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Abstract

We present two theorems in the “discrete differential geometry” of positively
curved spaces. The first is a combinatorial analog of the Bonnet-Myers theorem:

• A combinatorial 3-manifold whose edges have degree at most five has edge-
diameter at most five.

When all edges have unit length, this degree bound is equivalent to an angle-deficit
along each edge. It is for this reason we call such spaces positively curved.

Our second main result is analogous to the sphere theorems of Toponogov [12]
and Cheng [2]:

• A positively curved 3-manifold, as above, in which vertices v and w have edge-
distance five is a sphere whose triangulation is completely determined by the struc-
ture of Lk(v) or Lk(w).

In fact, we provide a procedure for constructing a maximum diameter sphere from
a suitable Lk(v) or Lk(w).

The compactness of these spaces (without an explicit diameter bound) was first
proved via analytic arguments in a 1973 paper by David Stone. Our proof is com-
pletely combinatorial, provides sharp bounds, and follows closely the proof strategy
for the classical results.

0 Introduction

The relationship between the curvature of a Riemannian (or semi-Riemannian) space and
its topology is of central interest to differential geometers, topologists, and physicists.
The classical results in this area are numerous, beautiful, and have inspired an enormous
amount of subsequent research. One currently active branch of this venerable tree seeks
combinatorial analogs to these classical theorems and concepts. Recent work along these
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lines can be found in [1], [3], [4], [6], [7], [10] and [11]. Here we present combinatorial
versions of the Bonnet-Myers theorem, and the associated maximum-diameter sphere
theorems of Toponogov [12] and Cheng [2].

1 Overview of Results and Preliminary Definitions

This paper will investigate the geometry of combinatorial manifolds. Briefly stated, a
(boundaryless) combinatorial n-manifold is a simplicial complex in which the link of
each k-simplex is an (n − k − 1)-sphere. The category of such spaces is equivalent to the
category of piecewise-linear (PL) manifolds and, for n 6 4, to the smooth and topological
categories. We emphasize, however, that our results depend only on the structure of
the manifold as an abstract simplicial complex and not on any additional PL or smooth
structure.

Our first main theorem is a combinatorial version of the classical Bonnet-Myers theo-
rem:

Theorem 1.1 Suppose Mn is a connected, boundaryless, combinatorial n-manifold in
which each (n − 2)-simplex has degree at most ǫ(n) where

ǫ(n) =

{

5 n = 2, 3
4 n > 4.

Then Mn is compact and has edge-diameter at most δ(n) where

δ(n) =







3 n = 2
5 n = 3
2 n > 4.

The degree of a simplex σ ∈ Mn, denoted deg(σ), is the number of n-simplices in Mn

having σ as a face. The edge-diameter of Mn, written diam1(M
n), is the minimum

number of edges needed to connect any vertex in Mn to any other. A combinatorial
manifold which satisfies the degree bounds in Theorem 1.1 will be called positively
curved.

Why do we refer to such spaces as positively curved? If we endow Mn with the PL-
metric with unit length edges, the dihedral angles in each n-simplex are all cos−1( 1

n
).

Therefore, the total angle around each (n − 2)-simplex σ is deg(σ) · cos−1( 1
n
). The de-

gree bound ǫ(n) is the largest which guarantees this total angle is less than 2π. In the
Riemannian setting such an angle deficit is intimately related to positive curvature.

Since R
2 and R

3 admit triangulations where the codimension-2 simplices have degree
at most six, the hypotheses cannot be weakened for n 6 3. In fact, in [1] it is shown that
any closed orientable 3-manifold admits a triangulation with edges of degree 4,5 or 6. We
suspect, but have no proof, that weakening the hypothesis for n > 4 would also lead to
non-compact manifolds.

Our second main result is analogous to the rigid sphere theorems of Toponogov [12]
and Cheng [2]:
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Theorem 1.2 Let M be a positively curved combinatorial n-manifold.

1. If vertices v, w ∈ M have edge-distance δ(n) then M is a sphere.

2. If M ′ is another such manifold with vertices v′,w′ at edge-distance δ(n) and there
exists a simplicial isomorphism Ψ : Lk(v) ∼= Lk(v′) then Ψ extends to a simplicial
isomorphism M ∼= M ′.

3. For each (n−1)-sphere L with (n−3)-simplices of degree at most ǫ(n), we explicitly
construct a positively curved M with vertices v and w at edge-distance δ(n) and
Lk(v) = L.

The edge-distance between vertices v, w ∈ Mn is the minimum number of edges needed
to connect them and will be denoted by d1(v, w).

This paper will prove the n = 3 case of the two main theorems. For n = 2 the results
are classically known and the n > 4 cases follow from the classification in [13]. The
compactness of positively curved combinatorial 3-manifolds (without an explicit diameter
bound) was first proved via analytic methods in a 1973 paper, [11], by David Stone. Our
proof is completely combinatorial, provides sharp bounds, and follows closely the proof
strategy for the classical results.

2 Hops and Jumps

Though our final results involve paths containing only edges, the proof will use a slightly
expanded set of paths. All these will be straight lines when restricted to an individual
simplex. In what follows, we use σ̂ to denote the barycenter of a simplex σ.

Definition 2.1 (Hops) Consider an (n − 1)-simplex τ ∈ Mn and the two n-simplices
v1 ∗ τ and τ ∗ v2 where v1 and v2 are vertices. The PL-path from v1 through τ̂ to v2 will
be called an n-dimensional hop from v1 to v2 (or an n-hop, or just a hop). We will
say that τ and the hop are transverse to each other. See Figure 1.

A nice consequence of this definition is the following fact, given without proof.

Lemma 2.2 Suppose v ∈ Mn is a vertex. Vertices w1, w2 ∈ Lk(v) are connected by an
n-hop within St(v) if and only if they are connected by an (n − 1)-hop within Lk(v).

In dimension three it will be convenient to add another type of PL-path. See Figure
2 for an illustration.

Definition 2.3 (Jump) Consider a 3-simplex e1 ∗ e2 and 2-simplices v1 ∗ e1 and e2 ∗ v2,
where the ei are edges and the vi vertices. The PL-path from v1 through ê1 and ê2 to v2

will be called a jump from v1 to v2. We will say that the jump and each edge ei are
transverse to each other. See Figure 2.
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Figure 2: A jump

The length of a hop or jump will be its length as a PL-path, computed using the PL-
metric in which all edges have unit length. Using some Euclidean geometry these values
can be easily calculated.

