2E(H) is uncountable. However,
many of these lattices may be isomorphic via translation, rotation, or reflection. Since
the automorphism group of translations, rotations, and reflections is countable, each iso-
morphism class is countable. Thus, the set of isomorphism classes is uncountable.

Since many of the graphs L(R,H, ρ) are aperiodic, standard percolation results do
not directly apply. However, we may apply the classical methods to the plane lattice
L(R,H) = L(R,H, RE(H)) which has the rotor gadget R embedded in all hyperedges of
H.
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Proposition 3.2. For any rotor gadget R and self-dual plane hypergraph lattice H,

pc(L(R,H)) + pc(L(R∗,H)) = 1

and
pc(L(R,H)) = p0(R).

Proof. Note that L(R,H) and L(R∗,H) are both periodic, and are dual plane lattices
to which the results of Kesten [9], Bollobás and Riordan [3], or Sheffield [10] apply to
obtain the first equation. In the approach described by Wierman and Ziff [19], by the
generalised star-triangle transformation, the bond percolation threshold for L(R,H) is
given by p0(R).

The percolation threshold result may now be transferred to the aperiodic graphs
L(R,H, ρ).

Theorem 3.3. For any rotor gadget R and self-dual plane hypergraph lattice H,

pc(L(R,H, ρ)) = p0(R)

for all ρ ∈ 2E(H).

Proof. Note that, since R and R′ are isomorphic as graphs and the partition probabilities
do not depend on the embedding, the partition probabilities for R and R′ are identical
for all p ∈ (0, 1). Thus, replacement of R by R′ in any hyperedge of L(R,H) does not
change the connection probabilities between any vertices of the hypergraph. Hence, for
any ρ ∈ 2E(H), the percolation threshold satisfies

pc(L(R,H, ρ)) = pc(L(R,H)) = p0(R),

with the last equality by Proposition 3.2.

Example 3.4. For the rotor gadget in Figure 2 we can compute the partition probabilities
by classifying all subsets of the edge set of the rotor gadget. We find that

Pp[ABC] = 3p4 + 15p5 + 73p6 − 111p7 − 627p8 + 902p9 + 1872p10 − 4242p11

− 1158p12 + 11868p13 − 16746p14 + 12260p15 − 5208p16 + 1224p17 − 124p18 (1)

Pp[A|B|C] = 1−3p2−3p3−18p4−3p5+263p6−87p7−1260p8+1225p9+2616p10−4590p11

− 2553p12 + 13722p13 − 17352p14 + 11836p15 − 4758p16 + 1068p17 − 104p18 (2)

If we solve the equation Pp[ABC] = Pp[A|B|C] we find that it has a single real root in
the interval (0, 1) giving us pc = p0(R) ≈ 0.432785.

Wierman and Ziff [19] showed that there are countably infinitely many different plane
graphs L which have a common value for pc(L). An immediate consequence of Proposi-
tion 3.1 and Theorem 3.3 is the following stronger result:

Corollary 3.5. For a rotor gadget R and a self-dual plane hypergraph lattice H, there
are uncountably many non-isomorphic plane graphs L(R,H, ρ) with bond percolation
threshold equal to p0(R).
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3.2 Randomly Assigned Generators

Rather than constructing a graph deterministically, as above, consider randomly placing
the rotor gadget as R or its reflection R′ in each hyperedge in the construction. We may
consider any probability measure Q on 2E(H), and let P denote the set of such probability
measures. Let L(R,H, Q) denote the model in which the configuration of generators is
distributed according to Q. For example, Q may assign R or R′ with probability p and
1− p, respectively, to each hyperedge of H independently. One may also use a dependent
measure Q, such as that of the spin value in an Ising model.

Corollary 3.6. For any probability measure Q ∈ P,

pc(L(R,H, Q)) = pc(R).

That is, the percolation threshold is equal for all realisations of the random variable
L(R,H, Q)

Proof. Since every assignment of the generators R and R′ has the same connection prob-
abilities between hyperedge vertices as in L(R,H) for all p, the connection probabilities
in the random model with probability measure Q are also the same. Thus, the bond
percolation thresholds are equal.

A random triangulation model with some similarities was treated by Bollobás and
Riordan [3], in which a site percolation model on the square lattice with randomly oriented
diagonals was shown to almost always have percolation threshold equal to 1/2. Their
model differs in several respects: First, the graphs they considered consisted of a fixed
subgraph with additional randomly oriented edges, while our graphs need not have any
fixed subgraphs. Secondly, their conclusion holds for almost every, but not for every,
realisation of the randomly oriented graph model. Finally their proof requires that a
suitable modification of the model is positively correlated, while, as we will see in Section
4, our construction can also be applied to situations with purely negative correlations.

