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Abstract

We consider a tic-tac-toe game played on the d-dimensional integer lattice. The
game that we investigate is a Maker–Breaker version of tic-tac-toe. In a Maker–
Breaker game, the first player, Maker, only tries to occupy a winning line and the
second player, Breaker, only tries to stop Maker from occupying a winning line. We
consider the bounded number of directions game, in which we designate a finite set
of direction-vectors S ⊂ Z

d which determines the set of winning lines. We show, by
using the Erdős–Selfridge theorem and a modification of a theorem by Beck about
games played on almost-disjoint hypergraphs, that for the special case when the
coordinates of each direction-vector are bounded, i.e., when S ⊂ {~v : ‖~v‖∞ 6 k},
Breaker can win this game if the length of each winning line is on the order of
d
2 lg(dk) and d

2 lg(k), respectively. In addition, we show that Maker can build
winning lines of length up to (1+o(1))d lg k if S is the set of all direction-vectors with
coordinates bounded by k. We also apply these methods to the n-consecutive lattice
points game on the N

d board with (essentially) S = Z
d, and we show that the phase

transition from a win for Maker to a win for Breaker occurs at n = (d + o(1)) lg N .

1 Introduction

The traditional game of 3 × 3 tic-tac-toe is a type of positional game. In particular,
3 × 3 tic-tac-toe is an example of what we call a strong positional game. In general, a
positional game is a two-person game with complete information played on a hypergraph
(V,H), where V is an arbitrary set, called the board of the game, and H is a family of
subsets of V, called the winning sets. The two players, Player 1 and Player 2, alternately
occupy previously unoccupied elements of V. In a strong positional game, the first player
to occupy all points of some winning set wins. We say that Player 1 has a winning strategy
if no matter what Player 2 does, Player 1 can follow that strategy to win the game. If
neither player has a winning strategy, we say that the game is a draw.
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The traditional game of 3 × 3 tic-tac-toe is an example of a strong positional game
where the nine positions are the vertices and the eight lines (3 vertical, 3 horizontal, and
2 diagonal) are the winning sets. Most people are aware that 3 × 3 tic-tac-toe is a draw
game.

By using a strategy stealing argument (see [1] for a description), it can be shown that
in all strong positional games, either Player 1 has a winning strategy or the game is
a draw. Thus, it is reasonable to consider an alternate positional game in which it is
possible for Player 2 to have a winning-strategy. One such game is the Maker–Breaker
game. A Maker–Breaker positional game is where the first player, Maker, only tries to
occupy winning sets, and the second player, Breaker, only tries to stop Maker from doing
so. Thus, in a Maker–Breaker positional game, Maker wins if she occupies all points
of some winning set and Breaker wins if he prevents Maker from doing so. Therefore,
by definition, someone always wins in a Maker–Breaker positional game (there are no
draws). It is interesting to note that when 3× 3 tic-tac-toe is played as a Maker–Breaker
positional game, Maker has a winning strategy, as Maker does not need to block Breaker
from obtaining a winning line.

Since we will be considering a semi-infinite game, i.e., a game where |V | = ∞, |H| =
∞, yet ∀A ∈ H, |A| < ∞, we should describe what constitutes a win for Breaker in such
a game. If a Maker–Breaker game is played on a semi-infinite hypergraph (V,H), then we
say that Breaker has a winning strategy on (V,H) if for all j ∈ Z

+, Breaker can prevent
Maker from completely occupying a winning set by turn j.

We consider the following Maker–Breaker game on Z
d. The vertices of the board are

all the points of Z
d. Each winning line has length m, and the directions of the winning

lines are determined by a set of vectors S, which we call the set of direction vectors. We
require that for each ~v ∈ S, the greatest common divisor of its coordinates is 1, which
we denote by gcd(~v) = 1. Also, for each vector ~v ∈ S, the vector −~v 6∈ S, since ~v and
−~v determine the same set of winning lines. This way we can say that the set of winning
lines is

{{~p, ~p + ~v, ~p + 2~v, . . . ~p + (m − 1)~v} : ~p ∈ Z
d, ~v ∈ S},

We refer to this game as MBd
S(m).

Our paper contains three main results which are found in Sections 2, 3, and 4. In
Section 2, we focus on the bounded-coordinates version of MBd

S(m), i.e., where S ⊂ {~v :
‖~v‖∞ 6 k}, and we describe a strategy that allows Breaker to win if the length m of each
winning line is m = (2 + o(1))d2 lg(dk) (as k → ∞ and d → ∞), where lg is the binary
logarithm. Similarly, Breaker has an explicit winning strategy if (i) d is fixed, k → ∞,
and m = (2 + o(1))d(d + 1) lg(k) or (ii) k is fixed, d → ∞, and m = (2 + o(1))d2 lg(d).
This strategy is essentially a generalization of a Player 2’s winning strategy given by
Beck [1] (page 157), for the 40-in-a-row game played on Z×Z. We also modify a theorem
by Beck [1] (Thm. 34.1, pg. 464) which allows us to further improve our result by showing
that Breaker can win if the length of each winning line is (i) m = (1 + o(1))d2 lg(k)
(k → ∞ and d → ∞), (ii) m = (1 + o(1))d(d + 1) lg k (d is fixed and k → ∞), or (iii)
m = d2(lg(k) + 3c

√
lg k + 1 + 1

k
+ o(1)) (k > 2 is fixed, d → ∞, and 0 < c < 1

2
is an

arbitrary constant).
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In Section 3 we focus on the full bounded-coordinates version of MBd
S(m), i.e., we

require that S consists of all direction-vectors ~v such that ‖~v‖∞ 6 k, with the exception
that if ~v ∈ S, then −~v 6∈ S. For the full bounded-coordinates game, we are able to show
that Maker can build winning lines of length up to (1 + o(1))d lg k. Thus, for the full
bounded-coordinates version of MBd

S(m), by combining our results from Sections 2 and 3
we see that when d is fixed and k → ∞, there is only a factor of (d + 1) that separates
what Maker can achieve and what Breaker can prevent.