Fact 2.4 An n-dimensional hop has length Hn =
√

2 + 2
n

and a jump has length J =
√

3 + 1
2

√
2.

Restricting ourselves to paths containing only edges, hops, and (in dimension three)
jumps gives a distance function on the vertices of Mn which we denote d. The distance
between sets of simplices A, B ⊂ Mn will be given by:

d(A, B) = min{d(v, w) | v ∈ A, w ∈ B are vertices}.

Diameters and other functions derived from d will have their familiar notations.
We will use the following terminology to refer to paths which minimize or almost

minimize distance.

Definition 2.5 If the length of a path P equals the distance between its endpoints then
we call it minimal. If each proper subpath of P is minimal we say that P is almost

minimal.

Note that a minimal path is necessarily almost-minimal, but the converse need not hold.
Also note that while a path containing a single edge must be minimal, a path containing
a single hop (or jump) may not be.

Consider a path containing a single edge, hop or jump. For an edge, the first two
simplices the path passes through uniquely determine the remainder of the path. For
hops and jumps this is no longer the case. However, minimal hops and jumps continue to
have this useful property.
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Lemma 2.6 Suppose P and Q are minimal paths each containing a single edge, hop or
jump. If P and Q pass through the same initial two simplices then the paths are identical.

proof. Clearly P and Q are either both edges, both hops or both jumps. Edges are
by definition uniquely determined by their initial two simplices. So, suppose P and Q

are hops both of which begin on the vertex v1 and then passing into the n-simplex v1 ∗ τ

where τ is an (n − 1)-simplex. Since M is a boundaryless combinatorial n-manifold, the
star of τ contains exactly two n-simplices, v1 ∗ τ and v2 ∗ τ . If P and Q are minimal they
must end on v2 and are therefore identical as desired. This completes the proof for n 6= 3.

When n = 3 we must also consider jumps. Let P and Q be minimal jumps both of
which begin on the vertex v1 and then pass into the 2-simplex v1 ∗ e1, where e1 is the first
edge transverse to each jump. The remainder of each jump is determined by selecting
the other transverse edge e2 ∈ Lk(e1) and the final vertex v2 ∈ Lk(e2). If deg(e1) 6 4
then d(v1, e2) 6 1 and by the structure of a jump we would have d(v1, v2) 6 1 + 1 < J ,
contradicting minimality of the jump. Therefore, deg(e1) = 5 and there is exactly one
choice of e2. A similar argument shows that deg(e2) = 5 and there is exactly one choice
of ending vertex v2. Therefore, P and Q are identical as desired. �

We will need notation for the vertices along a path and also the order in which the
hops, jumps and edges occur.

Definition 2.7 Let P v be the ordered list of vertices which P visits. Vertices other than
the first and last we call internal. P l will denote the ordered list containing a “1”, “Hn”,
or “J” according to the order in which the edges, hops and jumps occur.

Note that P v does not necessarily uniquely determine the path P or even the list P l.

3 Two Dimensional Case

Suppose M2 is a positively curved combinatorial surface. The complete census of such
surfaces is classically known. Therefore, the n = 2 case of our main theorems can be
proved by inspection. We will also need some additional results concerning these surfaces,
which can also be proved by inspection.

The first result we need concerns the structure of minimal paths and the structure of
the surface along such paths.

Lemma 3.1 If P is a minimal path with one internal vertex x then deg(x) = 5 and P

has length 1 +H2. Moreover, given the initial hop or edge in P the remainder is uniquely
determined.

Notice that according to Lemma 3.1, if a non-trivial minimal path in M2 can be extended
to a longer minimal path then this extension is unique, just as in the Riemannian setting.

It turns out that a minimal path in a positively curved surface can have at most one
internal vertex. This means we have:
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Figure 3: All the positively curved surfaces with d1(v, w) = 3. The arrows indicate that
the corresponding edges are glued together.

Corollary 3.2 d(v, w) ∈ {0, 1, H2, 1 + H2} for any vertices v, w ∈ M2. Moreover,
d(v, w) = 1 + H2 if and only if d1(v, w) = 3.

Also, the vertex at maximum distance is unique:

Corollary 3.3 For a fixed vertex v, we have d1(v, w) = 3 for at most one vertex w.

The positively curved surfaces of maximum diameter are depicted in Figure 3. For these
surfaces we have the following facts:

Corollary 3.4 Suppose d1(v, w) = 3 for vertices v, w in a positively curved surface M2.
Then, we have:

1. deg(v) = deg(w).

2. Any minimal hop beginning on v ends on a vertex in Lk(w).

3. Any vertex in Lk(v) is the beginning of a minimal hop to w.
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Figure 4: The fi, xi, yi, ei from Lemma 3.6 (1) and the fi from Lemma 3.5 (1)

The following two diameter properties uniquely characterize the icosahedron among
the positively curved surfaces.

Lemma 3.5 For all 2-simplices f1, f2 and 1-simplices e1, e2 in a positively curved surface
M2 we have

1. d(f1, f2) 6 H2 , and

2. d(St(e1), e2) 6 H2.

Moreover, for fixed f1 (or e1) at most one f2 (or e2) gives equality, and this occurs only
when M2 is an icosahedron. See Figures 4 and 5.

When equality occurs in Lemma 3.5 there are some specific simplices to which we will
need to refer.

Lemma 3.6 Let M2 be an icosahedron.

1. Suppose d(f1, f2) = H2 for 2-simplices f1, f2 ∈ M2. For each vertex xi ≺ f1 there
is a unique edge ei ≺ f2 and vertex yi ∈ Lk(ei) so that [xi, yi] is an edge. Similarly,
each ei ≺ f2 gives unique yi ∈ Lk(ei) and xi ≺ f1 such that [xi, yi] is an edge. See
Figure 4.

2. Suppose d(St(e1), e2) = H2 for edges e1, e2 ∈ M2. An edge connects each vertex in
Lk(e1) to exactly one vertex in Lk(e2) (and vice-versa). See Figure 5.

Finally, we mention a convenient fact which lets us apply lower dimensional results to
the higher dimensional cases.

