
Forbidden Configurations:

Exact bounds determined by critical substructures

R. P. Anstee∗ and S. N. Karp†

Mathematics Department
The University of British Columbia
Vancouver, B.C. Canada V6T 1Z2

anstee@math.ubc.ca skarp@uwaterloo.ca

Submitted: Aug 5, 2009; Accepted: Mar 18, 2010; Published: Mar 29, 2010

Mathematics Subject Classification: 05D05

Abstract

We consider the following extremal set theory problem. Define a matrix to be
simple if it is a (0,1)-matrix with no repeated columns. An m-rowed simple matrix
corresponds to a family of subsets of {1, 2, . . . ,m}. Let m be a given integer and
F be a given (0,1)-matrix (not necessarily simple). We say a matrix A has F as a
configuration if a submatrix of A is a row and column permutation of F . We define
forb(m,F ) as the maximum number of columns that a simple m-rowed matrix A

can have subject to the condition that A has no configuration F . We compute exact
values for forb(m,F ) for some choices of F and in doing so handle all 3 × 3 and
some k × 2 (0,1)-matrices F . Often forb(m,F ) is determined by forb(m,F ′) for
some configuration F ′ contained in F and in that situation, with F ′ being minimal,
we call F ′ a critical substructure.

Keywords: VC-dimension, (0,1)-matrices, forbidden configurations, trace

1 Introduction

We define a simple matrix as a (0,1)-matrix with no repeated columns. Assume we are
given a k × ℓ (0,1)-matrix F . We say that a matrix A has F as a configuration if A has
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a k × ℓ submatrix which is a row and column permutation of F and so F is referred to
as a configuration in A (sometimes called trace). Many F considered in this paper are
non-simple.

For a matrix A, we define |A| to denote the number of columns in A. We define
forb(m, F ) as the smallest value (depending on m and F ) so that if A is a simple m-rowed
matrix and A has no configuration F then |A| 6 forb(m, F ). Alternatively forb(m, F )
is the smallest value so that if A is an m × (forb(m, F ) + 1) simple matrix then A must
have F as a configuration. Exact bounds require greater care and deeper understanding
to achieve than asymptotic results although it is also true that asymptotic results provide
broad understanding. Theorem 9.1 gives a forbidden configuration for which an exact
bound would be troublesome. We hope that the results given here may provoke further
study. An interested reader might look at the survey of results in [1]. We obtain a wealth
of exact bounds. One consequence of our results are exact bounds for all 3× 3 forbidden
configurations given in Table 1 and Table 2.

Table 1. Simple 3× 3 F

Configuration F forb(m, F ) Proof




1 1 1
1 1 0
1 0 1



 or





1 1 1
1 1 0
1 0 0



 or





1 1 0
1 1 0
1 0 1





or





1 1 0
1 1 0
1 0 0



 or





1 1 0
1 0 1
1 0 0





(

m
2

)

+
(

m
1

)

+
(

m
0

)

Thm 1.2





1 1 0
1 0 1
0 1 1





(

m

2

)

+
(

m

1

)

+
(

m

0

)

Thm 1.5





1 1 1
1 0 0
0 1 0



 or





1 1 0
1 0 1
0 1 0



 2m Thm 1.4

The reader may check that all 3 × 3 configurations or their (0,1)-complements have
been included in the two tables. We have enumerated the matrices based on columns of
sum 3 first and on columns of sum 2 second. Note that if F c is the (0,1)-complement of
F , then forb(m, F ) = forb(m, F c). We note that there may be other attractive ways to
list the matrices such as representing the 5 configurations in the first line of the table by
a single object any possible completion of which is one of the 5 configurations





1 1 0
1 0
1



 .

We hope the table of results makes the problem of forbidden configurations more
accessible while indicating how general bounds prove many exact results. In each case,
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there may be a short argument to see how to apply the Theorem.
In the following table note that we also define the configurations F1, F2, F3, F4, F5.

Table 2. Non-simple 3× 3 F

Configuration forb(m, F ) Proof




1 1 1
1 1 1
1 1 1





5
4

(

m
3

)

+
(

m
2

)

+
(

m
1

)

+
(

m
0

)

Thm 1.6





1 1 1
1 1 1
1 1 0



 ,





1 1 1
1 1 0
1 1 0



 or





1 1 0
1 1 0
1 1 0





(

m

3

)

+
(

m

2

)

+
(

m

1

)

+
(

m

0

)

Thm 1.3





1 1 1
1 1 1
0 0 0





4
3

(

m
2

)

+
(

m
1

)

+
(

m
0

)

+
(

m
m

)

Thm 1.7

F1 =





1 1 1
1 1 1
1 0 0





4
3

(

m
2

)

+
(

m
1

)

+
(

m
0

)

Thm 8.1

F2 =





1 1 1
1 0 0
1 0 0



 , F3 =





1 1 1
1 1 0
0 0 1



 ,

F4 =





1 1 1
1 1 0
0 0 0



 or F5 =





1 1 0
1 1 0
0 0 1





(

m

2

)

+
(

m

1

)

+
(

m

0

)

+
(

m

m

)

Thm 3.2

If F ′ is a configuration in F then we note that any matrix A with no F ′ has no F and so
forb(m, F ′) 6 forb(m, F ). We define a critical substructure for a forbidden configuration
F to be a minimal F ′ that is a configuration in F and so that forb(m, F ′) = forb(m, F ).
One application is to note that if F ′′ is a configuration of F and F ′ is a configuration
of F ′′ then we obtain a ‘sandwich’ result that forb(m, F ′) = forb(m, F ′′) = forb(m, F ).
This is applied to Theorem 1.4 to obtain two bounds in Table 1. Note that the 4 × 4
F10 in Theorem 3.4 has a 3 × 2 critical substructure and so yields several other exact
bounds. Another application is when faced with a given F , it may be helpful to consider
configurations contained in F and, among those with the largest bound, attempt to prove
one is a critical substructure. This was done in Theorem 8.1. We do not explore the
related idea which would consider a given F ′ and seek maximal F ’s for which F ′ is a
critical substructure. For some pairs F ′, F , the largest m-rowed matrix with no F also
has no F ′. The paper considers some basic choices for F ′ and obtains some F with
forb(m, F ′) = forb(m, F ). We think this concept of critical substructures deserves to be
highlighted as one approach in analyzing forbidden configurations.

It is helpful to define 1k0ℓ as the (k+ℓ)×1 column of k 1’s on top of ℓ 0’s. In addition
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let 1k = 1k00 and 0k = 100k. For a positive integer q and a matrix F , define q · F as
the concatenation of q copies of F so that q · 1k0ℓ is the q × (k + ℓ) matrix of q copies
of 1k0ℓ. In many of the examples above we can find non-trivial critical substructures. In
Table 1, we see that the first 5 configurations all have a critical substructure 13. In Table
2 we see that the second to fourth configurations share a critical substructure 2 · 13 and
the sixth has a critical substructure 3 · 12. We also note that F2 has 2 · 1102 as a critical
substructure and F3, F4, F5 have critical substructure 2 · 1201. Define

ext(m, F ) = {A : A is a m× forb(m, F ) simple matrix with no configuration F}.

It is often the case that for a unique critical substructure F ′ of F , that ext(m, F ) =
ext(m, F ′) or if F has two critical substructures F ′, F ′′ then ext(m, F ) = ext(m, F ′) ∪
ext(m, F ′′). The following result presented without proof will be used extensively in the
paper.

Theorem 1.1 Let p, q be nonnegative integers with p > q. Assume m > p + q. Then
forb(m, 1p0q) =

∑p−1
i=0

(

m

i

)

+
∑q−1

i=0

(

m

i

)

and ext(m, 1p0q) consists of the matrices which
have all columns of at most p−1 1’s and all columns with at most q−1 0’s. If we assume
m < p + q, then forb(m, 1p0q) = 2m.

It is convenient to use the language of matrix theory and sets. Let [m] = {1, 2, . . . , m}.
An m × n simple matrix A can be thought of a family A of n subsets S1, S2, . . . , Sn of
[m] = {1, 2, . . . , m} where i ∈ Sj if and only if the (i, j) entry of A is 1. For a set S ⊆ [m]
and an integer k, we define

2S = {B ⊆ [m] : B ⊆ S},

(

S

k

)

= {B ⊆ S : |B| = k}.

Moreover define Kk to be the k× 2k simple matrix corresponding to 2[k] and define K l
k to

be the k ×
(

k

l

)

simple matrix corresponding to
(

[k]
l

)

. Given two m-rowed matrices A, B,
we use the notation [AB] (this is not A times B!) to denote the matrix obtained by
concatenating the two matrices. This would be the analogue of set union of our families.
For example we have ext(m, 1k) corresponding to the family

(

[m]
0

)

∪
(

[m]
1

)

∪ · · ·∪
(

[m]
k−1

)

and

to the matrix [K0
mK1

mK2
m · · ·K

k−1
m ].

Most 3 × 3 forbidden configurations can be handled by the general theorems given
below specialized to 3 rows.

Theorem 1.2 Sauer[10], Perles and Shelah[11], Vapnik and Chervonenkis[12]. Let k be
given.

forb(m, 1k) = forb(m, Kk) =

(

m

k − 1

)

+

(

m

k − 2

)

+ · · ·+

(

m

0

)

.