In Section 4 we consider the n-consecutive lattice points game on Nd, which is a finite
game. The board is the set of points of the Nd hypercube, and each winning line is a set
of n consecutive lattice points lying on a straight line, where we allow any direction-vector
for determining the direction of a winning line. Using similar strategies to those used in
Sections 2 and 3, we show that the phase transition from a win for Maker to a win for
Breaker occurs at n = (d + o(1)) lgN .

2 Potential-Based Breaker’s Strategies for the

Bounded Coordinates Game

Consider the classic 3× 3 tic-tac-toe game and the Nd tic-tac-toe games. Each direction-
vector ~v in those games has the property that the magnitude of each of its coordinates is
at most 1, i.e., if ~v = (v1, . . . , vd) is a direction-vector, then |vi| 6 1 for 1 6 i 6 d. A logical
generalization of this game is to consider a tic-tac-toe game played on Z

d where the set
of direction-vectors S contains direction-vectors (i.e., vectors ~v with gcd(~v) = 1) whose
coordinates satisfy |vi| 6 k for 1 6 i 6 d. In this section we prove two theorems that give
criteria for Breaker to have an explicit winning strategy in the bounded coordinates game,
i.e., MBd

S(m) where S ⊂ {~v : ‖~v‖∞ 6 k}. Both theorems generalize techniques used by
Beck [1].

The first theorem states that Breaker can block lines whose lengths are on the order of
d2 lg(kd) (as k, d → ∞) in the bounded coordinates game, and relies directly on the Erdős–
Selfridge theorem [2]. The Erdős–Selfridge theorem says that for a finite hypergraph H,
if
∑

A∈H 2−|A| < 1
2
, then Breaker has an explicit winning strategy for the Maker–Breaker

game played on H. During each turn, the Erdős–Selfridge strategy assigns a “potential”
(based on a power-of-2 scoring function) to the current position of the board. This
potential measures Maker’s ability to win from that position, and the Erdős–Selfridge
strategy requires Breaker to occupy a point that will destroy the most potential.

Our second theorem, which states that Breaker can block lines whose lengths are on the
order of d2 lg(k) (as k, d → ∞) in the bounded coordinates game, uses a more complicated
approach developed by Beck and it also makes use of a potential-based technique. Both
theorems only apply to finite games, so first we describe how Breaker can win the semi-
infinite game MBd

S(m) where S ⊂ {~v : ‖~v‖∞ 6 k} by essentially winning an infinite
number of finite games.

We begin by partitioning the board Z
d into sub-boards which are d-dimensional hy-

percubes. Each hypercube has size (mk)d, where m, the length of each winning line, will
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be determined later. On each sub-board B, we create a finite game whose set of winning
lines FB is defined so that FB is

(

m
d+1

)

-uniform, and so that if Breaker wins on each
sub-board, then he wins in the whole semi-infinite game. Each A ∈ FB will be deter-
mined by a point–direction-vector pair (~p,~v) as follows: for each point–direction-vector
pair (~p,~v) ∈ B ×S, we let A = {~p, ~p + ~v, ~p + 2~v, . . . , ~p +

(

m
d+1

− 1
)

~v} be an edge in FB if
A ⊂ B. Then during each turn, in whichever sub-board Maker occupies a point, Breaker
responds in that same sub-board according to his blocking-strategy for the finite game in
that sub-board. We will show that if m is large enough, then Breaker can win in every
sub-board, and by extension he will win in the entire semi-infinite game MBd

S(m).
First notice that a winning line can intersect at most d + 1 different sub-boards. This

is because each “switch” from one sub-board to the next is due to a progression in at least
one of the dimensions. There are only d dimensions, so there can be at most d switches.
If there were d+1 switches, then the line would have two switches in the same dimension,
which would imply it covered enough distance in that dimension to completely cross a
sub-board. However, each winning line has m points, and therefore only takes m − 1
“steps” from the first point in the line to the last point. If a line has direction-vector
~v = (v1, . . . , vd), then in the dimension corresponding to the jth coordinate, the distance
in that dimension between the first point of the line and the last point of the line is
(m − 1)|vj |. However, (m − 1)|vj| < mk for 1 6 j 6 d; thus a winning line cannot have
two switches in the same coordinate.

Since a winning line A can intersect at most d+1 different sub-boards, it must intersect
some sub-board in at least |A|/(d + 1) points. If A intersects sub-board B in at least m

d+1

points, then A∩B ⊇ A′ for some A′ ∈ FB, and Breaker will eventually occupy a point of
A′, via his blocking-strategy for the finite game played on B. Thus, Breaker will eventually
occupy a point of A. Therefore, in the proofs of Theorems 1 and 2, we determine the
length m of the winning-lines which allows Breaker to win on each of the individual
sub-boards by using his finite-game blocking-strategy.