Lemma 3.7 If deg(σ ∗ τ) = k within Mn then deg(τ) = k within Lk(σ). So, if Mn is
positively curved then so is each Lk(σ) ⊂ Mn.
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Figure 5: The ei from Lemma 3.5 (2) and Lemma 3.6 (2)

4 Combinatorial Bonnet-Myers Theorem

In this section we prove the n = 3 case of our first main theorem, which we restate here
for the readers convenience.

Theorem 1.1 A combinatorial 3-manifold with edges of degree at most five has edge
diameter at most five.

So, let M3 be such a manifold. Our main argument begins by elucidating the structure
of M3 near an internal vertex of a minimal path.

Lemma 4.1 Suppose P is a minimal path with P v = (v0, v1, v2). Within the positively
curved surface L = Lk(v1) we know:

1. If P is a two edge path then dL(v0, v2) = 1 + H2.

2. If P is a two hop path then dL(f1, f2) = H2 where the 2-simplices f1, f2 ∈ Lk(v1)
are transverse to the hops.

3. If P is a two jump path then dL(StL(e1), e2) = H2 where the edges e1, e2 ∈ Lk(v1)
are transverse to the jumps.

In each case, given v0, f1, or e1 the corresponding v2, f2, or e2 is uniquely determined.
In cases (2) and (3), Lk(v1) is an icosahedron.

notation: We write dL to denote the distance within the 2-sphere L rather than in
M3. Similarly, StL(σ) ≡ St(σ) ∩ L and LkL(σ) ≡ Lk(σ) ∩ L are the star and link of σ

respectively, within L.

proof. L = Lk(v1) is a positively curved surface by Lemma 3.7.
part (1): If dL(v0, v2) were smaller, Corollary 3.2 and Lemma 2.2 would imply that

d(v0, v2) 6 H3, contradicting the minimality of P . Thus, dL(v0, v2) = 1 + H2 as desired.
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part (2): We cannot have dL(f1, f2) = 1+H2 by Lemma 3.5, so assume dL(f1, f2) 6 1.
By the structure of hops d(v0, x) 6 1 and d(y, v2) 6 1 for all vertices x ≺ f1 and y ≺ f2.
Putting these inequalities together gives d(v0, v2) 6 1+1+1 < 2H3. Since this contradicts
the minimality of P we conclude dL(f1, f2) = H2.

part (3): By Lemma 3.5 we cannot have dL(StL(e1), e2) = 1 + H2, so assume
dL(StL(e1), e2) 6 1. Let ẽ2 be the other transverse edge in the jump transverse to e2.
By the structure of jumps and the fact that deg(e1) 6 5 we get d(v0, x) 6 2 for each
vertex x ∈ LkL(e1). Similarly, deg(ẽ2) 6 5 implies d(y, v2) 6 H3 for each vertex y ≺ e2.
Combining these inequalities shows d(v0, v2) 6 2 + 1 + H3 < 2J . Since this contradicts
the minimality of P , we have dL(StL(e1), e2) = H2.

In case (1), Corollary 3.3 implies v2 is unique given v0 and v1. In cases (2) and
(3), Lemma 3.5 shows that Lk(v1) is an icosahedron in which f2 and e2 are uniquely
determined by f1 and e1 respectively. �

What about internal vertices adjacent to other combinations of edges, hops, and jumps
within a minimal path? It turns out these cannot occur.

Lemma 4.2 A minimal path contains either all edges, all hops, or all jumps.

proof. Let P be a minimal path with P v = (v0, v1, v2), and note that L = Lk(v1) is a
positively curved surface by Lemma 3.7.

case 1: Suppose P l = (1, H3) with f = [x0, x1, x2] transverse to the hop. By Corol-
laries 3.2 and 3.3, dL(v0, f) 6 H2. Since d(xi, v2) = 1 for each xi, if dL(v0, f) 6 1 we would
get d(v0, v2) 6 2 < 1 + H3, contradicting minimality of P . Therefore, dL(v0, f) = H2 and
a 2-hop exists in L from v0 to some xi (WLOG x0). Let e be transverse to this 2-hop.

Consider the 2-simplices y1 ∗ [x0, x1] and y2 ∗ [x0, x2] in L, each sharing an edge with f .
Since the distinct edges [y1, x1], [x1, x2], [x2, y2], and e lie in LkL(x0) and deg(x0) 6 5 we
know yi ≺ e for some yi (WLOG y1). This means a jump exists from v0 to v2 using the
simplices v0 ∗ [v1, y1], [v1, y1] ∗ [x0, x1], and [x0, x1] ∗ v2. Since J < 1 + H3 this contradicts
the minimality of P .

case 2: Suppose P l = (1, J) with e1 ∈ Lk(v1) and e2 ∈ Lk(v2) transverse to the jump.
By Corollary 3.3 and Lemma 2.2 we have d(v0, e1) 6 H3. Since deg(e2) 6 5 we know
d(x, v2) 6 H3 for each x ≺ e1. Combining these inequalities gives d(v0, v2) 6 2H3 < 1+J

which contradicts the minimality of P .
case 3: Suppose P l = (H3, J) with f transverse to the hop, and e1 ∈ Lk(v1) and

e2 ∈ Lk(v2) transverse to the jump. Let f1 and f2 be the two 2-simplices of StL(e1).
By Lemma 3.5, for some fi we have dL(f, fi) 6 1. Thus, by the structure of hops
d(v0, StL(e1)) 6 2. Using the structure of jumps and deg(e1) 6 5 we get d(x, v2) 6 2 for
each vertex x ∈ StL(e1). Combining these inequalities gives d(v0, v2) 6 2 + 2 < H3 + J

which contradicts the minimality of P . �

Lemma 2.6, Lemma 4.2 and the uniqueness given in Lemma 4.1 imply that, just as in
the Riemannian setting, if a non-trivial minimal path can be extended to a longer minimal
path then this extension is unique.
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Corollary 4.3 (Unique Extension) If two non-trivial minimal paths of equal length
pass through the same first two simplices then the paths are identical.

Note that unique extension would not hold if our space of paths were defined using only
edges. This illustrates an important advantage to expanding the space of paths to include
those containing hops and jumps.

Now, we can begin to give arguments bounding the length of minimal paths in M3.
We start with paths containing only jumps.