Theorem 1.3 Gronau [8]. Let k be given.

forb(m, 2 · 1k) = forb(m, 2 ·Kk) =

(

m

k

)

+

(

m

k − 1

)

+

(

m

k − 2

)

+ · · ·+

(

m

0

)

.
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Theorem 1.4 Anstee, Griggs, Sali[4].

forb(m,





1 1
0 1
1 0



) = forb(m,





1 1 1 0
0 1 0 1
1 0 0 0



) = 2m.

Theorem 1.5 Ryser[9].

forb(m,





1 1 0
1 0 1
0 1 1



) =

(

m

2

)

+

(

m

1

)

+

(

m

0

)

.

Theorem 1.6 Anstee, Füredi[5]. Let t, k be given with t > 2.

forb(m, t · 1k) = forb(m, t ·Kk) 6
t + k − 1

k + 1

(

m

k

)

+

(

m

k − 1

)

+ · · ·+

(

m

0

)

,

with equality if there exists a simple k−design on m points with block size k + 1 and
λ = t− 2.

Theorem 1.7 Anstee, Barekat[2]. Let m, k, t be given with m ≡ 1, 3(mod 6). Then there
exists an integer M so that for m > M ,

forb(m, t · 1201) =
t + 1

3

(

m

2

)

+

(

m

1

)

+

(

m

0

)

+

(

m

m

)

.

A helpful notation for two columned forbidden configurations is to define Fa,b,c,d to
be the (a + b + c + d) × 2 matrix consisting of a rows [11], b rows [10], c rows [01] and
d rows [00]. One can restrict attention to cases with a > d and b > c. An example is
2 · 1p0q = Fp,0,0,q. Complete asymptotic results for forb(m, Fa,b,c,d) are in [7]. Given the
difficulty and nature of the proofs in [7] we do not expect to obtain exact bounds for all
choices a, b, c, d. Theorem 9.1 indicates that F2,1,1,0 is a hard case. Exact bounds for other
4× 2 F are in [3].

We are able to prove exact bounds for certain Fa,b,c,d. We note that Fa,b,c,d has configu-
rations 1a+b0c+d and 1a+c0b+d (corresponding to the two columns). Sometimes one or the
other or both are critical substructures. The first result is an easy pigeonhole argument
from Theorem 1.3 in [3]. We observe that a simple matrix has a configuration Fp,0,0,q if
and only if it has Fp,1,0,q.

Theorem 1.8 Let p, q be given with p > q. Then

forb(m, 2 · 1p0q)) = forb(m, Fp,0,0,q) = forb(m, Fp,1,0,q) =

p
∑

i=0

(

m

i

)

+
m

∑

i=m−q+1

(

m

i

)

,

and moreover for p > q,

ext(m, 2 · 1p0q) = ext(m, Fp,0,0,q) = ext(m, Fp,1,0,q) = ext(m, 1p+10q).
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Proof: The result on ext(m, 2·1p0q) follows easily from the pigeonhole proof of forb(m, 2·
1p0q) in [3]. For p = q, the extremal matrices can be more varied.

Theorem 1.9 [6]. We have forb(m, F1,1,1,1) = 4m− 4.

The following summarizes our new exact bounds handling many cases with c, d ∈ {0, 1}.
We note that for b > 1, forb(m, Fa,b,0,0) = forb(m, Ka+b) and so we can use Theorem 1.2.

Theorem 1.10 Let m, a, b be given integers. For m > 1,

forb(m, Fa,b,1,0) = forb(m, 1a+b01) for a > 1, b > 2 or a = 0, b > 3,

forb(m, Fa,b,0,1) = forb(m, 1a+b01) for a > 1, b > 1,

forb(m, Fa,b,1,1) = forb(m, 1a+b02) for a > 1, b > 2.

Proof: It was already shown in [3] that for b > 3, forb(m, F0,b,1,0) = forb(m, 1b01). The-
orem 5.6 handles forb(m, Fa,b,1,0) for a > 1, b > 2. Theorem 5.6 handles forb(m, Fa,b,0,1)
for a > 2, b > 1, Theorem 1.8 handles forb(m, F1,1,0,1) and Theorem 6.5 handles forb(m,
F1,b,0,1) for b > 2. Theorem 7.2 handles forb(m, Fa,b,1,1) for a > 1, b > 2.

We often compute ext(m, Fa,b,c,d) as part of the proof. We have organized the paper
by critical substructures. Section 3 considers critical substructures 2 ·1k−101 and handles
configurations F2, F3, F4, F5 among others. Section 4 considers critical substructures
1k. Section 5 and Section 6 considers critical substructures 1k−101. Section 7 considers
critical substructures 1k−202. The proof techniques are mostly clever inductions, the most
basic of which are in Section 2. Section 8 considers critical substructures 3 · 1k−1 (and
handles F1 when k = 3) using an interesting matching argument. We list a number of
open problems: Problem 5.1, Problem 10.1, Problem 10.2, Problem 10.3.

2 Induction Arguments

Many of our arguments use induction. If A is a simple m-rowed matrix, then when we
delete row 1 from A, the resulting matrix need not be simple and may have repeated
columns. We decompose A, after permuting its columns, as

A =

[

0 0 · · ·0 0 1 1 · · ·1 1
B C C D

]

, (1)

where C is the matrix of columns which are repeated when the first row of A is deleted.
We call this the standard decomposition of A. Note that above we have decomposed A
based on its first row. Sometimes we will consider decompositions of A based on another
row. We thus define the row-r decomposition of A to be the decomposition (1) performed
after row r and row 1 are switched. We denote the three resulting matrices by Br, Cr,
and Dr. That is,

A =

[

0 0 · · · 0 0 1 1 · · ·1 1
Br Cr Cr Dr

]

← row r
, (2)
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where Cr is the matrix of columns which are repeated when row r is deleted from A.
If A avoids a configuration F , then we can make two observations about the matrices

Br, Cr, and Dr. First, [BrCrDr] is a simple (m− 1)-rowed matrix with no F . Second, Cr

is a simple (m− 1)-rowed matrix which avoids many submatrices of F . For example, if

F =





1 0 0
0 1 0
0 0 0



 ,

then by stripping off the second row from F , we see that Cr has no
[

1 0
0 0

]

or else A has F .
More formally we can describe this computation as follows.

Lemma 2.1 Let k be given and let F be a k-rowed matrix. For each s ∈ [k], decompose
F using (2) as

F =

[

0 0 · · ·0 0 0 · · ·0 1 1 · · ·1 1 1 · · ·1
Bs(F ) Cs(F ) Cs(F ) Ds(F )

]

← row s
. (3)

Then if A is a simple matrix with no configuration F , then in the row decomposition of A
of (1), we deduce that C has no configurations [Bs(F )Cs(F )Ds(F )] for each s ∈ [k].

The following basic induction facts come from Pascal’s identity and the observation
that |A| = |[BrCrDr]|+ |Cr| in (2).

Remark 2.2 Assume p > 1. Then forb(m, 1p) = forb(m− 1, 1p) + forb(m− 1, 1p−1).
If we also assume q > 1, then forb(m, 1p0q) = forb(m− 1, 1p0q)+ forb(m− 1, 1p−10q−1).
Let p, q be given non-negative integers p > q with p > 1, q > 0. Assume A is an m-rowed
simple matrix. Let r be chosen with r ∈ [m] and consider the row r decomposition (2) of
A. Assume

|[BrCrDr]| 6 forb(m− 1, 1p0q). (4)

Assume that either for q = 0,

|Cr| 6 forb(m− 1, 1p−1) (5)

or for q > 1,
|Cr| 6 forb(m− 1, 1p−10q−1). (6)

Then
|A| 6 forb(m, 1p0q). (7)
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3 Critical substructure 2 · 1k−101

In this section we find some k-rowed F which contain 2 · 1k−101 for which ext(m, F ) =
ext(m, 2 · 1k−101). Given that F has a repeated column, the results are independent of
Theorem 1.2. Note that Theorem 1.8 handles F = 2 · 1k−101. We outline a general
induction argument for configurations which contain 2 · 1k−101, and then apply it to get
the bounds and extremal matrices for some cases, settling the remaining entries in Table 2.

Lemma 3.1 Suppose that k > 2, and G is a k-rowed simple matrix which does not have
the column 1k−101 but may have other columns of column sum k−1. Let F be the k-rowed
matrix

F = [2 · 1k−101|G] =
k − 1

















1 1
...

...
1 1
0 0

G











, (8)

and let m > k + 1. Suppose that we know the following two things for all A ∈ ext(m, F ):
(i) ext(m− 1, F ) = ext(m− 1, 2 · 1k−101) = ext(m− 1, 1k01).
(ii) For every r ∈ [m] with |Cr| > forb(m − 1, 1k−1) in the row-r decomposition (2) of A
we have Cr ∈ ext(m− 1, 1k−101).
Then we may conclude

ext(m, F ) = ext(m, 2 · 1k−101) = ext(m, 1k01).

Proof: Assume A ∈ ext(m, F ). First we show that [BrCrDr] ∈ ext(m − 1, 1k01) in the
row-r decomposition of A for all r ∈ [m]. Note that by our assumption (i), it will suffice
to show that |[BrCrDr]| > forb(m − 1, 1k01) = forb(m − 1, F ) and note that [BrCrDr]
has no F .