Theorem 1 In the bounded coordinates version of MBd
S(m), i.e., when S ⊂ {~v : ‖~v‖∞ 6

k}, if k, d → ∞ or if d → ∞ and k is fixed, then Breaker has an explicit winning strategy
if m = (2 + o(1))d2 lg(dk). If d is fixed and k → ∞, Breaker has an explicit winning
strategy if m = (2 + o(1))d(d + 1) lg(k).

Proof: As described above, we partition the board Z
d into sub-boards of size (mk)d. The

Erdős–Selfridge theorem says that for a finite hypergraph H, if
∑

A∈H 2−|A| < 1
2
, then

Breaker has an explicit winning strategy for the Maker–Breaker game played on H. For
an arbitrary sub-board B, consider the game played on the finite hypergraph (B,FB).

Each A ∈ FB satisfies |A| = m
d+1

. We bound |FB| from above by (mk)d (2k+1)d

2
, which

is an upper bound on |B × S|. (In this over-count, we have counted vectors ~v such that
gcd(~v) > 1, but we have avoided counting both ~v and −~v.) So if we find a value of m so
that

∑

A∈FB

2−|A| 6 (mk)d · (2k + 1)d

2
· 2−m/(d+1) < 1/2,
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then Breaker will have an explicit winning strategy for the game played on the sub-board
B. We see that the right-hand inequality is equivalent to

d(d + 1)[lg(m) + lg(2k2 + k)] < m.

which will be satisfied if either

m > (2 + o(1))d2 lg(kd) as k, d → ∞, or as d → ∞ and k is fixed,

or
m > (2 + o(1))d(d + 1) lg(k) as k → ∞, and d is fixed.

�

If we use a more sophisticated blocking-strategy for Breaker, then we can improve our
results from Theorem 1 by a factor of 2 when d is fixed and k → ∞, and we have an even
bigger improvement in the cases where d → ∞ since we eliminate the lg(d) term.

Theorem 2 In the bounded coordinates version of MBd
S(m), i.e., when S ⊂ {~v : ‖~v‖∞ 6

k}, if k → ∞ and d → ∞, then Breaker has an explicit winning strategy if m = (1 +
o(1))d2 lg(k). If d is fixed and k → ∞, Breaker has an explicit winning strategy if m =
(1 + o(1))d(d + 1) lg(k). If k > 2 is fixed and d → ∞, Breaker has an explicit winning
strategy if m = d2(lg k+3c

√
lg k+1+ 1

k
+o(1)), where 0 < c < 1

2
is an arbitrary constant.

Proof: Our proof proceeds exactly like the proof of Theorem 1, except instead of using
the Erdős–Selfridge theorem on each sub-board of size (mk)d, we use a modified form of
Theorem 34.1 from Beck [1] on these sub-boards.

Theorem 3 (Beck [1]) Let F be an n-uniform Almost Disjoint hypergraph. Assume
that the Maximum Degree of F is at most D, that is, every point of the board is contained
in at most D hyperedges of F . Moreover, assume that the total number of winning sets is
|F| = M . If there is an integer ℓ with 2 6 ℓ 6 n/2, such that

M

(

n(D − 1)

ℓ

)

< 2nℓ−ℓ(ℓ+1)−(ℓ

2
)−1, (1)

then Breaker has an explicit winning strategy for the game played on F .

Notice that Theorem 3 is about almost disjoint hypergraphs, where a hypergraph F is
called almost disjoint if |A ∩ B| 6 1 for all distinct A, B ∈ F . Each hypergraph from
a sub-game of MBd

S(m) played on an (mk)d sub-board is close to being almost disjoint.
However, two intersecting hyperedges with the same direction-vector will often intersect
in more than one point. To handle this complication, we modify the proof of Theorem 3
and determine that Breaker can win on such a game if

M

(

n(D − 1)

ℓ

)

< 2nℓ−ℓ(ℓ+3)−(ℓ

2
)−1. (2)
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Since the proof of Theorem 3 is rather difficult, we will describe how to appropriately
modify the proof in order to obtain our result. In the following discussion, the reader
should think of F as the set of winning sets FB of a particular sub-game on a particular
sub-board B where n = m

d+1
.

Theorem 3 follows a BigGame–SmallGame decomposition where, in Breaker’s mind,
during each turn, the game is partitioned into two games, so that the BigGame shrinks
and the SmallGame grows as the whole game progresses. Initially, the vertex set of the
BigGame is all of V (F) and the vertex set of the SmallGame is empty. We let VBIG(j)
and Vsmall(j) denote the set of vertices of the BigGame and SmallGame, respectively,
for the time occurring immediately after Maker’s jth move up until her (j + 1)th move.
We let VBIG and Vsmall (with no index) be the vertices in the BigGame and SmallGame,
respectively, at the end of the game. Breaker follows the self-imposed rule that whenever
Maker occupies a point from the BigGame, Breaker responds in the BigGame; however,
whenever Maker occupies a point from the SmallGame, Breaker allows himself to respond
in either the BigGame or the SmallGame. We let X(j) and Y (j) be the sets of points
that Maker has occupied and Breaker has occupied, respectively, by the end of turn j. We
let XBIG(j), Xsmall(j), YBIG(j), Ysmall(j) denote the sets of points that Maker has occupied
from the BigGame, Maker has occupied from the SmallGame, Breaker has occupied from
the BigGame, and Breaker has occupied from the SmallGame, respectively, by the end
of turn j. (We use the phrasing, “by the end of turn j,” to emphasize that the sets
of Maker’s points are updated immediately after her move during turn j, which occurs
halfway through turn j.) Breaker essentially uses the BigGame as a device for positioning
himself to win the SmallGame. The SmallGame is essentially where Breaker focuses on
blocking any surviving sets which Maker is close to completely occupying.