Lemma 4.4 A minimal path contains at most two jumps.

proof. Suppose P contains three jumps, let P v = (v0, v1, v2, v3), and let e1 ∈ Lk(v2)
and e2 ∈ Lk(v3) be transverse to the final jump. Since deg(e1) 6 5, the structure of jumps
implies d(v2, x) 6 H3 for some x ≺ e2 and therefore d(v0, x) 6 2J + H3. By the structure
of jumps d(x, v3) 6 1, so that minimality of P gives d(v0, x) > 3J − 1. Combining these
two inequalities implies 3J − 1 6 d(v0, x) 6 2J + H3. This is a contradiction because no
minimal path allowed by Lemma 4.2 has length in this interval. �

Our next lemma restricts the number of edges in a minimal path.

Lemma 4.5 Suppose Px is a five edge almost minimal path from v to w with first internal
vertex x ∈ Lk(v). Then, each 2-simplex f ∈ Lk(v) with x ≺ f is transverse to the first
hop in a three hop path Pf from v to w.

proof. (See Figure 6.) Suppose Px is an almost minimal five-edge path with P v
x =

(v, x, x1, x2, x3, w). By Lemma 4.1 (1), within the link of each internal vertex of Px, the
previous vertex and subsequent vertex along Px have maximum distance.

Any f ∈ Lk(v) with x ≺ f is transverse to a 3-hop from v to a unique w1 ∈ Lk(x).
This means a 2-hop in Lk(x) exists from v to w1. Using Corollary 3.4 (2) we know
w1 ∈ Lk(x1) so that (3) then provides a 2-hop in Lk(x1) from w1 to x2 transverse to some
edge ẽ. Let w2 be the vertex at the end of the unique 2-hop in Lk(x2) which begins on
x1 and is transverse to ẽ. Since a 2-hop from x1 to w2 exists in Lk(x2), Corollary 3.4
(2) shows w2 ∈ Lk(x3) and then Corollary 3.4 (3) gives a 2-hop in Lk(x3) from w2 to w.
Thus, a 3-hop from w2 to w exists in M3.

So far, we know vertices w1, x1, x2, w2 exist (in that order) within Lk(ẽ). If deg(ẽ) 6 4
then d(w1, w2) 6 1 which, along with d(w2, x3) 6 1, would give d(v, x3) 6 H3 + 2. This
would contradict the almost-minimality of P , so we conclude deg(ẽ) = 5. Therefore a
3-hop exists from w1 to w2. This means a three hop path Pf with P v

f = (v, w1, w2, w)
exists in M3 with the desired properties. �

Since 3H3 < 5 we get:

Corollary 4.6 A minimal path contains at most four edges.

Next, we bound the number of hops in a minimal path using:
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Lemma 4.7 Suppose Pf is a three hop almost minimal path from v to w with the 2-
simplex f ∈ Lk(v) transverse to the first hop. Then, each edge e ≺ f is transverse to the
first jump in a two jump path Pe from v to w.

proof. (See Figure 6.) Let P v
f = (v, w1, w2, w) with f1 and f2 transverse to the second

and third hops respectively. By Lemma 4.1 (2) we know the Lk(wi) are icosahedra in
which d(f, f1) = H2 and d(f1, f2) = H2. By Lemma 3.6 (1) applied to Lk(w1), each e ≺ f

corresponds to unique vertices x̃1 ∈ Lk(e) ∩ Lk(w1) and z1 ≺ f1 such that [x̃1, z1] is an
edge. This means we can construct a jump from v to z1 using v ∗ e, e ∗ [x̃1, w1], and
[x̃1, w1] ∗ z1. Now, since z1 ≺ f1, Lemma 3.6 (1) applied to Lk(w2) gives a unique edge
e3 ≺ f2 and vertex x̃2 ∈ Lk(e3)∩Lk(w2) so that [z1, x̃2] is an edge. Thus we can construct
a jump from z1 to w using z1 ∗ [x̃2, w2], [x̃2, w2]∗e3, and e3 ∗w. This completes the desired
path Pe. �

Since 2J < 3H3 we have the desired corollary:

Corollary 4.8 A minimal path contains at most two hops.

Lemma 4.4 and Corollaries 4.6 and 4.8 together show that Diam(M3) 6 2J . In fact,
we have this stronger result:

Corollary 4.9 d(v, w) ∈ {0, 1, H3, 2, J, 3, 2H3, 4, 2J} for any vertices v, w ∈ M3.

Thus, since a hop can spanned by two edges and a jump by three, d(v, w) 6= 2J implies
d1(v, w) 6 4. Our next result shows that d1(v, w) = 5 for d(v, w) = 2J , completing the
proof of Theorem 1.1 for n = 3.

Lemma 4.10 Suppose Pe is a two jump minimal path from v to w and the edge e ∈ Lk(v)
is transverse to the first jump. Then, each vertex y ≺ e is the first internal vertex of a
five edge path Py from v to w.
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proof. (See Figure 6.) Suppose P v
e = (v, z1, w) and let e1 ∈ Lk(z1) be transverse to the

first jump, and e2 ∈ Lk(z1), e3 ∈ Lk(w) transverse to the second. Since the first jump is
minimal we must have deg(e1) = 5, giving a unique vertex y1 ∈ Lk(e1)∩Lk(z1) such that
[y, y1] an edge.

By Lemma 4.1 (3), Lk(z1) is an icosahedron and dLk(z1)(St(e1), e2) = H2. Therefore
Lemma 3.6 (2) associates to y1 a unique y2 ∈ Lk(e2) ∩ Lk(z1) where [y1, y2] is an edge.
Since the second jump is minimal deg(e2) = 5 and we have a unique vertex y3 ≺ e3 such
that [y2, y3] is an edge. Since the structure jumps gives an edge [y3, w] we have finished
constructing our Py. �

5 Structure of an M 3 with Maximum Diameter

Throughout this section we suppose d1(v, w) = 5 for some vertices v, w ∈ M3. Since hops
can be traversed by two edges, and jumps by three, d(v, w) = 2J by Corollary 4.9. So, let
P be a minimal path from v to w realizing this distance. Repeatedly applying Lemmas
4.10, 4.7 and 4.5 allows us to generate paths Pσ from v to w passing through each simplex
σ ∈ Lk(v).