We proceed by contradiction and suppose for some r ∈ [m] that in the row-r decom-
position of A that |[BrCrDr]| < forb(m − 1, 1k01). Since F contains 2 · 1k−101, we have
|A| = forb(m, F ) > forb(m, 2 · 1k−101) = forb(m, 1k01). Hence |Cr| = |A| − |[BrCrDr]| >
forb(m, 1k01)− forb(m− 1, 1k01) = forb(m, 1k−1) using Remark 2.2 (p = k, q = 1). Then
by our assumption (ii), Cr ∈ ext(m − 1, 1k−101), and hence using the column of 1’s and
the columns of column sum at most k − 2, we deduce Cr has the configuration Kk−1 on
each (k − 1)−set of its rows.

Now note that we can write F as

F =
k − 1





























1
... G1 G2

1
1
0 00 · · ·0 11 · · ·1















=
k − 1

































1 11 · · ·1 00 · · ·0
1
... G3 G4

1
0















,

where G1, G2, G3, G4 are each k − 1-rowed simple matrices. Thus Cr has every row per-
mutation of G1, G2, G3 and G4 on each (k−1)-tuple of its rows. Now if we look for a copy
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of F where the bottom row of the first matrix above is in row r of A, we deduce that Br

has no 1k−1 else A has F . Similarly, if we look for the top row of the second matrix above
in row r of A, we see that Dr has no 1k−201. But Cr ∈ ext(m− 1, 1k−101) and so Cr has
all columns which avoid 1k−101 and hence all columns which avoid 1k−1 or 1k−201. Since
Br and Dr share no columns with Cr, we conclude that Br and Dr are empty. Hence

|A| = 2|Cr| = 2 · forb(m− 1, 1k−101) = 2
k−2
∑

i=0

(

m− 1

i

)

+ 2 =
k−2
∑

i=0

(

m

i

)

+

(

m− 1

k − 2

)

+ 2.

Now |A| > forb(m, 2 · 1k−101) =
∑k−1

i=0

(

m

i

)

+ 1, whence

(

m− 1

k − 2

)

>

(

m

k − 1

)

− 1 =

(

m− 1

k − 2

)

+

(

m− 1

k − 1

)

− 1 >

(

m− 1

k − 2

)

,

a contradiction.
We now conclude [BrCrDr] ∈ ext(m−1, 1k01). For all r ∈ [m] it follows that [BrCrDr]

has the configuration Kk on each k-tuple of its rows. Since this is true for all r ∈ [m], we
conclude that A has Kk on each k-tuple of rows, and hence A has every row permutation
of G, on each k-tuple of its rows. Thus A avoids 2 · 1k−101, the first two columns of F .
The result now follows from Theorem 1.8.

We apply Lemma 3.1 to establish the extremal matrices for three specific 3-rowed
Forbidden Configurations.

Theorem 3.2 Let

F6 =





1 1 1 0 0
1 1 0 1 0
0 0 1 0 0



 , F7 =





1 1 1 0 0
1 1 0 1 0
0 0 0 0 0



 , F8 =





1 1 1 1 0 0
1 1 0 0 0 0
0 0 1 0 1 0



 .

Then for m > 3,

ext(m, F6) = ext(m, F7) = ext(m, F8) = ext(m, 2 · 1201) = ext(m, 1301).

Proof: We induct on m, using Lemma 3.1 with k = 3. Our base case m = 3 is clear,
since any simple 3-rowed matrix avoids F6, F7 and F8.

Now suppose that the result is true for m − 1, where m > 4. Let A be matrix in
ext(m, F6) ∪ ext(m, F7) ∪ ext(m, F8). Configurations F6, F7 and F8 are of the form given
in the statement of Lemma 3.1 with k = 3, so it will suffice to show that the two hypotheses
of the Lemma hold. The statement (i) follows from our induction hypothesis. We now
show that (ii) holds. That is, we suppose r ∈ [m] such that, in the row-r decomposition
(2) of A, |Cr| > forb(m− 1, 12) = m, and we show that then Cr ∈ ext(m− 1, 1201).

We may use Lemma 2.1 for the configurations F6, F7 or F8 to verify that regardless of
which configuration F6, F7, F8 is forbidden in A, then Cr has neither

L1 =

[

1 1 0 0
0 0 1 0

]

nor L2 =

[

1 1 1 1 0
1 1 0 0 0

]

nor L3 =

[

1 1 1 0 0
1 1 0 1 0

]

.
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By Theorem 1.2 we have forb(m − 1, 12) = forb(m − 1, K2), so Cr contains a copy of

K2 =

[

1 1 0 0
1 0 1 0

]

without loss of generality in its first two rows and first four columns.

Then in order to avoid L1 and L3, the first two rows have zeros elsewhere. Hence after
permuting rows, we can decompose Cr as

Cr =









































1 1 0 00 · · ·00
1 0 1 00 · · ·00
1 1 1 H111

0 0 0 H000

0 1 1 H011

1 0 1 H101

1 1 0 H110

0 0 1 H001

0 1 0 H010

1 0 0 H100







































































































m− 3
.

Here Hα is the matrix with |Cr|−3 columns, of all rows which appear under the two rows
of zeros in the first row, and to the right of copies of the 1× 3 binary triplet α in the first
three columns.

In order to avoid L2 with row 1 of Cr, H111 has no configuration
[

1 0
]

. Hence each
row of H111 is either all zeros or all ones. To avoid L1 with row 1, H000 has only zeros. To
avoid L1 with row 1, both H011 and H101 avoid

[

1 0
]

. Similarly with row 2, H110 avoids
[

1 0
]

. Hence each row of H011, H101 and H110 is either all zeros or all ones. To avoid L1

with row 1, H001 has only ones, and similarly with row 2, H010 has only ones.
Thus each row above H100 is either all zeros or all ones, and so H100 is simple. In order

to avoid L1 with row 1 of Cr, H100 has no configuration
[

1 1
]

. Let H100 have n rows,
where n 6 m− 3. Then by Theorem 1.8 with p = 1 and q = 0, |H100| 6 forb(n,

[

1 1
]

) =
n + 1 6 m − 2. But |H100| = |Cr| − 3 > m − 2, and so we conclude that n = m − 3
and that H100 ∈ ext(m − 2,

[

1 1
]

). It follows from Theorem 1.8 that, after permuting
columns, H100 = [Im−30m−3]. Hence

Cr =

















1 1 0 0 0 · · · 0 0
1 0 1 0 0 · · · 0 0
1 0 0 1 0 · · · 0 0
1 0 0 0 1 · · · 0 0
...

...
...

...
...
. . .

...
...

1 0 0 0 0 · · · 1 0

















= [1m−1Im−10m−1] ,

and so Cr ∈ ext(m− 1, 1201), as desired.

Noting that F c
2 , F3, F4, F5 are configurations in F8, we have obtained the bounds in

Table 2. It is not clear that this result has the best choices F6, F7, F8. We now use
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Lemma 3.1 and Theorem 3.2 to establish results for a family of forbidden configurations
which contain 2 · 1k−101 and whose bounds and extremal matrices are given by those for
2 ·1k−101. For an m1×n1 matrix A and an m2× n2 matrix B we use the notation A×B
or

A
×
B

to denote the (m1 + m2) × n1n2 matrix corresponding to the cartesian product of the
columns so that the columns of A × B are formed by placing a column of A on top of a
column of B in all possible ways. An example is that K4 = K1 × K3. We note that if
A, B are both simple then A× B is simple. Also note that A× B need not be B × A as
matrices although they would be the same if one performed row permutations.

Theorem 3.3 Let F be either




1 1 0 0
1 0 1 0
0 1 0 0



 or





1 1 0 0
1 0 1 0
0 0 0 0



 or





1 1 1 0 0
1 0 0 0 0
0 1 0 1 0



 .

For k > 4, we let F (k) be the k-rowed matrix

F (k) = [1k−101|Kk−3 × F ] =
k − 1





























1
... Kk−3

1 ×
1 F
0















.

Let F (3) be any one of F6, F7, F8 from Theorem 3.2. Suppose that m > 3. Then for all
k such that 3 6 k 6 m,

ext(m, F (k)) = ext(m, 2 · 1k−101) = ext(m, 1k01).

Proof: We induct on m using Lemma 3.1, where our base case m = 3 is clear. We
suppose that the result holds for m − 1, for all k. Now let ℓ be any integer such that
3 6 ℓ 6 m. Note that F (ℓ) is not simple, so any ℓ-rowed simple matrix avoids F (ℓ).
Hence the result follows if ℓ = m. On the other hand, if ℓ = 3, then the result follows
from Theorem 3.2. Thus we assume 4 6 ℓ 6 m− 1.

Let A ∈ ext(m, F (ℓ)). Now F (ℓ) is of the form given in the statement of Lemma 3.1,
so it will suffice to show that the two hypotheses of the Lemma hold. The hypothesis
(i) follows from our induction hypothesis. Now suppose that r ∈ [m] such that, in the
row-r decomposition (2) of A, |Cr| > forb(m− 1, 1ℓ−1). Then since forb(m− 1, 1ℓ−101) =
1+ forb(m− 1, 1ℓ−1) for ℓ 6 m− 1, by our induction hypothesis we have |Cr| > forb(m−
1, 1ℓ−101) = forb(m− 1, F (ℓ− 1)). But since A avoids F (ℓ), following Lemma 2.1 we see
that Cr avoids F (ℓ − 1). For this we need ℓ > 4. Hence Cr ∈ ext(m − 1, F (ℓ − 1)) =
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ext(m − 1, 1ℓ−101), again by our induction hypothesis. This provides hypothesis (ii) of
Lemma 3.1.