A set A ∈ F becomes dangerous during turn j if the following three criteria occur:

1. A is a survivor set at the end of turn j − 1, i.e., A ∩ Y (j − 1) = ∅.

2. By the end of turn j, Maker occupies all except for ℓ+3 points of A in the BigGame,
i.e., |A \ XBIG(j)| = ℓ + 3.

3. At the end of turn j − 1, Maker did not occupy all except for ℓ + 3 points of A in
the BigGame, i.e., |A \ XBIG(j − 1)| > ℓ + 3.

If a set A ∈ F becomes dangerous during turn j, then immediately after Maker’s move
during turn j (i.e., before Breaker’s move during turn j), the set E = A \ XBIG(j) is
classified as an emergency set (in the SmallGame), the set A is labeled a dangerous
ancestor of E, and the vertices of E are moved to the SmallBoard, i.e., Vsmall(j) :=
Vsmall(j − 1)∪E and VBIG(j) := VBIG(j − 1) \E. We stress that this is the only way that
points move to the SmallBoard (and points never move back to the BigBoard). Thus,
every point p ∈ Vsmall is brought into the SmallBoard by some emergency set E, which we
call a small-parent of p. And just as every point p ∈ Vsmall has at least one small-parent,
we note that every emergency set E has at least one dangerous ancestor. Now that we
have described how points are moved to the SmallBoard, we describe small sets in general.
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Let A ∈ F . Suppose there exists a j ∈ Z
+ such that A ∩ Y (j − 1) = ∅ and |A ∩

Vsmall(j)| > ℓ + 3. Let i be the minimum such j. Then the set S = A ∩ Vsmall(i) is
classified as a small set immediately after Maker’s move during turn i and remains a
small set for the duration of the game, and we call A an ancestor of S. We note that
a small set may have many ancestors, but we will stipulate that there are not repeated
edges in the SmallGame. Now we describe the BigGame and what constitutes a win for
Maker in each of the two games.

An ℓ-element subfamily G = {A1, . . . , Aℓ} ⊆ F is called almost-disjointly-linked if
|Ai ∩Aj | 6 1 for 1 6 i < j 6 ℓ and there exists a set A ∈ F \G such that |A∩Ai| = 1 for
1 6 i 6 ℓ. A big set B =

⋃

A∈G A is a set where G is an almost-disjointly-linked ℓ-element
subfamily of F . Maker wins the BigGame if at some turn j, there is some big set B such
that B ∩ XBIG(j) contains all but ℓ(ℓ + 3) points of B and B ∩ YBIG(j − 1) = ∅. Maker
wins the SmallGame if at some turn j, there is a small set S such that S ⊆ Xsmall(j).
We will show that if Breaker wins the BigGame, then he can follow a simple strategy to
win the SmallGame. Moreover, if Breaker wins the SmallGame, then he wins the overall
game.

In order to describe how winning the BigGame allows Breaker to win the SmallGame,
we need to make some more observations and definitions. For a set A ∈ F with direction-
vector ~v, we call D(A) = ~v the direction-vector of A. Likewise, for a small set S with
direction-vector ~v, we call D(S) = ~v the direction-vector of S. We note that for a point p ∈
Vsmall, every small-parent of p has the same direction-vector. Indeed, let E1 and E2 both
be small-parents of p, and consider the turn j when p joins the SmallBoard. Let xj ∈ VBIG

be the point occupied by Maker during turn j. Since E1 and E2 are small-parents of p,
not only do they both contain p, but they both became emergency sets during turn j; thus
their respective dangerous ancestors A1 and A2 both contain the points xj and p. Since
A1 and A2 share at least two points, we must have D(A1) = D(A2). But since Ei ⊆ Ai

and |Ei| = ℓ + 3 for i ∈ {1, 2}, we also have that each emergency set shares more than
two points with its dangerous ancestor and therefore D(E1) = D(A1) = D(A2) = D(E2).

Since every small-parent of p ∈ Vsmall has the same direction-vector, we define the
direction-vector of p to be the direction-vector of any of the small-parents of p, i.e., if
p ∈ Vsmall and E is a small-parent of p with D(E) = ~v, then D(p) = ~v also. For each
small set S, we call p ∈ S a same-direction-vector point for S if D(p) = D(S). We let
CS = {p ∈ S : D(p) = D(S)} be the set of same-direction-vector points of S and we
let NS = {p ∈ S : D(p) 6= D(S)} be the points of S whose direction-vector is different
from that of S, i.e., NS = S \ CS. We now give an important lemma which states that if
Breaker wins the BigGame, then |NS| is not too large. The proof hinges on the idea that
if Breaker wins the BigGame, then there cannot be ℓ dangerous sets that are “linked” by
a single set.

Lemma 1 If Breaker wins the BigGame, then each small set S contains at most ℓ − 1
points whose direction-vector does not match that of S, i.e., for each small set S, |NS| 6

ℓ − 1.

Proof of Lemma 1: Assume towards a contradiction that |NS| > ℓ, and let p1, . . . , pℓ ∈
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NS. Let Ei be a small-parent of pi and Ai a dangerous ancestor of Ei for 1 6 i 6 ℓ. Let
A be an ancestor of S. Since Ei is a small-parent of pi and pi ∈ NS, we know that

D(Ai) = D(Ei) 6= D(S) = D(A).