Lemma 5.1 Pσ is minimal if σ is an edge and almost minimal otherwise.

proof. If σ is an edge then Pσ has length 2J and must be minimal since d(v, w) = 2J .
Suppose σ is a 2-simplex. If Pσ is not almost minimal then some two-hop subpath of Pσ

is not minimal. By Corollary 4.9, this would imply d(v, w) 6 3 + H3 < 2J contradicting
d(v, w) = 2J . Similarly, if σ is a vertex and Pσ is not almost minimal, then some four-edge
subpath of Pσ is not minimal. By Corollary 4.9 this would imply d(v, w) 6 2H3 + 1 < 2J
which is again a contradiction. �

The above lemma and Corollary 4.3 imply that each path Pσ is uniquely determined by
σ. Since every vertex in M lies on some minimal path beginning on v, this provides a
convenient way to refer to vertices in M .

Definition 5.2 We say a vertex x ∈ M has coordinates 〈σ, i〉 ∈ Lk(v) × Z if x is the
(i + 1)-st vertex along Pσ.

These coordinates are very similar to geodesic normal coordinates in the Riemannian
setting. Just as in the case of a standard Riemannian sphere, except for the “antipodal”
points v and w, each vertex in M has unique coordinates.

Corollary 5.3 Each vertex in M \ {v, w} is an internal vertex of a unique Pσ and there-
fore has unique coordinates.

Now we will explicitly describe the structure of M near each vertex except v and
w. Specifically, for each internal vertex 〈σ, i〉 along each Pσ, we will list the simplices in
Lk(〈σ, i〉) and give explicit coordinates for their vertices. Essentially, all the information
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needed is already implicit in the proofs of Lemmas 4.5, 4.7 and 4.10. Since Figure 6
depicts the face relations between the various simplices which appear in these proofs, we
encourage the reader to refer to this figure while reading the proofs of the next three
lemmas.

We begin by looking at the internal vertices along Px where x is a vertex.

Lemma 5.4 Consider a vertex 〈x, i〉 where x ∈ Lk(v) is a vertex and i = 1, . . . , 4. The
structure of Lk(〈x, i〉) is as shown in Figure 7.

proof. Lemma 4.1 implies each 2-sphere Lk(〈x, i〉) has maximum diameter with vertices
〈x, i−1〉 and 〈x, i+1〉 at maximum distance. So, Corollary 3.4 shows that for i = 1, . . . , 4,
within Lk(〈x, i〉) we have deg(〈x, i − 1〉) = deg(〈x, i + 1〉). (Let k denote this degree.)
This means the Lk(〈x, i〉) for i = 1, . . . , 4 are all isomorphic, as shown in Figure 7.

Lemma 4.1 fixes the relative positions of the vertices 〈x, 0〉, . . . , 〈x, 5〉 in the table.
Clearly, if the vertices xi ∈ Lk(v) for i = 1, . . . k are as shown in the lower drawing, then
the 〈xi, 1〉 must be placed as they are in the table. The proof of Lemma 4.5 applied to Px

fixes the positions of the vertices 〈fi, 1〉 and 〈fi, 2〉 for i = 1, . . . , k. Finally, the proof of
Lemma 4.10 applied to each Pei

fixes the placement of the vertices 〈ei, 1〉 for i = 1, . . . , k.
�

Next, we examine the internal vertices along Pf where f is an 2-simplex.

Lemma 5.5 Consider a vertex 〈f, i〉 where f ∈ Lk(v) is a 2-simplex and i = 1, 2. The
structure of Lk(〈f, i〉) is as shown in Figure 8.

proof. Lemma 4.1 implies Lk(〈f, 1〉) and Lk(〈f, 2〉) are icosahedra as shown in Figure
8. Clearly, if the vertices x1, x2 and x3 are as shown in the lower drawing, then the
relative placement of 〈x1, 1〉, 〈x2, 1〉 and 〈x3, 1〉 must be as shown in the table. The proof
of Lemma 4.7 applied to Pf fixes the position of the vertices 〈ei, 1〉 for i = 1, 2, 3. The
proof of Lemma 4.10 applied to the paths Pei

fixes the positions of vertices 〈xi, j〉 for
i = 1, 2, 3 and j = 2, 3, 4. Finally, the proof of Lemma 4.5 applied to the paths Pxi

fixes
the positions of the vertices 〈fi, j〉 for i = 1, 2, 3 and j = 1, 2. �

Finally, we examine the internal vertex of Pe where e is an edge.

Lemma 5.6 Consider a vertex 〈e, 1〉 where e ∈ Lk(v) is an edge. The structure of
Lk(〈e, 1〉) is as shown in Figure 9.

proof. Lemma 4.1 implies Lk(〈e, 1〉) is an icosahedron as shown in Figure 8. Applying
the proof of Lemma 4.7 to Pf1

and Pf2
fixes the relative positions of the vertices 〈fi, j〉

for i = 1, 2 and j = 1, 2. Applying the proof of Lemma 4.7 again to Pf1
and Pf2

fixes the
positions of the eij for i = 1, 2 and j = 1, 2. Finally, applying the proof of Lemma 4.10 to
Pe fixes the positions of the vertices 〈xi, j〉 for i = 1, 2 and j = 2, 3. �

Now we are ready to proceed with the proof of Theorem 1.2 part (2) for n = 3. For
the reader’s convenience we restate this result.
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Z 〈x, 1〉 〈x, 2〉 〈x, 3〉 〈x, 4〉

A 〈x, 0〉 〈x, 1〉 〈x, 2〉 〈x, 3〉

B1 〈x1, 1〉 〈f1, 1〉 〈e1, 1〉 〈f1, 2〉
...

...
...

...
...

Bk 〈xk, 1〉 〈fk, 1〉 〈ek, 1〉 〈fk, 2〉

C1 〈f1, 1〉 〈e1, 1〉 〈f1, 2〉 〈x1, 4〉
...

...
...