The notation F (k) and F (3) matches at k = 3 if we define K0×F appropriately. Note
that F (k) has only one repeated column. An example with more repeated columns is in
Theorem 4.1.

The following self-complementary cases F9 and F10 have both 2 · 1201 and 2 · 1102

as the critical substructures. Note that our result below gives an example of a 4 × 4
configuration F10 which has a 3× 2 critical substructure.

F9 =





1 1 1 1
1 1 0 0
0 0 0 0



 = K1 × (2 · 1101), F10 =









1 1 1 1
1 1 0 0
1 0 1 0
0 0 0 0









Theorem 3.4 For m > 3 we have

forb(m, F9) = forb(m, F10) = forb(m, 2 · 1201) = forb(m, 2 · 1102) =

(

m

2

)

+ m + 2.

Proof: We induct on m, where our base case m = 3 is clear. We suppose that the result
is true for m− 1, where m > 4, and let A ∈ ext(m, F10). Since |A| > forb(m, 2 · 1201) =
(

m

2

)

+ m + 2, it will suffice to show that |A| 6
(

m

2

)

+ m + 2. If A has both Im and Ic
m,

then A avoids F1,1,1,1 of F10, whence by Theorem 1.9 |A| 6 forb(m, F1,1,1,1) = 4m − 4 6
(

m

2

)

+ m + 2. Otherwise, in the row-r decomposition (2) of A for some r ∈ [m], Cr is
missing either the column of 1’s or the column of 0’s. Stripping off the second row from
F10, we see that Cr has no F1,1,0,1. Since the column of 1’s and the column of 0’s do not
contribute to F1,1,0,1, we have using Theorem 1.8 |Cr| 6 forb(m − 1, F1,1,0,1) − 1 = m.
Since |[BrCrDr]| 6 forb(m− 1, F10) =

(

m−1
2

)

+ (m− 1) + 2, the result follows.

It may be verified that ext(m, F9) = ext(m, 2 · 1201) ∪ ext(m, 2 · 1102). For F10 one
might imagine that ext(m, F10) = ext(m, 2 ·1201)∪ext(m, 2 ·1102). While this is probably
true for m > 5, the argument would be delicate since, for m = 4, an extremal construction
which departs from this pattern is the 4× 12 matrix which has exactly two columns with
2 ones, which are complementary, and all other columns on 4 rows.

4 Critical substructure 1k

Let

F11 =









1 1 1
1 1 1
1 0 0
1 0 0









The following result considers a k-rowed F with 2k−4 pairs of repeated columns.
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Theorem 4.1 Assume m > 5. Then forb(m, F11) = forb(m, 14). Assume k > 5 and
m > k + 1. Then

forb(m, Kk−4 × F11) = forb(m, 1k) =
k−1
∑

i=0

(

m

i

)

(9)

Proof: We begin by establishing forb(m, F11) = forb(m, 14) =
(

m

3

)

+
(

m

2

)

+
(

m

1

)

+
(

m

0

)

.
Let A ∈ ext(m, F11). Apply standard induction as in (1) obtaining B, C, D. It suffices to
show |C| 6

(

m−1
2

)

+
(

m−1
1

)

+
(

m−1
0

)

. We deduce that C has no configuration

F2 =





1 1 1
1 0 0
1 0 0





and so by Theorem 3.2 (F c
2 is in F8), |C| 6

(

m−1
2

)

+
(

m−1
1

)

+
(

m−1
0

)

+ 1 with equality if
and only if C ∈ ext(m− 1, 2 · 1102). In that case C has a column of 1’s and hence A has
a column of 1’s and hence A has no configuration 2 · 1202. But then by Theorem 1.8,

|A| 6 forb(m, 2 · 1202) =

(

m

2

)

+ 2m + 2 6

(

m

3

)

+

(

m

2

)

+

(

m

1

)

+

(

m

0

)

for m > 5. Thus |C| 6
(

m−1
2

)

+
(

m−1
1

)

+
(

m−1
0

)

and we have established forb(m, F11) =
forb(m, 14).

We now apply Remark 2.2 with p = k and q = 0 to obtain the bound for any F =
Kk−4 × F11 by induction on k for k > 5.

5 Critical substructures 1k−101 and k × 2 F

In this and the next two sections we consider forb(m, Fa,b,c,d) for cases with c, d ∈ {0, 1}.
We can restrict our attention to cases with a > d and b > c. Note that forb(m, Fa,b,0,0) =
forb(m, 1a+b) follows from Theorem 1.2 and Theorem 1.8 handles forb(m, Fa,0,0,d) =
forb(m, Fa,1,0,d). For some cases given below, the column 1a+b0c+d is a critical substructure
of Fa,b,c,d (when a = d one also considers 1a+c0b+d).

Problem 5.1 Find some conditions on a, b, c, d so that

forb(m, Fa,b,c,d) = forb(m, 1a+b0c+d).

We expect that some appropriate inequalities a > d + c1 and b > c + c2 for constants
c1, c2 will suffice. Note that F0,2,1,0 in [4] and F0,2,2,0, F2,1,1,0 in [3] do not follow the
pattern and we expect many such instances. We provide some cases where the bounds
of Problem 5.1 are true using inductive arguments. We develop an analogue of Lemma
3.1. The following Lemma will only be applied for 2-columned F but we state it in more
generality.

the electronic journal of combinatorics 17 (2010), #R50 13



Lemma 5.2 Suppose that k > 2, and G1 and G2 are k−1-rowed simple matrices, possibly

empty, whose columns have at least 2 zeros. Let G =

[

11 · · ·1 00 · · ·0
G1 G2

]

, and let F be

the k-rowed simple matrix

F = [1k−101|G] =
k − 1





























1
1
...
1
0

G















=
k − 1





























1 11 · · ·1 00 · · ·0
1
... G1 G2

1
0















.

Let A ∈ ext(m, F ), where m > k. Suppose that we know the following three things:
(i) ext(m− 1, F ) = ext(m− 1, 1k−101).
(ii) forb(m, G) < forb(m, 1k−101).
(iii) For each r ∈ [m] where Cr does not have 1m−1 in the row-r decomposition (2) of

A, we have Cr ∈ ext(m− 1, 1k−2).
Then

ext(m, F ) = ext(m, 1k−101).

Proof: Assume A ∈ ext(m, F ) and (i), (ii), (iii) hold. Since F has 1k−101, we have
|A| > forb(m, 1k−101), and it will suffice to show that A avoids 1k−101. We first show that
A does not have the configuration Ic

m = Km−1
m . Otherwise, A has Ic

k on every k-set of rows,
and so A has no G. Then by our assumption (ii), |A| 6 forb(m, G) < forb(m, 1k−101), a
contradiction. Hence A does not have Ic

m.
Thus for some r ∈ [m], in the row-r decomposition (2) of A, neither Br nor Cr has

1m−1. By our assumption (iii), Cr ∈ ext(m − 1, 1k−2). Hence |[BrCrDr]| = |A| − |Cr| >
forb(m, 1k−101)− forb(m−1, 1k−2) = forb(m−1, 1k−101) = forb(m−1, F ) by Remark 2.2
and our assumption (i). Since [BrCrDr] avoids F , we have [BrCrDr] ∈ ext(m − 1, F ) =
ext(m − 1, 1k−101) by (i). To show that A avoids 1k−101, it will suffice to show that Br

avoids 1k−1 and Cr avoids 1k−2 and Dr avoids 1k−201. Since Br avoids 1k−101 and does
not have 1m−1, it also avoids 1k−1. We have that Cr avoids 1k−2. We now show that Dr

avoids 1k−201.
Because Cr ∈ ext(m − 1, 1k−2), Cr has a copy of [K0

k−1K
1
k−1K

2
k−1 · · ·K

k−3
k−1 ] on each

k − 1-tuple of its rows. Hence Cr has a copy of every row permutation of G1 and G2 on
each k − 1-tuple of its rows. Now if we look for the top row of F in row r of A, we see
that Dr has no 1k−201, as desired.

We now establish sufficient conditions to obtain the hypothesis (ii) above.

Lemma 5.3 For positive integers m, x and y, where m > x + y + 2, we have

x
∑

i=0

(

m

i

)

+

y
∑

i=0

(

m

i

)

<

x+y
∑

i=0

(

m

i

)

.
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Proof: Without loss of generality, suppose x 6 y. Then it will suffice to show that

x
∑

i=0

(

m

i

)

<

x+y
∑

i=y+1

(

m

i

)

. (10)

If x = 1, then since 2 6 y + 1 6 m− 2, we have

(

m

y + 1

)

>

(

m

2

)

>

(

m

0

)

+

(

m

1

)

,

giving (10). Otherwise, x > 2. Then for i = 1, . . . , x, we have i < x + y + 1− i < m− i,
whence

(

m

i

)

<
(

m

x+y+1−i

)

. Thus

x
∑

i=0

(

m

i

)

<
x

∑

i=1

(

m

x + y + 1− i

)

=

x+y
∑

i=y+1

(

m

i

)

,

again giving (10).
We note that x, y > 1 and m > x + y + 2 are also necessary conditions for the above

inequality to hold, for integers m, x and y. Now taking x = p− 1 and y = q− 1, we have
the following Corollary, which can be more readily applied to hypothesis ii) of Lemma
5.2.

Corollary 5.4 For p, q > 2 and m > p + q,

forb(m, 1p0q) < forb(m, 1p+q−1) < forb(m, 1p+q−101). (11)

For our next main result Theorem 5.6 we establish base cases first. The bound for
F1,2,1,0 is in [3] but we need ext(m, F ) for this case.