Since D(Ai) 6= D(A), then |Ai ∩ A| 6 1 for 1 6 i 6 ℓ. Moreover, since pi ∈ Ai ∩ A,
we have |Ai ∩ A| = 1 for 1 6 i 6 ℓ. It should also be rather obvious that for i 6= j,
|Ai ∩ Aj| 6 1. For suppose |Ai ∩ Aj| > 2 with i 6= j. Since each A′ ∈ F is a subset of a
line segment in R

d, then we must have that Ai, Aj , and Ai∪Aj are all subsets of the same
line segment. Since A and Ai ∪ Aj both contain the two points pi and pj , this implies
that D(A) = D(Ai ∪ Aj), which is a contradiction since D(Ai ∪ Aj) = D(Ai) = D(Aj).
Therefore, |Ai ∩ Aj | 6 1 for i 6= j.

So we have established that G = {A1, . . . , Aℓ} is a family of sets that is almost-
disjointly-linked by A. Thus, B =

⋃ℓ
i=1 Ai is a big set. Since Ei ⊆ Ai is an emergency set

for 1 6 i 6 ℓ, we know that |Ai \ XBIG| = ℓ + 3 for 1 6 i 6 ℓ. The set B \ XBIG contains
those points of B that are not occupied by Maker, and

|B \ XBIG| 6

ℓ
∑

i=1

|Ai \ XBIG| = ℓ(ℓ + 3),

i.e., Maker occupied all except for at most ℓ(ℓ + 3) points of B and therefore won the
BigGame, which is a contradiction to the fact that Breaker wins the BigGame. Therefore
by contradiction, it must be the case that each small set S contains at most ℓ − 1 points
whose direction-vector does not match that of S. �

Since each small set S satisfies the property that |S| > ℓ + 3, an obvious corollary of
Lemma 1 is the following:

Corollary 1 If Breaker wins the BigGame, then each small set S contains at least four
same-direction-vector points, i.e., for each small set S, |CS| > 4.

To help describe Breaker’s strategy for stopping Maker from fully occupying a small set,
we impose an ordering on the points of each geometric line with direction-vector ~v ∈ S
that passes through the game board as follows. Fix a geometric line with direction-vector
~v = (v1, . . . , vd) ∈ S that passes through the game board. Let vi be the first non-zero
coordinate of ~v. If p and q are points on this line, then we say that p < q if the ith

coordinate of p is less than the ith coordinate of q. Moreover, if p < q according to this
ordering, we say that p is to the left of q, and q is to the right of p. In a similar vein,
if p and q are vertices of the game board such that p < q, then we define the interval
[p, q] to be the intersection of the geometric line segment connecting p and q and the
vertices of the game board. Naturally, (p, q] = [p, q] \ {p}, and [p, q) = [p, q] \ {q}, and
(p, q) = [p, q] \ {p, q}.

We now describe Breaker’s strategy, which we call the Nearest-Neighbor-Strategy, for
stopping Maker from winning in the SmallGame. Suppose that Maker occupies a point
p from the SmallBoard. Consider the geometric line with direction-vector D(p) that
contains p and consider the largest Breaker-free interval I (as defined above) that contains
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p and is a subset of that line. Breaker responds by taking an unoccupied point q ∈ I
(from the board) whose distance to p is minimum, i.e., the closest unoccupied point in I.
(In the case of two points with minimum distance from p, Breaker will take the point to
the left of p. If there are no unoccupied points in I, then Breaker takes a random point.)
We should again emphasize that q may be in either the BigBoard or the SmallBoard. If q
is in the SmallBoard, the idea is to block small sets that contain both p and q, whereas if
q is in the BigBoard, the idea is to block the ancestors of the small sets that contain both
p and q, thus preventing such small sets from ever existing. We say that Breaker stops a
small set S if he either directly occupies a vertex of S or he prevents S from existing by
occupying a point contained in every ancestor of S. We claim that if Breaker wins the
BigGame and follows this strategy, then he prevents Maker from fully occupying a small
set.

Lemma 2 If Breaker wins the BigGame and he uses the Nearest-Neighbor-Strategy de-
scribed above, then he also wins the SmallGame.

Proof of Lemma 2: Suppose that Breaker follows a strategy that allows him to win the
BigGame and that he follows the Nearest-Neighbor-Strategy described above. Assume
towards a contradiction that Maker fully occupies a small set S. By Corollary 1, every
small set contains at least four same-direction-vector points. Suppose that the same-
direction-vector points of S are labeled p1, p2, . . . , ps (where s > 4) and appear from left
to right in that order. Let us consider the first “interior” same-direction-vector point in
S that Maker occupies, i.e., the first pi that Maker occupies where 2 6 i 6 s−1. We may
assume that when Maker occupies her first interior same-direction-vector point, Breaker
has not yet occupied any points that would have already stopped S (i.e., blocked S or
prevented it from ever existing).
Case 1: When Maker occupies pi, both pi−1 and pi+1 are unoccupied.

For this case, the unoccupied point closest to pi is certainly contained in [pi−1, pi+1],
and therefore Breaker will respond with a point in the interval [pi−1, pi+1] and will stop S
at the end of this turn.
Case 2: When Maker occupies pi, one of pi−1 or pi+1 is already occupied by Maker.