...
...

x

x
1

f
k

f
2

x
k

x
2

e
2

e
1

f
1

e
k

 

k = deg(x)

e
3

v

Ck 〈fk, 1〉 〈ek, 1〉 〈fk, 2〉 〈xk, 4〉

D 〈x, 2〉 〈x, 3〉 〈x, 4〉 〈x, 5〉

Figure 7: (See Lemma 5.4) This figure specifies the structure of Lk(〈x, i〉) where x is
a vertex in Lk(v) with degree k and i = 1, . . . , 4. The coordinates of each vertex in
Lk(〈x, i〉) are listed in the table as entries in the column headed 〈x, i〉. The other simplices
in Lk(〈x, i〉) are as shown in the top left drawing. In this drawing, each vertex has a label
Z, A, . . . , D which corresponds to a row in the table. The simplices σ ∈ Lk(v) which
appear as coordinates 〈σ, j〉 in the table are located “near” x in Lk(v). The specific
face-relations between x and these “nearby” σ are indicated in the lower left drawing. In
this way, the table and the two drawings completely specify the structure of Lk(〈x, i〉) for
i = 1, . . . , 4.
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Z
Z 〈f, 1〉 〈f, 2〉

A 〈x1, 1〉 〈e1, 1〉

B 〈x2, 1〉 〈e2, 1〉

C 〈x3, 1〉 〈e3, 1〉

D 〈f1, 1〉 〈x2, 3〉

E 〈f2, 1〉 〈x3, 3〉

F 〈f3, 1〉 〈x1, 3〉

G 〈x1, 2〉 〈f1, 2〉

f

f
2

f
3

f
1

e
3 e

2

e
1 x

2
x

1

x
3

 
v

H 〈x2, 2〉 〈f2, 2〉

I 〈x3, 2〉 〈f3, 2〉

J 〈e1, 1〉 〈x1, 4〉

K 〈e2, 1〉 〈x2, 4〉

L 〈e3, 1〉 〈x3, 4〉

Figure 8: (See Lemma 5.5) This figure specifies the structure of Lk(〈f, i〉) where f is a
2-simplex in Lk(v) and i = 1, 2. The coordinates of each vertex in Lk(〈f, i〉) are listed in
the table as entries in the column headed 〈f, i〉. The other simplices in Lk(〈f, i〉) are as
shown in the top left drawing. In this drawing, each vertex has a label Z, A, . . . , L which
corresponds to a row in the table. The simplices σ ∈ Lk(v) which appear as coordinates
〈σ, j〉 in the table are located “near” f in Lk(v). The specific face-relations between f

and these “nearby” σ are indicated in the lower left drawing. In this way, the table and
the two drawings completely specify the structure of Lk(〈f, i〉) for i = 1, 2.
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E

F

G

HI

J

K

L

  

  

Z
Z 〈e, 1〉

A 〈x1, 2〉

B 〈f1, 1〉

C 〈f2, 1〉

D 〈e11, 1〉

E 〈x2, 2〉

F 〈e12, 1〉

G 〈x1, 3〉

e

e
11

f
2

e
21

f
1

e
12

e
22

x
1 x

2

 

v

H 〈e21, 1〉

I 〈e22, 1〉

J 〈f1, 2〉

K 〈x2, 3〉

L 〈f2, 2〉

Figure 9: (See Lemma 5.6) This figure specifies the structure of Lk(〈e, 1〉) where e is
an edge in Lk(v). The coordinates of each vertex in Lk(〈e, 1〉) are listed in the table as
entries in the column headed 〈e, 1〉. The other simplices in Lk(〈e, 1〉) are as shown in the
top left drawing. In this drawing, each vertex has a label Z, A, . . . , L which corresponds
to a row in the table. The simplices σ ∈ Lk(v) which appear as coordinates 〈σ, j〉 in
the table are located “near” e in Lk(v). The specific face-relations between e and these
“nearby” σ are indicated in the lower left drawing. In this way, the table and the two
drawings completely specify the structure of Lk(〈e, 1〉).
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Theorem 1.2 (Part 2) Let M be a positively curved combinatorial 3-manifold with
vertices v, w at edge-distance five. If M ′ is another positively curved 3-manifold with
vertices v′,w′ at edge-distance five and there exists a simplicial isomorphism Ψ : Lk(v) ∼=
Lk(v′) then Ψ extends to a simplicial isomorphism M ∼= M ′.

proof. Let Ψ : Lk(v) → Lk(v′) be the given simplicial isomorphism. We have seen
that each vertex in M has coordinates in Lk(v) × Z. Similarly, each vertex in M ′ has
coordinates in Lk(v′) × Z. We can therefore extend Ψ as follows, using coordinates to
refer to vertices.

{vertices of M} Ψ−→ {vertices of M ′}
〈σ, i〉 7−→ 〈Ψ(σ), i〉

Corollary 5.3 implies this is a well-defined bijection which agrees with the original Ψ on
the vertices of Lk(v). We can extend Ψ to an isomorphism Ψ : M → M ′ by sending
τ = [x0, . . . , xk] 7→ [Ψ(x0), . . . , Ψ(xk)] = Ψ(τ) provided that Ψ(τ) ∈ M ′ for each τ ∈ M .

Since M is a combinatorial 3-manifold, it is enough to check that Ψ(τ) ∈ M ′ when
τ = [x0, . . . , x3] is an arbitrary 3-simplex in M . By Corollary 5.3, some xi (WLOG x0)
is an internal vertex of some Pσ and has unique coordinates 〈σ, k〉 where σ ∈ Lk(v) and
k > 1. Now, depending on the dimension of σ, we can apply either Lemma 5.4, 5.5 or 5.6
at the vertex x0. This uniquely identifies the vertices x1, x2 and x3 as having coordinates
〈σ1, k1〉, 〈σ2, k2〉 and 〈σ3, k3〉 respectively.

By the definition of Ψ we know Ψ(x0) ∈ M ′ has coordinates 〈Ψ(σ), k〉 and Ψ(xi)
has coordinates 〈Ψ(σi), ki〉 for i = 1, 2, 3. Since Ψ is a simplicial isomorphism, σ and
Ψ(σ) are either both 2-simplices, both edges, or both vertices of the same degree (within
Lk(v) and Lk(v′) respectively). Moreover, whatever the relative positions in Lk(v) be-
tween σ and the σi, the corresponding simplices Ψ(σ) and Ψ(σi) must have the same
relative positions in Lk(v′). Now, we apply either Lemma 5.4, 5.5 or 5.6 at the vertex
〈Ψ(σ), k〉. This implies that if the vertices 〈σi, ki〉 form a 2-simplex in Lk(〈σ, k〉) then
the corresponding vertices 〈Ψ(σi), ki〉 must form a 2-simplex in Lk(〈Ψ(σ), k〉). Therefore,
Ψ(τ) = [Ψ(x0), Ψ(x1), Ψ(x2), Ψ(x3)] = [〈Ψ(σ), k〉, 〈Ψ(σ1), k1〉, 〈Ψ(σ2), k2〉, 〈Ψ(σ3), k3〉] is a
3-simplex in M ′ as desired. �

We finish the section with the proof of part (3) of Theorem 1.2 which we restate here for
the reader’s convenience.