Theorem 5.5 Let m be a positive integer. Then ext(m, F1,2,1,0) = ext(m, 1301).

Proof: We induct on m. The result is clear for m 6 3. For m = 4, let A ∈ ext(4, F1,2,1,0).
Then |A| > forb(4, 1301) = 12. We use the notation A to denote the set system associated
with A. Thus A is missing at most 4 of the 16 subsets of {1, 2, 3, 4}. Note that if A has a
set with 3 elements (e.g. {1, 2, 3}), then since A has no F1,2,1,0, three sets with 2 elements
are missing from A (e.g. {1, 4}, {2, 4}, {3, 4}). Similarly if A has two (or more) sets of
three elements then it must be missing at least 5 sets of 2 elements. Since |A| = 12, it
follows that A has no sets with 3 elements and A has all other subsets of {1, 2, 3, 4}, and
so A ∈ ext(4, 1301). This establishes our base cases m 6 4.

Now suppose that the result holds for m − 1, where m > 5. Let A be any matrix in
ext(m, F ). Then by Corollary 6.2 (from the next section), it will suffice to show that C ∈
ext(m− 1, 12) in the standard decomposition (1) of A. We have |A| > forb(m, 1301) and
by induction |[BCD]| 6 forb(m−1, 1301), whence |C| = |A|−|[BCD]| > forb(m, 1301)−
forb(m − 1, 1301) = forb(m − 1, 12) = m (Remark 2.2). Let γ be a column in C with
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greatest column sum s > 1 (or set of largest cardinality in C). If s = 1 then C ∈
ext(m− 1, 12), so we proceed by contradiction and suppose that s > 2.

Define the notation that for a column α we let S(α) denote the subset in A correspond-
ing to the column α. We say that two columns α and β are incomparable if S(α) 6⊆ S(β)
and S(β) 6⊆ S(α). Note that C has no configurations F0,2,1,0, F1,1,1,0 or F1,2,0,0 Hence if α
and β are incomparable columns in C, then α and β give the configuration I2 = F0,1,1,0

and so by the forbidden configurations F0,2,1,0, F1,1,1,0 for C we deduce α and β each have
exactly 1 one. That is, if X, Y ∈ C such that |X| 6= 1 or |Y | 6= 1, then X ⊆ Y or Y ⊆ X.

In particular, for each t > 2, C has at most one set with t elements. Also, since γ
has maximum sum, Z ⊆ S(γ) for all Z ∈ C. Given the forbidden configuration F1,2,0,0,
|Z| > s− 1 for all non-empty Z ∈ C. It follows that if s > 3, then C has at most 3 sets
(at most one each of size s and s− 1, and possibly the empty set). But |C| > m > 5, so
s = 2. Then because Z ⊆ S(γ) for all Z ∈ C, we have |C| 6 4 (since S(γ) has 4 subsets).
This contradiction completes the proof.

For the following theorem note that we are computing forb(m, Fb,a,1,0) using a, b in an
unusual order.

Theorem 5.6 For m > 1, a > 2 and b > 1,

ext(m, Fa,b,0,1) = ext(m, Fb,a,1,0) = ext(m, 1a+b01).

Proof: We induct on m using Lemma 5.2, where our base cases m 6 3 are clear. We
suppose that the result holds for m− 1, for all a > 2 and b > 1. Now let a and b be any
integers such that a > 2 and b > 1. If m 6 a + b, then the result is clear, while if a = 2
and b = 1, then we may use Theorem 1.8 for F2,1,0,1 and Theorem 5.5 for F1,2,1,0. Thus
we assume that m > a + b + 1, and either a > 3 or b > 2.

Let A ∈ ext(m, Fa,b,0,1) ∪ ext(m, Fb,a,1,0). Note that Fa,b,0,1 and Fb,a,1,0 are of the form
given in the statement of Lemma 5.2 with k = a+b, so it will suffice to show that the three
hypotheses of the Lemma hold. The hypothesis (i) follows from our induction hypothesis.
The hypothesis (ii) follows from Corollary 5.4, since the second columns of Fa,b,0,1 and
Fb,a,1,0 both have at least 2 ones and at least 2 zeros.

Now we show that hypothesis (iii) holds. Suppose that for some r ∈ [m] such that
|Cr| does not have 1m−1 in the row-r decomposition (2) of A. We have that |A| >

forb(m, 1a+b01), since 1a+b01 is in both Fa,b,0,1 and Fb,a,1,0. By induction |BrCrDr| 6

forb(m−1, 1a+b01). Thus using Remark 2.2, we have |Cr| = |A|− |[BrCrDr]| > forb(m−
1, 1a+b−1) = forb(m−1, 1a+b−101)−1. Now if a > 3, then Cr either does not have Fa−1,b,0,1

or Fb,a−1,1,0, while if b > 2, then Cr either does not have Fa,b−1,0,1 or Fb−1,a,1,0. By our
induction hypothesis, the m−1-rowed extremal matrices for each of these four Forbidden
Configurations are the same as those for 1a+b−101. Since 1m−1 does not contribute to any
of these four Forbidden Configurations, we have [Cr 1m−1] ∈ ext(m−1, 1a+b−101), whence
Cr ∈ ext(m− 1, 1a+b−1).
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6 Some self-complementary k × 2 F

Above we established the extremal matrices for Fa,b,0,1 and Fb,a,1,0, where a > 2 and b > 1.
We now examine some self-complementary cases F1,b,0,1. We use Corollary 6.3 with the
result for F1,2,0,1 as a base case. We prove that the extremal matrices either avoid the first
column or the second column of the Forbidden Configuration and hence establish that
11+b0 and 110b+1 are critical substructures for F1,b,0,1.

The corollaries of the following lemma will be used in our proofs for 2-columned
configurations. They allow us to assert in an induction argument that, if we know that
Cr has a certain structure, then A also does.

Lemma 6.1 Suppose that a, b, c, d are non-negative integers such that a > d, b > c, and
b > 2. Let A ∈ ext(m, Fa,b,c,d), where c + d > 1 and m > a + b + c + d. Suppose for some
r ∈ [m] that in the row-r decomposition (2) of A we have Cr ∈ ext(m− 1, 1a+b−10c+d−1).
Then A ∈ ext(m, 1a+b0c+d).

Proof: Assume A ∈ ext(m, Fa,b,c,d). Since 1a+b0c+d is the first column of Fa,b,c,d, we have
|A| = forb(m, Fa,b,c,d) > forb(m, 1a+b0c+d). It will suffice to show that A avoids 1a+b0c+d.
Because Cr avoids 1a+b−10c+d−1, it will in turn suffice to show that Dr avoids 1a+b−10c+d

and Br avoids 1a+b0c+d−1.
Since b > c, Cr has all columns with a + c − 1 ones on m − 1 rows. Then Dr avoids

1a+b−10c+d, since otherwise a column γ in Dr with 1a+b−10c+d can be matched with a
suitable column β of Cr with a + c − 1 ones to give Fa,b,c,d in A using the 1’s in row r.
Similarly, if c > 1, then Br avoids 1a+b0c+d−1, since otherwise a column γ in Br with
1a+b0c+d−1 can be paired with a suitable column β of Cr with a+ c−1 ones to give Fa,b,c,d

in A where γ has a 0 in row r but we choose β with a 1 in row r. If c = 0 then since b > 2,
Cr has all columns with a ones on m − 1 rows. Hence Br again avoids 1a+b0d−1, since
otherwise a column γ in Br with 1a+b0max{0,d−1} can be matched with a suitable column
β of Cr with a ones to give Fa,b,c,d in A using 0’s in row r.

We state two corollaries to this Lemma. If a (0,1)-matrix F is a row and column
permutation of its complement F c, then we say that F is self-complementary. We will
use the first corollary below when F is not self-complementary (a > d), and the second
when F is self-complementary (a = d).

Corollary 6.2 Suppose that a, b, c, d are non-negative integers such that a > d, b > c,
and b > 2, and let m > a + b + c + d. Suppose that for every matrix A ∈ ext(m, Fa,b,c,d),
there exists an r ∈ [m], depending on A, such that Cr ∈ ext(m − 1, 1a+b−10c+d−1) in the
row-r decomposition (2) of A. Then

ext(m, Fa,b,c,d) = ext(m, 1a+b0c+d).

Proof: We get ext(m, Fa,b,c,d) ⊆ ext(m, 1a+b0c+d) by Lemma 6.1, whence the result
follows since 1a+b0c+d is a configuration of Fa,b,c,d.

the electronic journal of combinatorics 17 (2010), #R50 17



Corollary 6.3 Suppose that a, b, c are non-negative integers such that b > c and b > 2,
and let m > 2a + b + c. Suppose that for every matrix A ∈ ext(m, Fa,b,c,a), there exists an
r ∈ [m], depending on A, such that Cr ∈ ext(m−1, 1a+b−10a+c−1)∪ext(m−1, 1a+c−10a+b−1)
in the row-r decomposition (2) of A. Then

ext(m, Fa,b,c,d) = ext(m, 1a+b0a+c) ∪ ext(m, 1a+c0a+b).