3.3 Critical Exponents

Many functions of interest in percolation theory are believed, but not proved, to behave
near criticality as powers of |p − pc| as p approaches pc, with the powers called critical
exponents. The expression A(p) ≈ |p − pc|

ζ denotes that

lim
p→pc

log A(p)

log |p − pc|
= ζ. (3)

The most common power laws considered are for the percolation probability function
θ(p) = Pp[|Cv| = +∞] ≈ (p − pc)

β, for p > pc, for some 0 < β < 1, and the mean finite
cluster size χf (p) = Ep[|Cv|; |Cv| < ∞] ≈ |p − pc|

−γ for some γ > 0. Additional critical
exponents considered in the literature are η associated with the two-point connectivity
at criticality, ν for the correlation length, δ for the cluster volume at criticality, α for
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the number of clusters per vertex, and ∆ for the cluster moments. (See [7, Ch.9].) Note,
however, that it is not known that the defining limits exist for any bond percolation model
in two-dimensions.

The values for these critical exponents are believed to be α = −2
3
, β = 5/36, γ = 43/18,

δ = 91/5, and ν = 4/3 for any two-dimensional lattice. Kesten [9] proved that for a broad
class of two-dimensional periodic lattices including the plane lattices considered in this
article, (assuming the limits defining the exponents δ and ν exist)

β =
2ν

δ + 1
, γ = 2ν

δ − 1

δ + 1
, η =

4

δ + 1
, and ∆ = 2ν

δ

δ + 1
.

A remarkable result by Smirnov and Werner [15] combines Kesten’s scaling relations,
knowledge of critical exponents associated with the stochastic Loewner evolution process,
and Smirnov’s proof of conformal invariance to determine the existence and values of
critical exponents for site percolation model on the triangular lattice. However, our results
do not establish any numerical values for critical exponents.

Theorem 3.7. For a rotor gadget R and a self-dual plane hypergraph lattice H, as-
suming that the limits defining the critical exponents β, γ, ν, δ, η, and ∆, exist for the
graphs, the values of this set of critical exponents are equal for the bond percolation
models {L(R,H, ρ) : ρ ∈ 2E(H)}, {L(R∗,H, ρ) : ρ ∈ 2E(H)}, {L(R,H, Q) : Q ∈ P}, and
{L(R∗,H, Q) : Q ∈ P}.

Proof. Let us first consider the case in which the root vertex v belongs to Hub(L). Due
to the symmetry of the generator R, the size, radius and other properties of the clusters
appearing the definitions of the critical exponents, do not depend on the orientations ρ.
Additionally since the symmetry group of the planar hypergraph H acts transitively on
the hub vertices the cluster properties will be independent of the choice of v ∈ Hub(L).

Next we consider a root vertex v /∈ Hub(L) which belongs to some copy R1 of the
generator R. Since R is finite there is a path of some length lv from v to some vertex
u ∈ Hub(l). Hence each of the quantities in the definitions of the critical exponents differs
by at most a factor of plv , in the case of probabilities, or an additive term of size at most lv,
in the case of cluster sizes, between v and a vertex u ∈ Hub(L). However neither bounded
additive terms nor constant factors will affect the value of the critical exponent, due to
the unbounded denominator in 3. Hence the expressions defining the critical exponents
will give the same values for all vertices.

As noted above, the partition probability functions are identical for all models in
{L(R,H, ρ) : ρ ∈ 2E(H)} and {L(R,H, Q) : Q ∈ P}, so connections between the vertices
of the hypergraph have equal probabilities, and thus equal critical exponents, in all these
models.

This is also true for {L(R∗,H, ρ) : ρ ∈ 2E(H)} and {L(R∗,H, Q) : Q ∈ P}. Sedlock
and Wierman [12] show that L(G,H) and L(G∗,H) have the same set of critical exponent
values for any generator G, which provides the result.

Note that if the limits defining the critical exponents do not exist, the method of
Sedlock and Wierman shows that the lim infs of the quantities are equal and the lim sups
of the quantities are equal for these sets of graphs.
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4 The Random-Cluster Model

The random-cluster model is a generalisation of percolation where the probability of an
edge configuration does not only depend on the number of open edges but also on the
number of its components. The model was introduced by Fortuin and Kasteleyn [4] in
1972, but the partition function of the model was introduced by Tutte as an object in
algebraic graph theory already in 1947 [16].