Theorem 1.2 (Part 3) For each 2-sphere L with vertices of degree at most five, we
explicitly construct a positively curved M3 with vertices v and w at edge-distance five
and Lk(v) = L.

proof. Suppose L is a positively curved combinatorial 2-sphere. We wish to find a
positively curved 3-manifold M in which d1(v, w) = 5 and Lk(v) = L. To do this we
simply use Figures 7, 8 and 9 to define all the new simplices we need for M , based on the
structure of L. There are four things to check. First, this procedure must consistently
define a simplicial complex. That is, we must check that none of the information in
Figures 7, 8 and 9 is contradictory when the portions of Lk(v) shown in the lower drawing

the electronic journal of combinatorics 17 (2010), #R49 17



e1 e2

Figure 10: Discrete Morse path from e1 to e2

in each figure overlap. Second, we need to verify that M is a combinatorial 3-manifold by
showing that the link of every vertex in M is a 2-sphere. Third, we must check that M

is positively curved by demonstrating each edge in M has degree at most five. Finally,
we should verify that the vertices v and w have edge-distance five. This can be done by
computing the edge-distance to v for each vertex in Figures 7, 8 and 9, starting at v and
working towards w. These verifications are tedious, but all of the relevant information is
contained in Figures 7, 8 and 9. Once we are done, we see that M is indeed the desired
combinatorial 3-manifold. �

6 Forman’s Discrete Morse Theory

It remains to show that any maximum diameter M is a sphere. To do this, we use
Discrete Morse Theory. This is a beautiful discrete version of classical Morse theory
developed by Robin Forman in [5]. It requires very little structure in the underlying space.
Here, we need only assume that M is a finite simplicial complex.

Definition 6.1 A discrete Morse arrow is a codimension-1 pair σk−1 ≺ τk of sim-
plices from M . We depict this by placing an arrow pointing from σ into τ .

These arrows can be put together to form paths.

Definition 6.2 A discrete Morse path is a list of simplices σ1, . . . , σk for which, al-
ternately

1. σi ≻ σi+1 are a codimension-1 pair but not part of an arrow, and

2. σi ≺ σi+1 follows a discrete Morse arrow.

See Figure 10 for an illustration of a discrete morse path.
Analogous to the classical notion of a Morse function on a smooth manifold is the

following:

Definition 6.3 A set F of discrete Morse arrows on M is called a discrete Morse

function if

1. no simplex in M appears in more than one arrow, and
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2. no discrete Morse path using the arrows in F forms a loop.

A simplex not part of any arrow is called critical.

The fundamental theorem in Discrete Morse Theory is then:

Theorem 6.4 (Forman) If F is a discrete Morse function on M with ci critical i-
simplices then M is (simple)-homotopy equivalent to a CW-complex containing ci i-cells.

We will need only one other result from Forman’s work. It follows from Theorem 6.4 and
Whitehead’s Theorem of Regular Neighborhoods.

Theorem 6.5 (Forman) If a combinatorial manifold with boundary admits a discrete
Morse function whose only critical simplex is a vertex then that manifold is homeomorphic
to a ball.

6.1 Constructing Discrete Morse Functions

We begin with an arbitrary function

g : {vertices in M} → O
assigning a value in some totally ordered set O to each vertex of M . We call this function
our vertex ordering function. From g we will construct a Discrete Morse Function on
M whose arrows point more-or-less in the direction of decreasing g.

Now for a few definitions and some notation. We will need a convenient way to denote
the maximum of g on a simplex. So, let

g(σ) = max
x�σ

g(x).

We also define notation for the number of vertices in a simplex which attain the maximum.
That is, we let

g#(σ) = |{x | x ≺ σ is a vertex with g(x) = g(σ)}|.
Next, we define sets describing the local behavior of g.

Definition 6.6 Let g be any vertex ordering function on M . The constant set of M is
given by

Cg(M) = {σ ∈ M | g(x) = g(σ) for every vertex x ≺ σ}.
For any simplex σ ∈ Cg(M) we define the following two sets. The descending link of σ

is the subcomplex of Lk(σ) given by

Lk−
g (σ) = {τ ∈ Lk(σ) | g(τ) < g(σ)}.

The descending star of σ is the subset of St(σ) given by

St−g (σ) = {σ} ∪ {σ ∗ τ | τ ∈ Lk−
g (σ)}.

When the identity of g is clear, we will usually omit the “g” from the above notations.
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Our first lemma shows that any simplicial complex is the disjoint union of its descending
stars.

Lemma 6.7 For any M and g we have M =
⊔

σ∈Cg(M) St−g (σ).

proof. Consider ρ ∈ M . If ρ ∈ C(M) then ρ ∈ St−(ρ) by definition. If ρ ∈ M \ C(M)
then ρ ∈ St−(σ) where the vertex set of σ contains exactly the vertices of ρ with largest
g-value. Since σ is uniquely determined by ρ, the descending stars St−(σ) are disjoint. �

Starting from a set of discrete Morse arrows on a descending link we can construct
sets of arrows on the corresponding descending star.

Definition 6.8 Suppose σ is in C(M). We say that a set of discrete Morse arrows F
∗

on St−(σ) is induced by a set of discrete Morse arrows F on Lk−(σ) if F
∗ is constructed

in the following manner.

1. If Lk−(σ) contains a vertex v which is not part of an arrow in F then we place an
arrow in F

∗ from σ to σ ∗ v.

2. We place an arrow in F
∗ from σ ∗ τ1 to σ ∗ τ2 if and only if there is an arrow in F

from τ1 to τ2 .

Here is an important fact following immediately from this definition.

Corollary 6.9 Suppose F is a discrete Morse function on Lk−(σ) whose only critical
simplex is a vertex. Let F

∗ be a set of discrete Morse arrows induced by F. Then, every
simplex in St−(σ) is part of an arrow in F

∗.

These induced sets of arrows are useful because of the following result.