Proof: For any A ∈ ext(m, Fa,b,c,a), we take r such that Cr ∈ ext(m− 1, 1a+b−10a+c−1)∪
ext(m− 1, 1a+c−10a+b−1). Then either Cr or Cc

r is in ext(m− 1, 1a+b−10a+c−1), and since
Fa,b,c,a is self-complementary, we have Ac ∈ ext(m, Fa,b,c,a). Hence by Lemma 6.1 with d =
a, either A or Ac is in ext(m, 1a+b0a+c), whence A ∈ ext(m, 1a+b0a+c)∪ ext(m, 1a+c0a+b).
The result follows since 1a+b0a+c and 1a+c0a+b are both configurations of Fa,b,c,a.

The bound forb(m, F1201) is given in [6] but we also need ext(m, F1201).

Theorem 6.4 Let m be a positive integer. Then

ext(m, F1,2,0,1) = ext(m, 1301) ∪ ext(m, 1103).

Proof: We induct on m. Our base cases m 6 3 are clear. Now suppose that the result
holds for m− 1, where m > 4. Let A be any matrix in ext(m, F1,2,0,1). Then A does not
have both Im and Ic

m, since otherwise it has F . Hence for some r ∈ [m], in the row-r
decomposition (2) of A, Cr is missing either 1m−1 or 0m−1. By Corollary 6.3, it will suffice
to show that Cr ∈ ext(m− 1, 12) ∪ ext(m− 1, 02).

Now to avoid F1,2,0,1 in A, we deduce that Cr has no configuration F0,2,0,1, F1,1,0,1

or F1,2,0,0. If two columns of Cr contain F1,0,0,1, then the two columns must also contain
F1,1,0,1 (Cr is simple), a contradiction. So Cr has no F1,0,0,1. Now given |A| > forb(m, 1301)
and by induction |BrCrDr| 6 forb(m− 1, 1301) and we may deduce by Remark 2.2 that
|Cr| = |A| − |[BrCrDr]| > forb(m − 1, 12) = m = forb(m − 1, F1,0,0,1) − 1. Thus Cr

has either 0m−1 or 1m−1 since both columns do not contribute to F1,0,0,1. Suppose that
Cr has 0m−1. Then because Cr avoids F0,2,0,1, it avoids 1201. Then since Cr is missing
1m−1, it also avoids 12, whence Cr ∈ ext(m − 1, 12). Similarly, if Cr has 1m−1, then
Cr ∈ ext(m− 1, 02).

Theorem 6.5 For m > 1 and b > 2,

ext(m, F1,b,0,1) = ext(m, 1b+101) ∪ ext(m, 110b+1).

Proof: We induct on m, where our base case m = 1 is clear. We suppose that the result
holds for m − 1, for all b > 2, where m > 2. Let b be any integer such that b > 2. If
m 6 b + 1 the result is clear, while if b = 2 the result is true by Theorem 6.4. Thus we
suppose that 3 6 b 6 m− 2. Let A ∈ ext(m, F1,b,0,1). Then A does not have both Im and
Ic
m, since otherwise it has F1,b,0,1. Hence for some r ∈ [m], Cr is missing either 1m−1 or

0m−1 in the row-r decomposition (2) of A.
Now given |A| > forb(m, 11+b01) and, by induction, |BrCrDr| 6 forb(m, 11+b01), we

have by Remark 2.2 that |C| = |A| − |[BCD]| > forb(m− 1, 1b) = forb(m− 1, 1b01)− 1.
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Now since Cr has no F1,b−1,0,1, by our induction hypothesis we have |Cr| 6 forb(m −
1, F1,b−1,0,1) = forb(m − 1, 1b01). In particular, Cr is missing at most one of 1m−1, 0m−1

since neither contribute to F1,b−1,0,1. Suppose that Cr has 0m−1. Then since Cr avoids
F0,b,0,1, it has no 1b01. Since, in this case, Cr is missing 1m−1, we conclude that Cr avoids
1b. Similarly, if Cr has 1m−1, then it avoids 0b. Thus Cr ∈ ext(m−1, 1b)∪ ext(m−1, 0b).
The result now follows by Corollary 6.3, with a = 1 and c = 0.

In a similar way we can prove that for 3 6 b 6 m− 2, ext(m, F0,b,1,0) = ext(m, 1b01)∪
ext(m, 110b), the bound having been established in [3].

7 Critical substructures 1k−202 and k × 2 F

In this section we compute forb(m, Fa,b,1,1) for a > 1 and b > 2, where we separately
prove the base case F1,2,1,1. We note that, in all of our previous generalizations, we were
examining F for which forb(m, F ) = forb(m, 1k−101). In such cases, we could get an
upper bound on Cr which differed by only one from its lower bound. However, in this
case, our upper and lower bounds on Cr differ by m−1. Because of this, we apply a more
direct argument.

Theorem 7.1 Let m be a positive integer. Then for m > 1,

ext(m, F1,2,1,1) = ext(m, 1302) ∪ ext(m, 1203).

Proof: We induct on m. Our base cases m 6 4 are clear. Now suppose that the result
holds for m − 1, where m > 5. Let A be any matrix in ext(m, F1,2,1,1). Apply the
decomposition of (1). Then by Corollary 6.3, it will suffice to show that C ∈ ext(m −
1, 1201)∪ext(m−1, 1102). We have |A| > forb(m, 1302) and assert by induction |[BCD]| 6
forb(m− 1, 1302), so by Remark 2.2, |C| = |A| − |[BCD]| > forb(m− 1, 1201) = m + 1.
Let C ′ be the matrix formed by removing 1m−1 and 0m−1 from C, if either is present.
Then |C ′| > m − 1. Let γ be a column in C ′ of greatest column sum in C ′ where γ has
s ones. If s = 1 then C ∈ ext(m− 1, 1201). Hence we assume that s > 2, and show that
then C ∈ ext(m− 1, 1102). It will suffice to show that C ′ has all columns with exactly 1
zero, and no others.

Note that C ′ has no F1,1,1,1, F1,2,1,0, and no F0,2,1,1. Hence C ′ has neither









0
1 1
1 0
0 1









nor









1
0 0
1 0
0 1









where the blanks can be filled with a 0 or 1. Hence if α and β are two incomparable
columns in C ′, then either α and β both have exactly 1 one, both have exactly 1 zero, or
are complements.

C ′ also has no F1,2,0,1. Since columns in C ′ have a one and a zero, we conclude that if
α and β are columns in C ′ such that S(β) ⊂ S(α), then β has exactly one less 1 than α.
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Now we show that s = m−2. We proceed by contradiction and suppose that s 6 m−3.
If γc is in C ′, then every other column in C ′ is incomparable either with γ or with γc.
Since γ and γc both have at least 2 ones and at least 2 zeros, we get |C ′| = 2. Since
|C ′| > m − 1 > 4, we conclude that γc is not in C ′. Hence, since γ has at least 2 ones
and at least 2 zeros, no columns in C ′ are incomparable with γ. Then because γ has
maximum sum, all sets in C ′ are subsets of S(γ). If s = 2, since ∅ /∈ C ′, we have |C ′| 6 3,
which contradicts |C ′| > 4. Hence s > 3, whence all columns in C ′, other than γ, have
s− 1 ones. Since any two such columns are incomparable and have at least 2 ones and at
least 2 zeros, they must be complementary. This gives |C ′| 6 3, again a contradiction.

Thus s = m − 2, that is, γ has exactly 1 zero. We now show that γc is not in C ′.
Otherwise, every column α in C ′, other than γ and γc, is incomparable with γ or γc,
whence α has exactly 1 one or exactly 1 zero. If α has exactly 1 one, then S(α) ⊂ S(γ),
and hence α has exactly m − 3 ones. If α has exactly 1 zero, then S(γc) ⊂ S(α), and
hence α has exactly 2 ones. In either case we get a contradiction, so we conclude that γc

is not in C ′.
Thus every column β 6= γ in C ′ either has exactly 1 zero (if β and γ are incomparable)

or exactly 2 zeros (if S(β) ⊂ S(γ)). Suppose β has exactly 2 zeros and hence at least 2
ones. Then β cannot be incomparable to any other column of C ′. Thus S(β) ⊂ S(γ). It
follows that S(β) is a subset of every other set in C ′ (all columns in C ′ have at most 2
zeros). Since [m− 1] /∈ C ′, we get |C ′| 6 3, which contradicts |C ′| > 4. Hence C ′ has no
columns with exactly 2 zeros, so all columns have exactly 1 zero. Since |C ′| > m− 1, C ′

has all such columns, as desired.

Theorem 7.2 For m > 1, a > 1 and b > 2,

ext(m, Fa,b,1,1) =

{

ext(m, 1a+b02), if a > 2

ext(m, 11+b02) ∪ ext(m, 1201+b), if a = 1
.

Proof: We induct on m, where our base cases m 6 4 are clear. We suppose that the
result is true for m − 1, for all a > 1 and b > 2, where m > 5. Let a > 1 and b > 2.
If m 6 a + b + 1, then the result is clear, while if a = 1 and b = 2, the result follows
from Theorem 7.1 above. Hence we assume that 4 6 a + b 6 m − 2. In particular,
m > 6. Let A ∈ ext(m, Fa,b,1,1). By Corollaries 6.2 and 6.3, it will suffice to show that
in the standard decomposition of A in (1) that C ∈ ext(m − 1, 1a+b−101) if a > 2, and
C ∈ ext(m− 1, 1b01) ∪ ext(m− 1, 110b) if a = 1.