Notice that for this case to hold, since pi is the first interior point that Maker occupies,
either i = 2 or i = s − 1. Without a loss of generality, we may assume that i = 2 and
Maker already occupies p1. Let q be the point Breaker occupied in response to p1. If
q ∈ (p1, p2), then q ∈ S (or q is in every ancestor of S) and Breaker has stopped S. Thus,
we may assume that q is to the left of p1 and q 6∈ S (or q does not stop S). However,
based on how Breaker chose q, it is the closest unoccupied point to the left of p1, and
therefore when Maker occupies p2, there are no unoccupied points in the interval [q, p1].
Thus, when Breaker goes to choose his response to p2, he is forced to pick a point in the
interval (p1, p3] because he must pick an unoccupied point from a Breaker-free interval
that contains p2. Since p2 is the first interior same-direction-vector point that Maker
occupied (and we assumed that Breaker has not occupied any points that would stop
S yet) we know that p3 is unoccupied (because s > 4 implies p3 is interior); therefore
Breaker will have a point in S (or every ancestor of S) at the end of this turn.
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In both Case 1 and Case 2 we reach a contradiction; therefore it must be the case that
Maker cannot fully occupy a small set. �

It should be clear that if Maker were to fully occupy all of the vertices of a set A ∈ F ,
then she would have to occupy all of the vertices of a small set S ⊆ A. This gives the
following obvious corollary of Lemma 2:

Corollary 2 If Breaker can win the BigGame, then he can block every winning set A ∈ F
in either the BigGame or in the SmallGame.

Thus, we are left to show that Breaker has a winning strategy in the BigGame. We do so
via a lemma that is similar to the Erdős–Selfridge theorem.

Lemma 3 (Under the assumption that inequality (2) holds) Breaker has a winning strat-
egy in the BigGame.

Proof: We use the following version of a potential-based lemma used in Beck’s proof of
Theorem 3. This lemma can be found as Lemma 1 in Section 35 of [1].

Beck’s Lemma: Breaker has a winning strategy in the BigGame if the number of
big sets is less than 2b−1, where b is a lower bound on the number of points Maker
must occupy from a big set B before Breaker occupies his first point in B.

Let us find a value for b as well as an upper bound on the number of big sets.
Recall that Breaker wins the BigGame if for each big set B, he can occupy a point

from B before Maker occupies all but ℓ(ℓ + 3) points of B. Let us find a lower bound on
the size of each big set B. Let B =

⋃ℓ
i=1 Ai be a big set, where G = {A1, . . . , Aℓ} is an

almost-disjointly-linked ℓ-element subfamily of F and each Ai ∈ F . Then we have

|B| =

∣

∣

∣

∣

∣

ℓ
⋃

i=1

Ai

∣

∣

∣

∣

∣

>

ℓ
∑

i=1

|Ai| −
∑

16i<j6ℓ

|Ai ∩ Aj | > nℓ −
(

ℓ

2

)

,

since |Ai ∩ Aj | 6 1 for each pair of elements in the almost-disjointly-linked ℓ-element
subfamily. Since |B| > nℓ −

(

ℓ
2

)

for each big set B, we know that in order for Maker to

win the BigGame, she must occupy at least nℓ−
(

ℓ
2

)

−ℓ(ℓ+3) points of some big set B before

Breaker occupies his first point in B. Thus, in our case, we have b = nℓ −
(

ℓ
2

)

− ℓ(ℓ + 3).
Now let us get an upper bound on the number of big sets in the BigGame. We can do

this by first selecting a set A ∈ F , then choosing an ℓ-element family almost-disjointly-
linked by A. There are M = |F| choices for A. Since each point of F is in at most D
hyperedges, each point of A will be in at most D − 1 other hyperedges. Thus, there are
at most n(D − 1) hyperedges which intersect A, giving at most

(

n(D−1)
ℓ

)

choices for an
ℓ-element family almost-disjointly-linked by A. Therefore we have the following inequality:

# of Big Sets 6 M

(

n(D − 1)

ℓ

)

. (3)
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So using our bound from inequality (3) and our initial assumption in inequality (2), we
have

# of Big Sets 6 M

(

n(D − 1)

ℓ

)

< 2nℓ−ℓ(ℓ+3)−(ℓ

2
)−1 = 2b−1,

so the hypothesis of Beck’s Lemma is satisfied and Breaker has a winning-strategy for the
BigGame. �

Let us now show what values of m allow inequality (2) to hold, depending on whether
k → ∞ and/or d → ∞.

As stated in the proof of Theorem 1, an upper bound on |B×S| is (mk)d (2k+1)d

2
, which

in turn is an upper bound on M = |FB|.
Since FB is

(

m
d+1

)

-uniform, we have n = m
d+1

. We also note that the maximum-degree D

satisfies D 6 n|S| 6 m
d+1

(2k+1)d

2
, since for each point and each slope, the number of lines of

length n going through that point with that slope is at most n. Therefore we can bound
the binomial coefficient in inequality (2) as follows:

(

n(D − 1)

ℓ

)

6

(
(

m
d+1

)2 (2k+1)d

2
e

ℓ

)ℓ

6

(

m2(2k + 1)de

2d2ℓ

)ℓ

.