Lemma 6.10 Suppose that for each σ ∈ C(M) we have a discrete Morse function Fσ on
Lk−(σ). Then, the disjoint union

F =
⊔

σ∈C(M)

F
∗
σ

forms a discrete Morse function on M for any set of induced F
∗
σ.

proof. Since the St−(σ) are disjoint, no simplex in M appears in more than one ar-
row from F. Suppose some discrete Morse path formed a loop. That is, suppose P =
(α1, . . . , αk) is a discrete Morse path in M formed from arrows in F with α1 = αk and
k > 2.

Let the function G : M → O×Z be given by G(τ) = ( g(τ), g#(τ)). Values of G can be
compared using the standard dictionary order on O×Z. It follows immediately from this
definition that G is constant on each descending star and G(γ) 6 G(β) for any simplices
γ ≺ β.
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Consider an arbitrary pair αi ≺ αi+1 of codimension-1 simplices along P paired into
an arrow by F and let F

∗
σ be the induced set containing this arrow. Since αi and αi+1

are both in St−(σ) we have G(σ) = G(αi) = G(αi+1). Next, consider what happens as we
move from αi+1 to αi+2. Because P is a discrete Morse path, αi+2 must be a codimension-1
face of αi+1 and the pair αi+1 ≻ αi+2 cannot be part of an arrow.

By the definition of the induced set of arrows F
∗
σ there are two possibilities for αi and

αi+1.

case 1: Suppose αi = σ and αi+1 = σ ∗ v for a vertex v ∈ Lk−(σ) not part of any
arrow in Fσ. Since σ and σ ∗ v are part of an arrow in F

∗
σ we know αi+2 cannot be σ.

Any other codimension-1 face of σ ∗ v has g#-value strictly smaller than g#(αi+1). So
G(αi+1) > G(αi+2) and the path must leave St−(σ).

case 2: Suppose αi = σ ∗ τi and αi+1 = σ ∗ τi+1 for τi, τi+1 ∈ Lk−(σ) paired by an arrow
from Fσ. If σ is a face of αi+2 then P stays in St−(σ) and G(αi+1) = G(αi+2). If σ is not
a face of αi+2 then g#(αi+1) > g#(αi+2) which implies G(αi+1) > G(αi+2) and tells us the
path must leave St−(σ).

Thus, G(αi) is a non-increasing function of i for 0 6 i 6 k. Since P forms a loop, G
must be constant along P . By the arguments above, this implies two things. First, all the
arrows αi = σ ∗ τi ≺ σ ∗ τi+1 = αi+1 along P come from arrows τi ≺ τi+1 in a single Fσ.
Second, each non-arrow transition αi+1 = σ ∗ τi+1 ≻ σ ∗ τi+2 = αi+2 along P corresponds
to a pair τi+1 ≻ τi+2 in Lk−(σ) not connected by an arrow in Fσ. This means the sequence
P− = (τ1, . . . , τk) is a discrete Morse path on Lk−(σ). Finally, since P forms a loop so
does P−, contradicting the assumption that Fσ was a discrete Morse function. �

The advantage to constructing discrete Morse functions on M in this way is that we
may independently choose the Fσ on each descending link Lk−(σ). If each Lk−(σ) is non-
empty and topologically simple then the resulting F can have few critical simplices. The
trick is to find a suitable vertex ordering function g. When M is a compact combinatorial
manifold, a good candidate is the distance function d.

In the Riemannian setting, the idea of creating a “Morse theory” for the distance
function led to the important breakthroughs by Grove and Shiohama in [8], and Gromov
in [9]. Here in the combinatorial setting we use it to show each maximum diameter M3

is a sphere.

6.2 Combinatorial Sphere Theorem

Let dv ≡ d(v, ·) be our vertex-ordering function where v and w are vertices with d(v, w) =
2J . In this section, the constant-set and the descending links and stars will all be with
respect to dv.

Our complete knowledge of the structure of M3 lets us determine dv nearby each vertex.
Using this, we prove the following lemma concerning the subcomplex B ≡ M3 \ St(w).

Lemma 6.11 For each σ ∈ C(B) except v, a discrete Morse function Fσ exists on Lk−(σ)
whose only critical simplex is a vertex.
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Fx on Lk−(x) for vertices x ∈ C(B)

〈x, 1〉 〈x, 2〉 〈x, 3〉 〈x, 4〉 〈f, 1〉 〈f, 2〉 〈e, 1〉
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B3

B2

B1

Bk

A

 

A

BC

 

A

BC

D

E

F
 

A

BC

E  

Fσ on Lk−(σ) for higher dimensional σ ∈ C(B)

 

 

Figure 11: This figure shows the discrete Morse functions chosen on Lk−(σ) for each
σ ∈ C(M). The simplices in C(M) and their corresponding descending links Lk−(σ) can
be identified using Figures 7, 8 and 9. The vertex labels A, B, C . . . etc in the top table
correspond to the labels in those figures.

proof. Corollary 5.3 implies any vertex x ∈ B \ {v} is the internal vertex of a Pσ.
Therefore Lemma 5.4, 5.5 or 5.6 completely determines the values of dv on Lk(x). This
allows us to identify all possible σ ∈ C(B) by checking dv using the coordinates listed in
Figures 7, 8 or 9. In each case Lk−(σ) admits an appropriate discrete Morse function Fσ.
See Figure 11. �

Now, we are ready to prove part 1 of Theorem 1.2, which we restate for your convenience.

Theorem 1.2 (Part 1) If M be a positively curved combinatorial 3-manifold with
vertices v, w at edge distance five then M is homeomorphic to a 3-sphere.

proof. By Lemma 6.10 the disjoint union F =
⊔

σ∈C(B) F
∗
σ of the induced F

∗
σ forms a

discrete Morse function on B. By Lemma 6.11 and Corollary 6.9, every simplex in B

except v is paired by F into a discrete Morse arrow, making v the only critical simplex of
F. Thus, since B = M3 \ St(w) is a combinatorial manifold with boundary, Theorem 6.5
implies that it is homeomorphic to a 3-ball. Since St(w) is also a 3-ball, M3 consists of
two 3-balls glued together and is therefore a 3-sphere as desired. �

7 Final Comments

We mention an important corollary of Theorem 1.1.
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Corollary 7.1 Only finitely many positively curved manifolds Mn exist for each n.

This immediately suggests a formidable classification problem: Which manifolds have
positively curved triangulations? The answer for the n > 4 cases can be found in [13].
This author has learned that the n = 3 census has recently been completed by Lutz and
Sullivan in [14].
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