We have |A| > forb(m, 1a+b02) and by induction |[BCD]| 6 forb(m−1, 1a+b02), hence
by Remark 2.2, |C| > |A|− |[BCD]| = forb(m−1, 1a+b−101). We now consider two cases,
b > 3 and b = 2.
Case (I), b > 3 : In this case we use that C has no Fa,b−1,1,1, and so by our induction
hypothesis,

|C| 6 forb(m− 1, Fa,b−1,1,1) = forb(m− 1, 1a+b−102) = forb(m− 1, 1a+b−101) + m− 1.

Hence C is missing at most m− 1 columns which do not contribute to Fa,b−1,1,0. We now
consider two subcases, a > 2 and a = 1.
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Subcase (Ii), a > 2 : Suppose that C has a column with exactly 1 zero (say in
row j). Then because C has no Fa,b,0,1, it is missing at least

(

m−2
a

)

>
(

m−2
2

)

> m − 1
columns with exactly a ones (those with a zero in row j). Since these columns do not
contribute to Fa,b−1,1,1, this is a contradiction. Thus C has no columns from Ic

m−1. Because
there are m − 1 such columns and they do not contribute to Fa,b−1,1,1, we conclude that
[CIc

m−1] ∈ ext(m− 1, Fa,b−1,1,1). Since ext(m− 1, Fa,b−1,1,1) = ext(m− 1, 1a+b−102) by our
induction hypothesis, C ∈ ext(m− 1, 1a+b−101), as desired.

Subcase (Iii), a = 1 : As in the case above, if C has a column from Ic
m−1, then

it is missing at least
(

m−2
a

)

= m − 2 columns from Im−1. Similarly, since F1,b,0,1 is self-
complementary, if C has a column from Im−1, then it is missing at least m − 2 columns
from Ic

m−1. Note that columns in Ic
m−1 and Im−1 do not contribute to F1,b−1,1,1. Hence C

is missing either Ic
m−1 or Im−1, since otherwise it is missing at least 2(m − 2) > m − 1

columns which do not contribute to F1,b−1,1,1. Suppose that C is missing Ic
m−1. Then C

has Im−1 and, because C avoids F0,b,1,1, it avoids the first column 1b02 of F0,b,1,1. Since C
is missing Ic

m−1, C avoids 1b01, whence C ∈ ext(m − 1, 1b01). Similarly, if C is missing
Im−1, then C ∈ ext(m−1, 110b). Thus C ∈ ext(m−1, 1b01)∪ext(m−1, 110b), as desired.
Case (II), b = 2 : In this case we use that C has no Fa−1,b,1,1 using a > 2, and so by our
induction hypothesis,

|C| 6 forb(m− 1, Fa−1,b,1,1) = forb(m− 1, 1a+b−102) = forb(m− 1, 1a+b−101) + m− 1.

Since columns from Ic
m−1 do not contribute to Fa−1,b,1,1, as in Subcase (Ii) above, it will

suffice to show that C is missing Ic
m−1. We proceed by contradiction and suppose that C

has at least one column from Ic
m−1. We consider two subcases—when C has exactly one

such column, and when C has at least 2 such columns.
Subcase (IIi), C has exactly one column from Ic

m−1 : In this case, after permuting
rows and columns, we can decompose C as

C =















1
... X1 X2

1
1
0 00 · · ·0 11 · · ·1















.

Since C avoids Fa,2,0,1 and Fa,2,1,0, both [X11m−2] and X2 avoid 1a02. Also, since C has
only one column from Ic

m−1, X2 is missing the m−2 columns in Ic
m−2. Since these columns

do not contribute to 1a02, we have

|C| = |[X11m−2]|+ |X2|

6 2 · forb(m− 2, 1a02)− (m− 2)

= forb(m− 2, 1a01) + forb(m− 2, 1a−1) +
(

m−2
a−1

)

+ 2m− 3−m + 2

= forb(m− 1, 1a01) +
(

m−2
a−1

)

+ m− 1,

where the last line uses Remark 2.2. Now we asserted

|C| > forb(m− 1, 1a+101) = forb(m− 1, 1a01) +

(

m− 1

a

)

,
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whence
(

m−2
a−1

)

+ m− 1 >
(

m−1
a

)

. Using Pascal’s Identity we obtain m− 1 >
(

m−2
a

)

. This
is a contradiction, since m > 6.

Subcase (IIii), C has at least 2 columns from Ic
m−1 : Let two such columns be

α and β. Then after permuting rows and columns, we can decompose C as

C =















1 1
...

... Y1 Y2 Y3 Y4

1 1
1 0 00 · · ·0 11 · · ·1 11 · · ·1 00 · · ·0
0 1 00 · · ·0 11 · · ·1 00 · · ·0 11 · · ·1















α β

.

Since C avoids Fa,2,0,1, looking at α we see that Y1 avoids 1a01. Since C avoids Fa,2,1,0,
looking at α we see that Y2 avoids 1a−102.

Since C avoids Fa,2,0,1, looking at α we see that [Y31m−3] avoids 1a−102. C also avoids
Fa,2,1,0, so looking at β we see that [Y31m−3] also avoids 1a01. Hence [Y31m−3] avoids
1a−101. Similarly, [Y41m−3] avoids 1a−101. Thus applying Remark 2.2,

|C| = |Y1|+ |Y2|+ |[Y31m−3]|+ |[Y41m−3]|

6 forb(m− 3, 1a01) + forb(m− 3, 1a−102) + 2 · forb(m− 3, 1a−101)

= 2 · (forb(m− 3, 1a02) + forb(m− 3, 1a−101))− (m− 3)−
(

m−3
a−1

)

6 2 · (forb(m− 3, 1a02) + forb(m− 3, 1a−101))− (m− 2)

= 2 · forb(m− 2, 1a02)− (m− 2),

which is a contradiction as in Subcase IIi.

These results conclude our proof of the various cases in Theorem 1.10.

8 Critical substructure 3 · 1k−1

We now handle the final 3× 3 matrix. Let

F1(k) =















1 1 1
1 1 1
...

...
...

1 1 1
1 0 0





























k − 1
.

Note that F1(3) is F1 in Table 2. The generality of this result for larger k costs nothing.

Theorem 8.1 Let m, k be given.

forb(m, F1(k)) = forb(m, 3 · 1k−1) 6
k + 1

k

(

m

k − 1

)

+

(

m

k − 2

)

+ · · ·+

(

m

0

)

. (12)

with equality if there exists a design on [m] of blocks of size k such that for each subset
S ∈

(

[m]
k−1

)

, there is exactly one block of size k containing it.
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Proof: Let k > 3 be given. Note that 3 · 1k−1 is a configuration of F1(k). We use
Theorem 1.6 for forb(m, 3 · 1k−1). Much of the argument is given in terms of sets.

For k = 3, we can construct matrices achieving the bound as follows. For m ≡
1, 3(mod 6), there is a Steiner triple system on m points yielding an m × 1

3

(

m

2

)

simple

matrix Mm of columns of column sum 3 and containing no configuration
[

1 1
1 1

]

. Thus
[K0

mK1
mK2

mMm] avoids F1(3) and achieves the upper bound. Similarly if there exists a
(k − 1)−design on [m] of blocks of size k such that for each subset of [m] of size k − 1,
there is exactly one block of size k containing it, let Mm be the associated m × 1

k

(

m

k−1

)

incidence matrix. Thus [K0
mK1

m · · ·K
k−1
m Mm] avoids F1(k) and achieves the upper bound.

The existence of the block design would require m, k satisfying some easy congruences
and having m large enough.

To prove the bound, let m, k be given. Let A be an m-rowed simple matrix with
no configuration F1(k). We may assume that A has no column of column sum m since
then A has no configuration 2 · 1k−101 and we have by Theorem 1.8 forb(m, 2 · 1k−101) =
(

m

k−1

)

+ · · · +
(

m

1

)

+
(

m

0

)

+
(

m

m

)

, which is less than the desired bound for F1(k). We
will also assume A has no column of column sum in {0, 1, . . . , k − 2} and then add
(

m

k−2

)

+ · · · +
(

m

1

)

+
(

m

0

)

to the bound for |A| we obtain since if A has no F1(k), then

neither does [AKk−2
m Kk−3

m · · ·K0
m].

Let A ⊆ 2[m] be the set system associated with A. Thus each B ∈ A satisfies k − 1 6

|B| 6 m− 1. Here we are using |B| to denote the cardinality of the set B. Let S be any
(k − 1)-set in

(

[m]
k−1

)

and consider any three sets B, C, D ∈ A with S ⊆ B, C, D. Then
to avoid the configuration F1(k), we must have B\C, C\B ⊆ D. Also note that there
cannot be a tower of 3 sets B ⊆ C ⊆ D with B, C, D ∈ A and |B| > k − 1.

We first separate A into the maximal setsM in A of size at least k and the remaining
sets R. Thus R contains any maximal sets of size k − 1 if any are in A as well perhaps
as other sets. We will then partition M = M′ ∪M′′ such that each pair of sets in M′

intersect in at most k− 2 elements and we have a matching of the sets D ∈ R∪M′′ into
the sets S ∈

(

[m]
k−1

)

(so that if D is matched to S then S ⊆ D). We have |M′| 6 1
k

(

m

k−1

)

using a standard pigeonhole argument on the number of columns of column sum at least
k with no configuration 2 · 1k−1 and by the matching we have |R ∪M′′| 6

(

m

k−1

)

. The
bound follows using |A| = |M′|+ |M′′|+ |R|.