Thus, it is enough to show that

(mk)d (2k + 1)d

2

(

m2(2k + 1)de

2d2ℓ

)ℓ

< 2(mℓ)/(d+1)−ℓ(ℓ+3)−(ℓ

2
)−1, (4)

for some integer ℓ with 2 6 ℓ 6 m
2(d+1)

in order to ensure that Breaker will win on FB. By

applying the binary logarithm to both sides of inequality (4) and simplifying, we get

d

[

lg m + 1 + 2 lg(k) + lg

(

1 +
1

2k

)]

+ ℓ

[

2 lg m + d + d lg k + d lg

(

1 +
1

2k

)

− 1 + lg e − 2 lg d − lg ℓ

]

<
ℓ

d + 1
m − 3

2
ℓ2 − 5

2
ℓ, (5)

Using the fact that lg(1 + 1
2k

) < 1
k

and further simplification of (5) yields,

(d + 1)

(

d lg k + d +
d

k
+

d lg m

ℓ
+

2d lg k

ℓ
+

d

ℓ
+

d

kℓ
+ 2 lg m − lg ℓ − 2 lg d

+
3

2
ℓ + lg e +

3

2

)

< m. (6)

If we let ℓ = ⌊c√m⌋ (where 0 < c < 1
2

is constant), then inequality (6) is satisfied when

m > d2 lg k(1 + o(1)) as d, k → ∞,
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or
m > (d + 1)d lg k(1 + o(1)) as k → ∞, and d is fixed,

or

m > d2(lg k + 3c
√

lg k + 1 +
1

k
+ o(1)) as d → ∞, and k > 2 is fixed.

�

3 Maker’s Strategy for the Full Bounded Coordi-

nates Game

The game we consider in this section is Maker–Breaker tic-tac-toe on Z
d with direction-

vector set S = 〈{~v : ‖~v‖∞ 6 k}〉. (The 〈·〉 notation will mean start with the set {~v :
‖~v‖∞ 6 k}, then throw out any vectors ~v with gcd(~v) > 1, then from what is left throw
out one of −~v or ~v.) Thus, we are considering MBd

S(m) with S as defined above, i.e., the
full bounded coordinates game.

Theorem 4 In the full bounded coordinates version of MBd
S(m), i.e., when S = 〈{~v :

‖~v‖∞ 6 k}〉, if k → ∞, then Maker has a winning strategy if m = (1 + o(1))d lg(k). If k
is fixed and d → ∞, Maker has a winning strategy if m = (1 + o(1))d lg(2

3
k).

Proof: We use Theorem 1.2 from Beck [1], which states that Maker has a winning strategy
for the Maker–Breaker game played on an m-uniform, finite hypergraph (V,H) if

|H| > 2m−3 · ∆2(H) · |V |, (7)

where ∆2(H) is the max-pair degree. The max-pair degree is defined as follows:

assume that, fixing any two distinct points of the board V , there are at most
∆2(H) winning sets A ∈ H containing both points, and equality occurs for
some point pair, then we call ∆2(H) the max-pair degree.

However, in order to use this theorem, we must restrict Maker’s moves (and strategy) to
a finite hypergraph F which is defined so that a win in F constitutes a win in the original
semi-infinte game. Since Maker doesn’t have to block any of Breaker’s lines, whenever
Breaker occupies a point outside of F , Maker just takes a random point in F .

Let us define our hypergraph (V,F). The set of vertices is a (3mk)d hypercube in Z
d,

where m (to be determined later) is the length of a winning line in F . A winning line
in F is determined by taking a point ~p in the (mk)d hypercube that is centered in the
middle of V , and appending m − 1 points in the direction of one of the direction-vectors
~v ∈ S to get a winning line {~p, ~p + ~v, . . . , ~p + (m − 1)~v}.

Now that we have defined (V,F), let us find an upper bound on m which, if satisfied,
will imply that inequality (7) is also satisfied and thus Maker has a winning strategy on
F . We will start by finding a lower bound on |F|. As described above, |F| = |S|(mk)d.
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Since |S| = 1
2
|{~v ∈ Z

d : ‖~v‖ 6 k, and gcd(~v) = 1}|, we can get a lower bound on |S| by
first counting the number of vectors ~v = (v1, v2, . . . , vd) ∈ Z

d with |vi| 6 k satisfying all of
the following: (i) v1, v2 > 0, (ii) v2 6 v1, and (iii) gcd(v1, v2) = 1. Since this only accounts
for when v1 and v2 have the same sign, we can double this quantity to account for when v1

and v2 have opposite signs. Thus, |S| > 2 ·Φ(k) · (2k + 1)d−2, where Φ(k) = Σk
i=1φ(i) and

φ is Euler’s phi-function. By modifying the proof of Theorem 330 (regarding the average
order of φ(k)) in [3], it can be shown that |Φ(k) − 3

π2 k
2| 6 2k ln(k) + 2k, which easily

yields Φ(k) > 1
5
k2 for all k ∈ Z

+. So we may conclude that

|F| >
1

10
(2k)d · (mk)d.

Notice that ∆2(F) = m − 1 because two lines can intersect in at least two points only if
they are collinear. Therefore, it will be enough for us to find a value of m that satisfies
the following inequality

1

10
(2k)d · (mk)d > 2m−3m(3mk)d. (8)

By manipulating inequality (8) we get

m < d lg k + d lg

(

2

3

)

− lg m + 3 + lg
1

10
. (9)

Inequality (9) is satisfied when

m < (1 + o(1))d lg k as k → ∞

or

m < (1 + o(1))d lg

(

2

3
k

)

as d → ∞, and k is fixed.