For a finite graph G with m edges the probability of a configuration ω ∈ 2E(G) with
|ω| open edges and k(ω) components is

φp,q(G, ω) =
1

Zp,q

p|ω|(1 − p)m−|ω|qk(ω) (4)

where Zp,q is a normalising constant.
For an infinite graph there are several different ways to define the random-cluster

measure on 2E(G) (See [8] for a more detailed discussion.), but one possibility is to require
the correct marginal distribution on finite subgraphs.

Given finite Λ ⊂ V (G) and ζ ∈ 2E(G) let Ωζ
Λ denote the finite subset of 2E(G) such

ω(e) = ζ(e) for e ∈ E(G)\E(Λ). Let k(ω, Λ) denote the number of components of ω that
intersect Λ.

We now define the random-cluster measure with boundary condition ζ on Λ as

φζ
λ,p,q(ω) =

{

1

Z
ζ
p,q

p|ω|(1 − p)m−|ω|qk(ω,Λ) ω ∈ Ωζ
Λ

0 ω /∈ Ωζ
Λ

(5)

We now say that a probability measure φ on Ω is a random-cluster measure if

φ(ω|ω(e) = ζ(e) ∀e /∈ E(Λ)) = φζ
λ,p,q(ω)

for φ-a.e. ζ .

4.1 q > 1

Just as for percolation, we may consider the event E∞ that there exists an infinite open
cluster in ω. By using stochastic domination one can show [5] that there exists a perco-
lation threshold pc(q) such that

φp,q(E∞) = 0 p < pc(q)
φp,q(E∞) = 1 p > pc(q)

(6)

and also that

pc(q) 6
pc(1)q

1 − pc(1) + pc(1)q
(7)

As in the case of percolation, we may consider the random-cluster model on our family
of planar graphs and obtain

the electronic journal of combinatorics 17 (2010), #R48 11



Theorem 4.1. For any rotor gadget R, any self-dual plane hypergraph lattice H and any
1 6 q,

pc(q)(L(R,H, ρ)) = pc(q)(L(R,H, RE(H))

for all ρ ∈ 2E(H).

Proof. We will prove the result by showing that the probability of having a set of paths
joining specified terminal vertices in a copy of R does not depend on the embedding of
R. Let A, B, and C be the terminals of R. Our goal is to show that

φζ
R,p,q(ω) = φζ

R′,p,q(ω)

From the definition of φζ
R,p,q we see that the only things that influence the probability

of a configuration ω in R is the number of components k(ω, R) and the number of open
edges in R. By the symmetry of R, we find that R and R′ have exactly the same number
of configurations with a given number of open edges in R and a given value of k(ω, R).
Hence the probability of having a given partition of {A, B, C} will be equal in both cases.

Thus, given two vertices u, v ∈ Hub(L) the probability of having a path from u
to v does not depend on the orientation of the generators used to build L. Likewise
the probability of having an infinite path, which is equal to that of having an infinite
component, does not depend on the orientations.

Since the number of vertices in a cluster is bounded by a constant times the number
of vertices from the hubset it contains, we also get:

Theorem 4.2. The set of critical exponents, if they exist, for the random-cluster model
on L(R,H, ρ) is independent of ρ.

4.2 q < 1

For q < 1 much less is known about the random-cluster model. It is not known if the
model has a percolation threshold of some kind, but there are several interesting limits
as q → 0. One well studied example is the case where q/p → 0. In this case the limiting
measure is the uniform measure on the set of spanning trees of the underlying graph. For
this measure Feder and Mihail [6] proved that negative association holds, as opposed to
the case of the random-cluster model for q > 1. For general q < 1 some type of negative
correlation property is believed to hold as well but this has so far, despite considerable
effort, only been proved for a small number of cases [13]. However, since our construction
relies only on the equality of the conditional distributions, the random-cluster model on
our lattices will display the same kind of equivalence as for 1 6 q.

5 Further directions

The random-cluster model is just the first of many models which show identical behaviour
on all lattices in a family of the type we have constructed. The methods of [1] show that
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the behaviour of the Ising model with an external field will also be independent of ρ for all
members of L(R,H, ρ). In a similar way the results can be extended to the q-state Potts
model with an external field. This can also be extended to e.g. bootstrap percolation.
The number of walks of a given length between any pair of vertices in Hub(L) will be
independent of ρ and thereby the Green’s function for a random walk on L as well.

Indeed it seems hard to find any model defined in terms of nearest-neighbour interac-
tions which will be dependent on the choice of ρ.

For percolation we have described how to compute pc(R) exactly and by Theorem 3.7
we know that the critical exponents are the same for all members of L(R,H, ρ). It would
be interesting to extend the methods of [15] to determine their exact values as well.
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