Assume T ∈ A with |T | > k. We deduce that A has no configuration 2 · 1k−101 on
the rows of T . We cannot have two distinct sets C, D ∈ A with C ∩ T = D ∩ T and
k − 1 6 |C ∩ T |, |D ∩ T | < |T | else we get F1(k) in the columns of A associated with the
sets C, D, T . Thus we may conveniently define a set of subsets of [m]:

A(T ) = {C ∩ T : C ∈ A and k − 1 6 |C ∩ T | < |T |}, (13)

where we note that for each set E ∈ A(T ), there is a unique set C ∈ A with E = C ∩ T .
For each maximal set B ∈ M we show below how to obtain a matching of sets of

A(B) into
(

B

k−1

)

where a set D ∈ A(B) is matched into a set S ∈
(

B

k−1

)

with S ⊆ D. At
the end we show how to use these matchings, one for each maximal set, to obtain the
desired partitionM =M′ ∪M′′ and matching of the sets M′′ ∪R into

(

[m]
k−1

)

.
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Consider a maximal set B ∈ M and the poset on A(B) ordered by set containment.
Extend this to a linear order on all the sets in A(B) respecting the containment order.
Match the sets in turn following this linear order in increasing fashion. For each set
D ∈ A(B) match D into an unmatched set S ∈

(

B

k−1

)

with S ⊆ D. How can this
matching process fail? Assume we have reached a set C in our ordering of A(B) so
that some

(

|C|
k−1

)

sets in A(B) have been already matched to all (k − 1)-sets
(

C

k−1

)

. Thus
k 6 |C| < |B|. Now consider the submatrix AC of A consisting of the rows of C and
all columns with at least k − 1 1’s and at most |C| − 1 1’s on the rows of C i.e. the
simple matrix associated with A(C). For D ∈ A(C) we have by our above observations
that there is a unique set D′ in A with C ∩ D′ = D and B\C ⊆ D′ (if B\C 6⊆ D′ then
F1(k) is formed by the sets B, C, D). Thus there is no configuration 2 ·1k−201 in AC else,
using an element of B\C and set C, we will have F1(k). To avoid creating 2 · 1k−201,
we can have at most (k − 1)

(

|C|
k−1

)

= |C|
(

|C|−1
k−2

)

configurations 1k−201 (where the factor
(k − 1) accounts for row orderings of 1k−201). Each column of p 1’s in AC contains
at least

(

p

k−2

)

(|C| − p) configurations 1k−201 contained in the rows of C, and hence at
least (k − 1)(|C| − (k − 1)) such configurations (corresponding to taking p = k − 1).
Thus there are at most

(

|C|
k−1

)

/(|C| − (k − 1)) columns in AC . Hence for |C| > k, we

have
(

|C|
k−1

)

>
(

|C|
k−1

)

/(|C| − (k − 1)) and so not all sets of
(

C

k−1

)

can have been already
matched when it is time to consider C, a contradiction. For |C| = k, it is possible that
all

(

|C|
k−1

)

= k subsets have been matched but this results in a special structure. Assume
C = {1, 2, . . . , k} and B\C = E. Then the sets that have been matched to the k (k− 1)-
sets

(

C

k−1

)

must occur before C in the ordering and so must be the sets D1 = (C\1) ∪ E,
D2 = (C\2)∪E,. . . , Dk = (C\k)∪E. But given that there are no towers of three sets in
A, we deduce that A(B) = {D1, D2, . . . , Dk, C} and so we choose some x ∈ E and match
D1 to the (k−1)-set C\{1, 2}∪{x}, match C to the k−1-set C\1 and for j = 2, 3, . . . , k,
match Dj to the (k − 1)-set C\j. Thus we are able to obtain the desired matching for
A(B).

We now obtain the partition M = M′ ∪ M′′ and matching from M′′ into
(

[m]
k−1

)

.
We use the preliminary matchings obtained above. Arbitrarily order the sets in M as
B1, B2, B3, . . .. For each set C ∈ A, choose the smallest index i so that |C ∩Bi| > k − 1.
If no such i, then |C| = k−1 and C is maximal in A. In this case C ∈ R and we match C
to the set C. If i exists and C = Bi, then C will not get matched and C is put inM′. If
C 6= Bi, then C is matched to the same set in

(

Bi

k−1

)

as C is matched to when considering
Bi. If in addition C ∈M then C is put inM′′. Thus every set C in R will get matched
to some (k − 1)−set S in

(

[m]
k−1

)

with S ⊆ C.

We first show that we have the desired matching of M′′ into
(

[m]
k−1

)

. Assume the
contrary that there are a pair of sets C, D ∈ R ∪M′′ with |C ∩D| > k − 1 and assume
both are matched to the same set S ∈

(

[m]
k−1

)

. Then S ⊆ C ∩ D. Let i be the smallest
index of a maximal set Bi which intersects C in at least k − 1 elements and let j be the
smallest index of a maximal set Bj which intersects D in at least k − 1 elements. Given
that S ⊆ Bi, Bj, we must have i = j and C 6= Bi and D 6= Bi. But when considering the
matching for A(Bi), the two sets C, D will be matched to different sets, a contradiction.
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We now show that M′ has no two sets whose intersection is of size k − 1 or larger.
Given any pair of maximal sets Bp, Bq ∈ M with |Bp ∩ Bq| > k − 1 with p < q, we can
show that Bq ∈M

′′. Assume i is the smallest index of a maximal set Bi which intersects
Bq in at least k − 1 elements. Then i 6 p and so Bi 6= Bq and so Bq gets matched to
some set and Bq is put inM′′.

We have establishes the desired partition and as noted above, this yields our bound.
Note that if we have equality in our bound, then |M′| = 1

k

(

m

k−1

)

and hence the columns
will form a (k − 1)-design on [m] with blocks of size k and λ = 1.

9 A Difficult Example

It was noted in [2] that 29
21

(

m

2

)

+m+1 6 forb(m, F2,1,1,0) 6 2
(

m

2

)

+m+1 and a construction
there can be generalized to yield the following result which shows that forb(m, F2,1,1,0)
cannot be a specific quadratic: the coefficient of

(

m

2

)

grows with m.

Theorem 9.1 Let c be a positive real number. Let A be an m ×
(

c
(

m

2

)

+ m + 2
)

simple
matrix with no F2,1,1,0. Then for some M > m, there is an

M ×
(

(c + 2
m(m−1)

)
(

M

2

)

+ M + 2
)

simple matrix with no F2,1,1,0.

Proof: By results of Wilson [13], for some M > m, there is a block design with blocks
B ⊆

(

[M ]
m

)

such that each pair in
(

[M ]
2

)

is contained in a unique block. Thus there are
2

m(m−1)

(

M

2

)

blocks. We can form an M× 2
m(m−1)

(

M

2

)

simple matrix A′ of columns of sum m

corresponding to the blocks. We also create an M ×
(

c
(

M

2

))

simple matrix A′′ as follows.
Let Ā be the m×

(

c ·
(

m

2

))

matrix obtained from A above by deleting the m+2 columns of
sum 0,1,m. For each block B (of size m) of the design B, we place into A′′ a copy of Ā in
the associated rows with 0’s in the remaining rows. We note that 2

m(m−1)

(

M

2

)

·c
(

m

2

)

= c
(

M

2

)

.

Thus A′′ is an M×(c
(

M

2

)

) simple matrix. Now concatenate A′, A′′ and the M +2 columns

of sum 0,1,M to form an M × (c + 2
m(m−1)

)
(

M

2

)

+ M + 2 simple matrix A′′′. If we are

looking for F2,1,1,0 in A′′′, we may ignore the columns of sum 0,1 and M . Then a copy of
F2,1,1,0 must come from a column of sum m and a column from a copy of A′′ on those m
rows (in order to find 2 · 12) but then we cannot find F2,1,1,0 in such a pair of columns.

The results extend to Fa,1,1,0 for a > 2. There are other cases where exact bounds
would probably be difficult such as F0,b,b−1,0 and F1,b,b,1.

10 Open problems

Theorem 4.1 considers some F with many repeated pairs of columns. But more should
be possible. Perhaps some result such as the following works.
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Problem 10.1 Suppose that G is a k-rowed (0,1)-matrix, k > 1, such that forb(m, G) 6

forb(m, Kk−1) for all m > k + 1. Then for p > 1 and m > p + k + 1, is

forb(m, Kp ×G) 6 forb(m, Kp+k−1)?

At the very least, we would like the result for G = 1202. We were not able to obtain this,
and pose it as a problem.

Our results give only partial information for the following.

Problem 10.2 For what 4-rowed G is forb(m, 1301) = forb(m, [1301 G])?
For what 4-rowed G is forb(m, 14) = forb(m, [14 G])?

Problem 10.3 Obtain complete versions of Table 1 and Table 2 for 3× 4 matrices.

It would suffice to obtain exact bounds for the following 12 matrices.





1 1 1 1
1 1 1 1
1 0 0 0









1 1 1 1
1 1 1 0
1 0 0 1









1 1 1 1
1 1 1 0
1 0 0 0









1 1 1 0
1 1 1 0
1 0 0 1









1 1 1 0
1 1 1 0
1 0 0 0









1 1 1 0
1 1 1 0
0 0 0 0









1 1 1 1
1 1 1 0
0 0 0 0









1 1 1 0
1 1 1 0
0 0 0 1









1 1 1 1
1 1 1 0
0 0 0 1









1 1 1 0
1 1 0 1
0 0 1 1









1 1 0 0
1 1 0 0
0 0 1 1









1 1 1 1
1 1 0 0
0 0 1 1




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