�

4 The Maker–Breaker n-Consecutive Lattice Points

Game on Nd.

In Chapter 14 of Beck [1], he introduces the n-consecutive lattice points game played on
the N × N board {(a, b) ∈ Z

2 : 0 6 a, b 6 N − 1}. In the Maker–Breaker version of this
game, Maker’s goal is to occupy n consecutive lattice points on any straight line, where
every rational slope is allowed. Beck is able to show in Theorem 14.1 of [1] that the phase
transition from a win for Maker to a win for Breaker happens at n = (2 + o(1)) lg N. In
order to do this, he uses Theorem 1.2 and a modification of Theorem 34.1 of [1]. Using a
similar approach, we will prove the following theorem with respect to the n-consecutive
lattice points game played on the d-dimensional analog of the N × N board:
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Theorem 5 In the Maker–Breaker game on the Nd board where Maker’s goal is to occupy
n consecutive lattice points on a line (“n-consecutive”), the phase transition from a win
for Maker to a win for Breaker happens at n = (d + o(1)) lg N .

Proof: Our proof proceeds like the proofs of Theorems 2 and 4, except this time we are
not tiling Z

d with hypercubes, rather we are considering a single d-dimensional hypercube
B = {(a1, a2, . . . , ad) ∈ Z

d : 0 6 ai 6 N −1 for 1 6 i 6 d} and the set of direction-vectors
S = {~v ∈ Z

d : gcd(~v) = 1 and ‖~v‖∞ 6 N
n−1

}. Each A ∈ F will be of the form
{~p, ~p+~v, ~p+2~v, . . . , ~p+(n−1)~v} where (~p,~v) is a point–direction-vector pair (~p,~v). Note
that we specify ‖~v‖∞ 6 N

n−1
, because otherwise if there is a component vi of ~v, such that

|vi| > N
n−1

, then for each ~p ∈ B, the point ~p + (n − 1)~v will not be in B. To help draw a

parallel to our other proofs, we will let k = N
n−1

.
We first show that Breaker has a winning strategy for the n-consecutive points game

when n = (d + o(1)) lg N . In Theorem 2, the hypergraph F was
(

m
d+1

)

-uniform and the

size of the board was (mk)d, but for this game, we have that F is n-uniform and the size
of the board is Nd. Therefore, inequality (4) in the proof of Theorem 2 becomes

Nd (2k + 1)d

2

(

n2(2k + 1)de

2ℓ

)ℓ

< 2nℓ−ℓ(ℓ+3)−(ℓ

2
)−1, (10)

where 2 6 ℓ 6 n
2
. By applying the binary logarithm to both sides of inequality (10) and

simplifying, we get that Breaker wins the n-consecutive points game when

d

ℓ

(

lg N + lg(2k + 1)
)

+ 2 lg n + d lg(2k + 1) − lg ℓ +
3

2
ℓ + lg e +

3

2
< n. (11)

If we let ℓ = ⌊c√n⌋ (with some positive constant c) and substitute in k = N
n−1

, we get

d

c
√

n

[

lg N + (c
√

n + 1) lg

(

2N

n − 1
+ 1

)]

+ 2 lg n − lg(c
√

n) +
3

2
c
√

n + lg e +
3

2
< n.

This inequality is satisfied for n = (d + o(1)) lg N as N → ∞.
To show that Maker has a winning strategy for the n-consecutive points game when

n = (d + o(1)) lgN , we will slightly modify the proof of Theorem 4. In particular, |F| >
1
10

( 2N
n−1

)dNd and |V | = Nd in inequality (7). Therefore, Maker wins the n-consecutive
points game if n satisfies the inequality

1

10

(

2N

n − 1

)d

Nd > 2n−3(n − 1)Nd. (12)

Inequality (12) is satisfied when n = (d + o(1)) lg N as N → ∞. �

5 Open Problems

While we showed in Theorem 5 that the phase transition from a win for Maker to a win for
Breaker happens at n = (d + o(1)) lg N for the n-consecutive lattice points game on Nd,
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we were unable to do so for the full bounded coordinates version of MBd
S(m). Theorem 2

says that Breaker wins if m = (1 + o(1))d(d + 1) lg(k) when d is fixed and k → ∞, while
Theorem 4 states that Maker wins if m = (1 + o(1))d lg(k) when k → ∞. This leaves a
factor of d + 1 gap between the two results. We pose the following open problem.

Open Problem 1 Determine the phase transition from a Maker’s win to a Breaker’s win
for the full bounded coordinates version of MBd

S(m), i.e., when S = 〈{~v : ‖~v‖∞ 6 k}〉.

In a previous paper [4], the authors proved that there is a pairing-strategy that allows
Breaker to win MBd

S(m) as long as m > 3|S|, with no restrictions on the elements of S.
While this pairing-strategy performs much worse on the bounded-coordinates version of
MBd

S(m) than the potential-based techniques from Section 2 (we would need m on the
order of (2k)d for the pairing-strategy to work), the pairing-strategy could outperform
those potential-based techniques if |S| is very small, yet one of the direction-vectors ~v ∈ S
has huge coordinates, i.e., ‖~v‖∞ is huge for some ~v ∈ S. Therefore, we pose the following
open problem.

Open Problem 2 Can the potential-based techniques from Section 2 be modified to pro-
duce a Breaker’s winning-strategy for MBd

S(m) where the bounds on the length m of the
winning lines are a function of |S|, rather than a function of max{‖~v‖∞ : ~v ∈ S}?
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